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Abstract
One example of dynamic event systems is the transportation system.
There are two interesting q@@stions on the transportation system: first,
how to set the system such ¥fat it moves forward in regular steps, i.e.,
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r a given constant A, the time interval between any initial points of
consecutive cycles on every crossroad is A? Second, suppose that there
is a given schedule for the system and the time interval between

consecutive starting points of any two consecutive tasks does not
exceed a certain value p, is it possible to start the system in such a
way that the schedule is kept? The first problem is closely related to
cigenvector problems, and the second problem is related to the sub-

eigenvector problems.

This paper gives an overview of eigen problems (eigenvalues and
eigenvectors) in interval max-plus algebra rclat“to cigen problems
with finite solution. We discuss about the criteria of finite eigenvectors
existence and the description of the space of all finite eigenvectors of
any square matrices. Furthermore, this paper also discusses about sub-

eigenvector problems.

1. Introduction

This study is started from the problems of road transportation. One of
which is the coordination of traffic lights at the crossroads (Pesko et al. [8]).
Problems and mathematical models of traffic light coordination are
associated with eigenvalue, eigenvector and sub-eigenvector problems
(Turek and Turek [12] and Cuninghame-Green [5]). The problems of
eigenvalues, eigenvectors and sub-eigenggctors can be explained in the
case of max-plus algebra (Butkovic [2]). To determine the eigenvalues and
eigenvectors over max-plus algebra, one can determine with the maximum
average method, the method of power or the application of linear

pro%mming (Chung [4]).
Max-plus algebra is the set R, = R U {g}, where R is the set of all real

numbers, &= -0 ipped with operations @& (maximum) and & (sum)
(Bacceli et al. [1 ax-plus algebra is an idempotent semi field. From the
set R, ongcan ¥6¥m the set of m x n matrices whose elements are in R,

which later is called the set of matrices on max-plus algebra anﬁs denoted

by R (Butkovic [2]). For n = 1, we obtain the set of vectors on max-plus
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algebra and written by R['. Furthermore, if m = n, then the set R} ™"

together with two binary operations @ (maximum) and ® (sum) is an

idempotent semiring. The definition and some properties of eigenvalues and
eigenvectors can be explained on the algebraic structure R!*". Graph theory

which discusses the definition and properties of digraphs, communication
graphs, paths, cycles, elementary cycles and weight of paths, loop, strongly
connected digraph is used to define irreducible and reducible matrices,
introduce the theory of maximum average cycle, the matrix R-astic, transitive
closure and definite matrix in max-plus algebra (Butkovic [2], Carre [3] and
Tam [11]). Subspace theory over max-plus algebra is based on the theory of

semimodule and sub-semimodule (Golan [7]).

It is known that a measurement is never 100% accurate. As a result, the

values of measurement X, are generally different from the actual value x;. In

particular, in the case of uncertainty interval, after the measurement resulting

X,, the information obtained is that the real value x; of the measurement
process is contained in the interval X; = [X; — A, X; + A]. Therefore, it is

possge to provide the time course of a particular process in a given interval.
53
Max-plus algebra can be generalizenbinto interval max-plus algebra,

where we can also discuss matrix, graph, eigenvalues and e'&nvectors of a
matrix in interval max-plus algebra (Rudhito [9]). However, eigenvalues and
eigenvectors of matrix in interval max-plus algebra have been discussed only
for irredugible matrices. Therefore, it is still possible to discuss, in general,
about thegagoblem of eigenvalues and eigenvectors as well as the bases for
the eigen space of the matrix in interval max-plus algebra, through a different

approach done before (Siswanto et al. [10]).

To resolve network problems with activity time interval, max-plus
algebra has been generﬂzed into an interval max-plus algebra. Interval max-

plus algebra is the set /(R), = {x = [x, X]x, X € R, &£ < x < X} U {g}, with

& = [&, €], equipped with two binary operations @ and ® with x @ y =
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C®y,x@yand x®y=[x® y, X @] forexa x, y € I(R),. It has
also been discussed about the matrix over interval max-plus algebra, that is

I(R)P<™.

Based on the idea above, we will try to extend the concepts in algebra
max-plus @ato the interval max-plus algebra. These concepts include
criteria of existence oanite eigenvectors and the description of all finite
eigenvectors of & 60 B matrices over interval max-plus algebra. Furthermore,
sub-eigenvector problems in the interval max-plus algebra will also be

investigated.

