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1. Introduction

As in conventional algebra, we can also find system of linear equations in max-plus algebra.
System of max-plus lincar equations can also be represented by a matrix equation that is
A®x=h.

The solution of the system A®x = b in max-plus algebra through the reduced
“discrepancy "matrix has been discussed in [1] and [4]. However, they just concern about the
existence and the uniqueness of the solution to A ® x = b in general. They haven’t concerned
about the solution of the system of max-plus linear equations with more variables than
equations in spesific yet. Therefore, in this article, we will discuss about the solution of the
system of A® x = b with more variables than equations.

First, we will review some basic concepts of max-plus algebra, matrices over max-
plus algebra and the solution of the system of A® x = b. Futher details can be found in [2]
and [4].

Let R, = R U {~o0} where R is a set of all real numbers and ¢ := . Defined two
operations @ dan ® on R, such that

a®b :=max(a,h) dan a®b:=a+b VabeR,
Runax =(Re, ®, ®) s a commutative idempotent semiring. Furthermore, Ruax is @

semifield. Then, Ry is called as max-plus algebra. The relation * gy * on Ryngx defined
by @ Zpax b & a® b = bis a partial order on Rypgy.
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Abstract. This paper discusses the solution of systems of max-plus linear equations with more variables
than equations through the reduced discrepancy matrix of the system. Let the entries of each column of
the coefficient matrix are not all equal to infinite. We show that if there is a zero-row in reduced
discrepancy matrix of the system, then the systems has no solution. Furthermore, if there is no zero-row
in reduced discrepanc y matrix of the system, then there are infinitely many solutions of the system.
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1. Introduction

As in cdffentional algebra, we can also find system of linear equations in max-plus algebra.
System of max-plus linear equations can also be represented by a matrix equation that is
A®@x=h.

The solution of the system A®x = b in max-plus algebra through the redu@id
“discrepancy "matrix has been discussed in [1] and [4]. However, they just concern about the
existence afffil the uniqueness of the solution to A ® x = b in general. They haven’t concerned
about the solution of the system of max-plus linear equations with more variables than
equations in spesific yet. Therefore, in this article, we will discuss about the solution of the
system of A ® x = b with more variables jan equations.

First, we will review some basic concepts of max-plus algebra, matrices over max-
plus algebra and the solution of the system of A ® x = b. Futher details can be found in [2]
and [4].

Let R, = R U {—co} where R is a set of all real numbers and £ := —co. Defined two
operations €@ dan ® on R, such that
a®b :=max(a,b) dan a®@b :=a+b ,Va b e R,.

Rmax = (Re, B, ®) is a commutative idempotent semiring, Furthermore, Rpa is a
semifield. Then, R, is called as max-plus algebra. The relation " <5, " on R4, defined
by a <ux b © a® b = bis apartial order on R,,,,.

J),wew Of D0 ALIA oy vatens Comce m Holbmalis, = Page 133 0of 226 -
CrAAME it Qoplications, and Malhemaics Education




The operations @ dan ® on R,,,, can be extended to set RMX™ where RIXI =

{A=a; | aij € Rpgy, fori=1,2, ..,mand j =1,2, ..,n}. Let ABE€ERy: and
C € REX" then

max

P
[A @B]U = al-j @bu and [A ®C]U = @ aik® ij‘
k=1

The relation " <4, " defined in RIX where A <,,,x B © A@® B = B is a partial order on
Rz
Defined Rihay = {x = [x1,%, ., Xn]" |2 € Rnagj = 1,2,..,n}. The clement of

[R]}.x 1s called vector over R,
Definition 1.1. Given A € R\ and b € R ... Subsolution of the system of max-plus linear
equations A @ x = b is a vector x' € R, that satisfies A® x' <4, b.

Definition 1.2. 4 subsolution x* of the system A @ x = b is called the greatest subsolution of
the system A @ x = bif x' <. X" for every subsolution x' of the system A @ x = b.

Theorem 1.1. [4] Given A € RILXT with the entries of each column are not all equal £ and
b € R™, then —x"; = max; (—bi + al-}-)_ﬁ}r everyi € {1am} and j €{1,2,...,n}.
2

Theorem 1.2. [3] Given A € RIS with the entries of each column are not all equal & and
b e R™. A® x = b has a solution if and only if x* is a solution.

2. Main Result
1

Base on Theorem 1.2, we can conclude that the existence of the solution of the system of
max-plus linear equation A @ x = b is determined by the greatest subsolution. Let A € RL5"
witlfihe entries of each column are not all equal € and b € R™. The case that we’ll discuss is
the solution of the system of max-plus linear equations A ® x = b with more variables than
more equations or m < n. The greatest subsolution is a candidate solution of the system
A ® x = b that is vector x* where

" 'miax(—b{- + a;;) m{ax(al-l —by)
- 1
—x* max(=b; + az) | [max(aiz — b))
_x* = . 2 = i = L
=Xy max(—b; + a;;,) max(a;, — b;)
L i

(max{a;; — by, @z — by, e, Qi1 — by}
max{a;; — by, az — by, ., Amz — b}

lmax{a, — by, azn — by, ., @y — b}

Then, we define discrepancy matrix denoted by D, ;, as folows
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a;; —by  ap—by e Qp— by
D, =| %1~ b, a; —b, v Oy — by
Ab — : : . :
am1 — bm Amz — bm o Ompn — bm

Note that every —x"; can be determined by taking the maximum of each column of D .
In order to predict the number of solutions of systemA ® x = b, we define matrix
R, p that is reduced from D), as follows:

1, ifd;; = maximum of column j

Ryp = [ryj] where 1;; = {0 otherwise

Next, we will give the examples of the solution of the max-plus linear equations
A®@x=>bfor m<n.