2. Main Result

Max-plus algebra is the set R, = R U {g}, of which R is the set of
all real numbers and & = — that is equipped w&two operations @

(maximum) and ® (sum). From this, one can form a set of matrices of size
®
mxn over R,, denoted by RI"™". Moreover, whenever m = n, the set

R equipped with operations @ and ® forms an idempotent semiring.

By a closed interval x in R,, we mean a subset of R, in the form
x=[x,¥]={xeR,|x < x <X}. The interval x in J, is known as

interval max-plus. A number x € R, can be expressed as interval [x, x].

By I(R),, we mean the set {= [x, X]x, x e B, e < x <X} U e},
with & = [g, €]._On the set /(R),, we define two operations ® and ®
with x@y=[€3£,f®§] and x® y =[x ® y, ¥ ® §] for every x, y
€ I(R),. The set I(R), equipped with the operations @ and ® is a
commutative Eempotent semiring with neutral element & =Je, €] and the
unit element 0 = [0, 0]. The semiring (/(R),; @, ®) then is called interval
max-plus algebra and denoted by I(R),_.. = (/(R),; ©, ®).
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The set of all matrices of size mxn over I(R), is denoted by

IR)™", ie.,

HR)Y™" = {4 = [A?.]|A1j elR):i=L2 ..m j=12 ., n}
(9]
All the matrices which belong to I(R)"™" are called matrices over interval

max-plus algebra. The set I(R)!™" equipped with oper‘a'&;ns ® and ®

forms an idempotent semiring and denoted by /(R)"-" = (/(R)!™"; ®, ®),

max

whereas /(R)!™" is a semimodule over /(R),.

Fo:imatrix Ae I(R)™, A=[4;]e R and 4 =[4;]e R

23 ) ’ ’

denote lower and upper bound matrices of the intervalaatrixA, respectively.
23

Given a matrix 4 € I(R)]"". Let 4 and A4 be lower and upper bound
matrices of the interval matrix 4, respectively. We define the ingval matrix
of 4, namely [4, A] = {4 e R |4 < A< 4} and I(RY™"), = {[4, 4]|

A amyr ).
For a € I(R),, [4, 4], [B, B] € I(R]"™"),, we define two operations
® and @ by:
_ _
(Ho®[4 4]=[a@4 a® 4],

(2)[4. 4]®[B,B]=[4® 4,

(>~

@ B).

For [4, A]e I(R{™"),, [B.B]e J(RExn ),» we define [4, 4] ®
[B,B]=[4® 4, B®B].

The set I(R;"), equipped with operations @ and ® forms an
idempotent semiring and is denoted by I(Rgt), = (/(RF"),; @, ®),

whereas I(R;™"), is semimodule over /(R),.
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The semiring [(R)1:" = (I(R))"; @, ®) is isomorphic with the

max

semiring 6[@‘:{,’;&);, = ([(RY"),: ©, ®) by the isomorphism f : I[(R)™"
— I(RP™M),, f(4) =[4, 4], ¥4 e I(R)"". The semimodule I(R)™"
over I(R), is isomorphic with semimodule /(R "), over I(R),. Thus, for
each interval matrixéone can always determine the matrix interval [4, 4]
and vice versa, and for each intervaﬁatrix [4. A] € I(RY"), with 4, 4
e Rg™, one can also determine the interval matrix 4 € I(R);™", [4;;, 4;]
€ "ﬁ)a for every i and j. Thus, the matrixﬁ e I(R)" can be viewed
as an inter& matrix [4, A] € I(R™"),. An interval matrix [4, 4]e
I(R{™™), is called an interval matrix corresponding to the matrix
A e I(R)T" and is denoted by A =[4, A]. As a result of the above

16 _
isomorphism, we have: 0 ® 4 ~ [0 ® 4, TR A], A®B~[AD B, A® B]
and A® B~[4®B, A ®B].

Let I(R)" be the set {x =[x, X3, o X, ] |3 € I(R),: i =1, 2, ..., n).
The set /(R)! can be viewed as a set I(R)SXIA The elements of I(RR); are
called interval vectors in I(R).. An interval vector that is corresponding to

the interval vector x is x = [x, X].

F rmore, we present the concept of interval weighted directed graph.
Given a directed graph D = (N, E) with N = {1, 2, ..., n}. A directed graph
is said to be weighted interval if each arc (j, i) € E can be associated with

a closed interval of real numbers 4; e (/(R), — {[¢, €]}). Interval of real

number 4;; is called interval weight of arc (/, i) and is denoted by w(i, j).

We define the graph precedent interval (graph communication interval)

of the matrix 4 e I(R)]™" as an interval weighted directed graph D, =




Solution of the Eigenvector and Sub-eigenvector Problems ... 3001
(N, E) with N = 2, wmnf and E ={(j,i)|wi, j) = 4; #[e, €]}. For
every interval weighted directed graph D, = (N, E), it can always be
defined as a matrix 4 € I(R)}™") called matrix of interval weighted graph

wij, i), (i, j)e E
with 4; = { i 1), (> )
) [E" E]" ("’ )") E E‘
A directed graph D = (N, E) is said to be strongly connected if u can be

reached from v forall u, v € N.

Suppose that 4 e ;& :x” and D, is a weighted directed graph
corresponding to A. The matrix A4 is irreducible if D, is strongly connected.

Otherwise, 4 is said to be reducible.
We discuss the eigenvalues and eigenvectors of matrices over interval

max-plus algebra.

Given a matrix 4 e I(R)]"™". The interval scalar 1 e I(R), is ﬂed

. . . . . . n
eigenvalue of interval matrix A4 if there exists an interval vector v € I(R)—
>

_
with v # g, ,; satisfying A ® v =4 ® v. Vector v is called eigenvector of

interval matrix 4 corresponding to the eigenvalue A.

For a given A e I(R).;", the problem to determine x e I(R),

€n41 and A € I(R), such that 4 ® x = L ® x is called the problem of

eigenvalues and eigenvectors in interval max-plus algebra.
Eigenvalue and eigenvectors of an irreducible matrix

Next, we will discuss eigenvalues and eigenvectors of an irreducible

matrix.

Definition 1. Given a matrix A4 =~ [4, A] € I(R)7" and 1 =1, 1] e
I(R),, we define:
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(@) V(4. 2) = {x e I(R) |x = [x, ¥] > x € V(4 L) T €V (4, 1)}, where
for Ae R, V(4 1) ={xeR! |[A®x =LA ® x},

(b) A(4) = {1 =[x, 1] e I(R), [V(4, 1) # {g}; V(4, %) # &},

(c) V(4) = Upca(a)V (4 1),

(d) V' (4, 0) =V (4, »)N I(R)",

(e) V(4 =V(HNIR)"

Theorem 1. If 4, B e I(R)!", a=[a, a]el(R), [1 A],[un H]e
I(R),, then )

(@) V(o ® 4) = V(4),

(b) Ala ® 4) = o ® A(4),

(© V(4. M)NV(B, n) cV(4® B, A ® p),

(d) (4, )NV(B,n) V(4@ B, L@ p).

Proof. (a) By Defipition 1, to prove that V(o ® 4)=V(4), we
sufficiently prove that V(4,1)= V(e ® 4, 1), for each A e A(4). We
know that

16
(1) Upea(a) V(@ ® 4 1) = V(e ® 4) =V(4) = Upera)V (4. ).
(i) Uz pn) V(@@ 4, 1) = V(@ ® 4) = V(4) = Uz p 7y (4, 1)

_
Therefore, V(e ®A4,4)=V(4,%) and V(a® 4)=V(4, L) 'la(e

xeV(4, 1), then xeI(R);, x =[x, X], where xeV(4,1) and X e
V(4,%). Consequently, xe V(a®A4,%) and XeV(A® A), so xe
V(o ® 4, 2). Conversely, take x € V(o ® 4, &), then x e V(a ® 4, 1)
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_ _
and xeV(a® 4, r). %nsequently, xelV(4,2) and X eV (4, %), so

x € V(4, 1.). Therefore, V'(4,2) = V(o ® 4, 1). Hence, V(o ® 4) =V (4).
(b) Suppose x = [x, X] € V(4). Then x and X are the eigenvectors that

correspond to the eigenvalues A = [2, X], so we have x € V(4, L) and

X e V(E, ). Therefore,

(i)
A®x=1Bx < a®(4®x)=a® (L ®x)

S @®4)Rx=(a®4)®x,

(i)

Thus, the eigenvalues of matrices o ® 4 and @ ® 4, respectively, are
o ® 2 and @ ® . By Definition 1, A(oa ® 4) = a ® A(4).

(c) Let_xeV(4, A)NV(B,u), ie, xeV(4, 1) and erﬁ, n).
Therefore, A@x =2 ®x and BEx=p@x or A@x=1.®x; 4%
=L ®X and B®x=p®x B®X =1 ®X. Furthermore, (4 ® B)® x
=AQB®X) =40 (p®X)=(49p)Qx=(PR®ANOx=pQ(40x)
=p®(L®x)=(1®i)®x Likewise, we also have (A®B)®X =
(F ®%)®X. Therefore, x € V(4 ® B, . ® n), so we have V(4, »)N
V(B,n)c V(A® B, 1 ® p).