X
Example 2.1. Solve A ® x = b if A = [i 0 3], x= [xz], and b = [1]
X3

A quick calculation gives Dy ), = [2 4] and Ry, = [0 1 1] Base on matrix D,

we get x* = [0, 1,—2]7. However, there is a row in R, thatall LI‘l’(I‘lLb are 0. It is the second
row which means that there is no maximum in that row. It indicates that the system A @ x =
b has no solution. We can verify that through the calculation as follows:

0
._[1 0 3 B max{l,l,l}]_ 1 1 _
A®x" = [é‘ 4 2 ® [_12] N [max{E,S,O} - [5] = [6] =b
So, x* is just the greates subsolution of the system A @ x = b but not the solution.

X1
Example 22. Solve A® x = b if A = [i g é] x= [xz], danb = ["Gf]
X3
A quick calculation gives Dyp = [:% _12 _23] and R,y = % 2 2] Base on matrix

D, we get x* = [2,—1,—2]". Next, we will verify whether x* is a solution or not.

[ max{4,1, -1} ] [4]

max{6,6,6}
We can see that x* is indeed the solution of A ® x = b. But, there is more than one 1 in the
second row of R, . In other words, there is more than one maximum in that row. It indicates
that the system A @ x = b has an infinite number of solutions. Base on Definition 1.2, we
know that the elements of x* are the upper bounds. So, the elements of vector x in this

example must satisfy x; < 2, x, < —1 and x3 < —2. On the first row of R, ;,, the maximum
is in the first column then x; = 2. On the second row, the maximum is in the first, second and

221
478

third column then there are three possible ways with either x; = 2, x; = —1 or x5 = =2. If
we change the value of x; then it will change the equation in the first row. So now as long as
X3 < —1 and x3 < —2, the first and second equation will always be true. Therefore, every
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vector x =[2, a, b]T where a <—1 and b < -2 is also a solution. So, the system of
A @ x = b in this example has an infinite number of solutions.

Matrix Dap and Rap play role in determining the charact@istics of the system
A ® x = b. Now, we will give the theorem about the exixtence of the solution of the system
of max-plus linear equations A @ x = b.

Theorem 2.1. [1] Given the system AQ x = b where A € RIZ! with the entries of each
column are not all equal € and b € R™.

1. If'there is a zero-row in matrix R, , then the system has no solution.

2. If there is at least one 1 in each row of Ry, then x* is the solution of the system A @ x =

b.

Proof.

1. Without lost of generality, suppose the zero-row of R4, is the k™ and let x* is the solution
of the system A®x = b, then —x"*; > maxi(—bi + al-j) > —by + axj. Thus, —x*; >
—by +ay; & ap; +x*; <byg,¥j. Hence, x* does not satisfy the k™ equation. It
contradicts with x* is the solution of the system A ® x = b. So, the system A ® x = b has
no solution.

2. We will proof the contrapositive. Suppose x* is not the solution of the system A @ x = b.
By Teorema 1.1, —x"; = —by + ay; ,Vk,j. Thus, maxj(akj + x*j) < by. If x* is not the
solution of the system A ® x = b then there is & such that maxj(akj + x*j) < by.. This is
equivalent to —x*; > —by + a;; ,Vj. Since —x*; = max(—b; +aU) for some [, then
there is no element in the k™ row of Ry p thas is 1. [

In order to determine the uniqueness of the solution of system of max-plus linear
equations, we give the definition as follows

Definition 2.1. The ! in a row of Ry}, is a variable-fixing entry if either
1. 1t is the only 1 in that row ( a lone-one), or

2. It is in the same column as a lone-one.

The remaining 1s are called slack entries.

The 1s that are circled in the above examples are the variable-fixing entries.

Theorem 2.2. [4] Given the system A @ x = b where A € RID with the entries of each
column are not all equal € and b € R™ and the solution to the system exist.

1. Bfeach row of Ry, has a lone one, then the solution of the systemis unique

2. If'there are slack entries in R, p, then the system has infinite solutions.

Corollary 2.1. Given the system A @ x = b where A € RII with the entries of each column
are not all equal € and b € R™ and m < n. If there is no zero-row in Ry then there are
infinite solutions of the system.

Proof. Matrix R, has no zero-row so there is at least one 1 in each row of R, ;. Suppose that
the solution of the system is unique then there is a lone one in each row of Ry . Meanwhile,
m < n which means that there are more variables than more equations in that system. Hence,
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there must be slack entries in R, p,. This contradicts with the solution of the system is unique.
So, there are infinite solutions of the system. [
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