(d) Let x eV (4, ?L)a V(B, n), ie, xel(4,2) and x e V(B, ).
Therefore, A®x=1@®x; A®X=2OX and B®x=p®x; BOX =
B ® X. Furthermore, (A®B)®x=(4®x)®(B®x)=(A®x)D (1®x)
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=(L®p)®x. Likewise, we also have that (A®B)®X=(LOW)®X.
Therefore, x € V(4 ® B, » ® p), so we have that V(4, )NV (B, pn)
V(A® B, .. ® ). O

n=n

¢ as follows.

We define the critical points of the matrix 4 € I(RR)

Definition 2. Suppose 4 € I(R)"", 4 ~ [4, A] e I(R}*"), and N =

{1, 2, .., n}. By E(A4), we mean E(4)= E(4)NE(4) Where for 4e

R, E(4)={i € N|3o = (i = iy, iny .oy iy, i) in Dy 3 u(o, 4) = A(A4)}.

The elements of E(A4) are called the critical points of 4.

The cycle o is called critical cycle if p(o, A) = M(4) and (o, 4)
= I(E) The points in N and union of the set of arcs of all critical cycles

form a directed graph C(4) and it is said to be critical directed graph of A.

The following lemma talks about the critical directed graph.

Lemma 1. Suppose A e I(R).™" and C(A) is the critical directed

£

graph of A. Then all the cvcles in C(A) are critical.

Proof. Suppose 4 € I(R)!™" and 4 =~ [4, 4]. It is already known that
C(4) is a critical directed graph of 4. Let C(4) and C(4) be the critical
directed graphs of 4 and A, respectively. Then all the cycles in C(A) and
C(4) are critical. Therefore, all the cycles in C(A4) are critical. O

Two points i and j in C(4) are said to be equivalent if two points are in
the same cycle and denoted by i ~ j. The relation is an equivalence relation
in E(A4).

Lemma 2. Let Ae I(R)™", and A4 =~[4, A]e I(RF™"),. If W(4)

=g, €], then A(A) = {[e, €]} and the eigenvectors of A are vectors
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x> X2 oo X, ] € (R)! such that x; = [e, €] if the jth column of A is not
equal to the vector [[g, €, [¢, €], ..., [, €]|, j € N.

Proof. It is known that X(4) = [, €]. For the lower bound matrix 4 of
A4, M(A) = & Thus, we have A(A4) ﬁ} and eigenvectors of the matrix 4 as
[xps X5 ooy X, IFe (R);, so that x; = &, when the jth column of the matrix
A is not the same as [g, &, ..., E]T, j € N. Likewise, for the upper bound
matrix A4, we have the same. Theref& we obtain A(4) = {[¢, €]} and
cigenvectors of the matrix A as [X|, X3, e X, = [(x), x55 oos x,, ).
(%), X9y oos X, ) ], 50 thaixj = [g, €], when the jth column of the matrix 4 is

g

not equal to the vector [[e, €], [&, €], ..., [& €], j e N. O

The above lemma describes the eigenvector matrix 4, if L(4) = [g, €].
Furthermore, we &ill discuss for [e, €] < [M(4), 1(4)] = A(4). Suppose
AeI(R)], A~[4, A]e (RY"), and M(4) = [M(4), 1(4)] > [e, €] is an
eigenvalue of matrix 4. Because A(4) and A(A) are eigenvalues of matrices
A and 4 with (4) >€ and A(4) > s, respectively, we can determine

matrices I'(4; ) = (gu_) and [(4,) = (g ), respectively.

Theorem 2. Suppose A € I(R)]™", A~[A4, A] e I(RF*"), and W(A)
is an eigenvalue of matrix A. Let [g, €] < h(A). If T; is an ith column of
matrix T(A, 1) such that the lower bound of the ith entry of T; is equal to 0
and the upper bound vector of T; 1 an eigenvector of A, then T, ;I an

eigenvector of A corresponding to the eigenvalue L(A).

Proof. It is known that 4 e I(R)™", A x[4, A]e I(RP"), and

A(A) = [L(4), L(4)] is an eigenvalue of matrix 4, where A(4) and %(4)
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are eigenvalues of matrices 4 and A, respectively. Because [e, €] <
[M(4), 1(4)] = 1(4), then A(4) > & and A(4) > & so we can determine
the matrices F(ﬁ;b)z(gq_) and F(E;,b)z(g{-t,-)‘ Suppose g, and g,
k =1,2,.., n, respectively, the columns of the matrices I'(4, ) and [(4;).
Based on the case in max-plus algebra, from each of I'(4; ) and r(4;),
we obtain at most n eigenvectors corresponding to 4, and E;LA The
eigenvectors are the columns of (4, ) and (4, ) where the main diagonal
is equal to 0. We form matrix [(4; ) with columns defined as follows:

(a) If for some k, a pair of g, and g, satisfies g, < g;., then we

determine the 4th column as an interval vector g; = [gﬂ_ . 2k

(b) If for some k, a pair of g, and g; does not satisfy g, < 2; . then
) 17
we determine g; =6 ® g; with & = max;((g, ); —(8x);), i=L2,..n

and the kth column as an interval vector g, =~ [3;3 i) O
By Theorem 2, we have a method to determine the eigenvectors of an

irreducible matrix. In the subsequent discussion, it will be shown that A(A)

is the largest eigenvalue and called the main eigenvalue of matrix 4 and
V(4, w(A4)) is called the main eigen space of A.

Theorem 3. If A (R)}™, A=[4, A]e (RY"), and if A is not a
matrix where all elements are [e, €] and V' (A)# @, then [g, €] < A(A)
and A @ x = W(A) ® x, Vx e VF(4).

Proof. It is known that matrix 4 is not a matrix in which each entry
belongs to [g, €] and V' (4) # &. Consequently, 4 and A4 do not have

¢ as their entries. In addition, since V" (A4)# @, there is x € V' "(4),




Solution of the Eigenvector and Sub-eigenvector Problems ... 3007
_ _
x~[x,¥] such that A@x=A®x, A®X=L®X or xe V' (4),

¥ eV (4) for = [k, 1]. Thus, V*(4) # @ and V' (4) # @. Therefore,
MA)>e, A(A)>e and A®x=MA)®x, A®¥ = r(4)®X. Thus,
we obtain & = [g, &] < [M(4), A(4)] =A(4) and A® x = A(4) ® x, Vx e
Vr(A). 0

Theorem 4. If AcI(R)]", A= [ﬁ, ;]e I(Rg™), and A is not a

matrix in which each entry belongs to [g, €], then we have:
(@) V' (A4)# @ if and only if € <M A4) and Vie N, 3j € E(4) such
that j — i inthe D .
) _
(b) If VT(A)# @, then V'(4)= {ZJ_EE(A}OLJ- ®gjo; e I(R)},
where g1, g2, ..., g, are the columns of ['(4; ).

Proof. Suppose 4 € I(R)™, A~[4, A]e I(Ry™), and 4 is not a
matrix in which each entry belongs to [g, €]. Therefore, the lower EI upper

bound matrices 4 and A4 do not have € as their entries. From here, we have:
(@) V'(4)# @ < MA)> ¢ and Vi e N, %e E(A) such that j — i
in the D,. Likewise, V" (4)# @ < M(4) > and Vie N, 3j e E(4)
such that j — i in the D.
+ + @ .

(b) If V'(4d)=, then V' (4)= {Z_;‘eE(ﬁ}g.f ®g}_, a; € R},
where 8 &yr s & A the columns of I'(4; ). Likewise, if V+(E) * @,
— & _ _ _ _
then V' (4)= {ZJ_EE(Z}OLJ; ®gia;jeR }, where gy, 27, ..., g,, are the

columns of T'(4, ).
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By (a), we have V"(4) # @ < & < M(4) and Vi € N, 3j € E(A4) such

that j — i inthe D 4. By (b), we can form matrix ['(4; ). If V' (4) # @,

@ p—
then V+(é) = {Z_;’EE(A}'}J- ® g0 & "(R)}s where gy, g2, ... g, are

the columns of I'(4; ). O
Theorem 4 shows the necessary and sufficient conditions for the

existence of finite eigenvectors and how to form the set of finite
eigenvectors. The following theorem shows how to establish a set of finite

Theorem 5. If AeI(R)I™, A~[4 A]elR}"),, &<i(4),

eigenvectors.

[(4) = (gij) and g1, g2, ... gn are the columns of T'(4,) = (g ), then:
(a) i € E(4) if and only if g, = 0 and g; is an eigenvector matrix A.

_
(b) If i, jeE(4), then i~ j if and only if g;=0a®g; for
a € I(R).

Proof. Consider the lower and upper bound matrices 4 and A. Then

MA) > e MA) > e (4;)= (gif) and 8 &yr o 8, ATE the columns of

[(4,). Likewise, I'(4)) = (g;) and g, &, ... g, are the columns of
I['(4; ). We obtain:

(a) ieE4d) < g, = 0 and ie E(4) < g; =0. Based on the
-

previous results, i € E(4) < g; = [gi, gi] or g = [gi_, g, |. Therefore,
ic E(4)< 8, = 0 and the upper bound vector is the eigenvector of the
matrix A.

(b) If i, j € E(A4), then g; =g®gf_ for o € /(R) if and only if

B :

i~ j. Likewise, if i, j € E(4), then g, =0 ®g; or g =a®g; for
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2
o e I(R) if and only if i~ j. As a result, if i, j € E(4), then g; =

a@gi for o € I(R) ifand only if i ~ j. |

Corollary 1. Suppose Ae I(R)". If € < M(A), g1, &2, ... g, are the

columns of T(4;) and V™" (A4) # @, then

_ a
@ _
V(4) = { E _;eE*(A)a-f ®gj0;e I(R)},

where E™(A) is a maximal set of critical points of A which are not

equivalent.

The following theorem presents a set of eigenvectors for an arbitrary

irreducible matrix.

Theorem 6. Every irreducible matrix A € I(R)"™ (p.>1) has a

unique eigenvalue W(A) and the set of eigenvectors is V(A4)—{e} =

Vi(4) = {Z?E,E*(A)aj ®gjla;e I(R)}, where gy, g7, ..., g, are the

columns of T(4;).
Proof. Note that the lower and upper bound matrices 4 and 4 are

irreducible matrices. By Theorem 5, matrices 4 and 4 have unique

eigenvalues A(4) and 1.(4), respectively,

®
V(4)-{et=V"(4) = {ZIEE*(A}Q"{- ® 8,8 € R}’

where 858y g, are the columns of (4, ), and E”(4) is an arbitrary
set of maximum critical points of 4 which are not equivalent. Likewise,

(12 _
V(d)—{et=V"(4)= {Zi_g*@a} ®g;a;e R}
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where g, g5, ..., g, are the columns of I'(4; ), and E”(A4) is an arbitrary

maximum set of critical points of 4 whi re not equivalent. Therefore,

V(d)-{e}=V"(4) = {Z?eg*(,q}a-f ®gjsa; e I(R)} with o ; @g_i ~

o ®g,, @) ©g;jl O

Eigenvalues and eigenvectors of a reducible matrix

Next, we will discuss eigenvalues and eigenvectors for any reducible

matrix. A reducible matrix possibly has more than one eigenvalueA.
29
Definition 3. Let N = {1, 2, ..., n}, K ={ij, iy, ..., i } = N with 1 < j

<iy < <ip <n Let A[K]=[4[k], A[k]] be the main interval submatrix

Ailil e Ailik

of the matrix 4 = [4;] e I(R)™", 4~ 4, A, ie., and

i i
K] = [x[K], X[K]] states the subvectoaxq s Xiy s wens Xy )T of the vector

(x1s X9, s x, ) € I(R )z Furthermore, if D = (N, E) is a directed graph
q K = N, then by D[K] we mean a directed subgraph induced by D, i.e.,
D

K]= (K. EN(KxK)). so D) = DIK].
Definition 4. Let 4, B € I(R);"". A symbol 4 ~ B means that 4 can

be obtained from B by permutating the columns and rows.

The following lemma describes the eigenvalues and eigenvectors of two
equivalent matrices.

e
Lemma 3. If A ~ B, then A(4) = A(B) and there is a bijective function
between V(A4) and V(B).
Proof. Let 4, B e I(R)", A~ [4, A]e I(R}*"), and B ~[B, B] e

I(R{*"),. Since A ~ B, A~ B and 4 ~ B. Thus, we have A(4) = A(B)
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and there is a bijective function between F(4) and F(B), as well as
A(4) = A(B) and there is a bijecae function between V(4) and V(B).
Therefore, A(4)= A(B) and there is a bijective function between V'(4) and
V(B). O

Lemma 4. Suppose AeI(R).;™", heA(4) and xeV(4,1). If

PO REN)

xeg V+(A, L), then n>1, A ~[ . 422

J, L= I'L(A(?‘z}) and A is a

reducible matrix.

6]
Proof. Supposw e IR, A~[4, A]e I(RF™),, L=[1A]e

A(4) and x =[x, X, o %] = [l 1] [igu 3] s [, B I €7(4, ).
Therefore, A e A(4), 2 eA(4), x= I?f, X5y Eﬂ]e V(4,%) and

¥ =[¥, ¥, o X, ] € V(A, %), If xg V' (4, ), then n>1, and 4 ~

[A(”} 42D

A(gg)}a h =A£(é(22)) and A4 is a reducible matrix. Likewise, if
g

el

XeV (4, L), then n >1, 4 ~ [ 3(22}} A= X(j(w)) and 4 is

1

a reducible matrix. Since x &V '(4, %), we have n>1, and A4 ~

(1 421
[A j(-?-’-)}’ L= ?L(A(E?‘)) and 4 is a reducible matrix. O
€

The necessary and sufficient conditions for a matrix to be irreducible are

Theorem 7. Given a matrix A e I(R)"" . then V(A)=V"(A4) if and

max?

presented in the following theorem.

only if A is an irreducible matrix.
Proof. Suppose 4 € I(R)™", 4 ~[4, A] e [(RY™),. Hence, V'(4) =

V" (4) if and only if 4 is an irreducible matrix. Likewise, V'(4) = V" (4)
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if and only if 4 is an irreducible matrix. By Definition 2, we obtain

V(A4) = V' (A) ifand only if 4 is an irreducible matrix. O

Every reducible matrix A= (4;)e I(R)!™ can be transformed by

permutating rows and columns of matrix 4 into a Frobenius normal form
Ay Ay e Ap
Ayy - A

72

(FNF), namely , where 4y, ..., 4, is an irreducible

e € - A,
square submatrix of 4.

Definition 5. Given an FNF matrix 4. A simplification of any directed
graph is a directed graph Cy =({Ny, .., N}, {(N;, N;) 3k e N;, 3l e N;})

such that 4. > [e, €].

If there is a path from a point in N; to a point inside the N ; in D, then

we denote N; — N .

Lemma 5. If x € V(4), N; = N; and x[N;]#¢&, then x[N;] is finite,
particularly, x[N ;] is finite.

Proof. Let

T - - )
xeV(A), x= [0 3 = [y, 1) [y, o) o . DT
44

Then x =~ [x, X] with x = [x;, X5, o x, [T € ¥(4) and X =[5}, oy s X ]
e V(4). Suppose N; — N; and x[N;] # €. Then x[N;] finite, particularly,
AN;] is finite. Similarly, since X[N;]# e, we have X[N;] is finite,
particularly, ¥[N;] is finite. Consequently, x[N;] is finite, particularly,

x[N;] is finite. O

Theorem 8 (Spectral theorem). If 4 € I(R).™" is an FNF matrix, then
A(4) = {M(4)[0(4) = max‘,\,vf__,‘,\,-j_?L(A“- )
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Proof. Suppose 4 e I(R)!" and A=~ [4, 4] € (R}™),. Since 4
is an FNF matrix, 4 and 4 are FNF matrices. Hence, A(4)=

{l(A_jj )| Mﬁ_ﬂ' ) = Inax‘.\;f__,‘.\;jl(ﬁn- )} and

A(4) = {I(E_g)li(;g) = max‘,\.-f__,‘,\.-j_I(E{- )}

We obtain  A(4) = {A(4;)|[M(4;) = max‘,-\;f__,‘,-\;}_l(AH )i, with A(4;) =
Here is the definition of spectral and consequences of Theorem 8.
Definition 6. Given 4 e I(R);™ which is an FNF matrix. If A(4;;) =

Inax‘.-\;f__,‘.-\;j_?L(A“), then 4 (and also N; or simply j) is called as spectral.
Corollary 2. All initial classes of C 4 are spectral.

Corollary 3. The number of eigenvalues is | A(A4)

| AA)| €0 for

every A e I(R)™".

&
Corollary 4. The set V(A) =V(A4, MA)) if and only if all the initial

classes have the same eigenvalue L(A4).

The following discussion is about how to determine all the sets of

eigenvectors of a matrix.

Definition 7. Given Ae /(R);™ which is an FNF matrix,
Ny, Nj, .., N, are the classes of 4 and R ={l, 2, ..., r}. Suppose that
e A(4) and X >, we denote I(h)={ie R|MN;)= 1, N, spectral}

and E(h)=Ujcjo)E(4;)=1j€ ng_ﬂ- =0, j €Ujesp)N;} with r('® 4)

= [g{-‘,-]A
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Definition 8. Given i, j € E(A). Points i and j are said to be A-

equivalent if and only if 7 and j are included in the same cycle, with the

average cycle &, and denoted by i ~; .
Theorem 9. If A I(R)Y", A~[4, A]e (R{"), and ) € IA(4),

[e. €] <, then g; € I(R)} for every k € E(L) and V(A, L) is a linear

combination of g;’s, wherea gy is taken from an equivalent class ~; .

Proof. It is known that 4 € I(R)!", 4 =~[4, A]e I(RP"),, L=
A, A] € A(4) and [, €] < [A, &]. Then the columns of the matrix I'(4; )

with lower bound and upper bound of the main diagonal elements are 0 and

eigenvectors of 4 are eigenvectors corresponding to A. The set V(4, A) is a
linear combination of g;’s, where a g; is taken one from each equivalent

class inthe (£(%), ~). O

Furthermore, an equivalent class in (E(L), ~) is called as the equivalent

class ~;.

Corollary 5. If A€ I(R)T" and e A(4), [e €] <[k L], then

&

V(4,20 =T ' ® 4)® z|z e I(R .. 2j = [e, €] for all j & E(L)}.

Theorem 10. The set V' (A) = @ if and only if M(A) is an eigenvalue

Jfor all end classes.

Proof. It is known that 4 € I(R)", 4 ~ [4, A] e I(R}"),, W(4) =
[h, 2] and V*(4, &) = V*([4, 4], [L, 2.]). From here, the set V'*(4) = @
if and only if A(4) is an eigenvalue for all end classes. Likewise, the set
V¥ (4)# @ if and only if %(4) is an eigenvalue for all end classes. As a

result, the set V' *(4) = @ if and only if A(A4) is an eigenvalue for all end

classes. O
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Corollary 6. The set V' (4) =@ if and only if an end class has

eigenvalues less than h(A).

Theorem 11. Let A € I(R )" be the FNF matrix and Ny, N, ..., N,
be classes of A with R={1,2, ..,r}. If K={1,2, ...k} and A(4)=
{h;li e K}, then for k <r, there are FU}, F(Z), - %) such that
Vie K, Im(T')=v(4, ;).

Proof. Since the number of eigenvalues does not exceed the number
of classes, k <r. If &; € A(4), then V(4, &;)= {F(?L;I ®@A®z|z e
I(R)],z; =[e, g] for all j & IE(%;)}. Suppose that E(%;) = {e,, €3, ..., ¢/}.
Then T') = (g;7) and gy, g, ..., g are the columns of F(i}, where g; is
equal to the ¢, th column of I'(%;! ® 4) so that J'm(F("}) =V(4, &;). O

Sub-eigenvector

Below is given a definition of sub-eigenvector.

Definition 9. Given a matrix A I(R);™. Vector x € I(R)], x #

(e, 8, ...€) and i € I(R), satisfying
A®x <L ® x,

are, respectively, called sub-eigenvectors and eigenvalues of matrix 4.

We denote

Vi3 (A, 0)={xe I(R)|x =[x, X] 3 x e V7 (4, L); X € V7 (4, L)},

V7(4) = V7 (4, 1(4)),

Vo (4) =V7(4,0),

59

where for 4 # e e R V(4 1) ={xeR"|A®x <L ®x].

Here, we give criteria for finite sub-eigenvector.
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Theorem 12. Given a matrix A# ¢ e I(R)}™. Inequality A ® x <

A ® x has a finite solution if and only if %. > M(A) and » > ¢.
_8 _
Proof. Inequality 4 ® x < A ® x has a finite solution if arﬁ-nly if

x € V7(4, 1). From the definition ¥”(4, 1), then x =~ [x, X] such that
x eV (4, L), ¥ e V*(4, ). Since x € V(4, 1) if and only if % > A(4)
and A <& and X € V'(4, &) if and only if & > A(4) and & > &, we have

L=h(4) and & > & O

The above theorem gives the necessary and sufficient conditions

for the existence of finite sub-eigenvectors and eigenvalues of a matrix.
Furthermore, we give a description of the set of finite sub-eigenvectors.

Theorem 13. Given a matrix A#¢eeI(R)7™". If h=W4) and
A > &, then the set of finite sub-eigenvectors V™ (4, 1) = {A(?L_I ®A)®u|
uel(R)}.

Proof. If . >A(4) and A>g then 4@ x <A ® as a finite
solution. From the definition V*(4, %), th%x ~ [x, ¥] such that x e
V*(4,2); ¥ eV (4,1). Since ée V*(4, 1) if and only if A > A(4)
and A >¢ and X eV (4, %) if and only if A >2(4) and % >,
V'(4,2) = (AL ® ) Buluel(R)} and V'(4,7)={AR " ® 4)
®uluel(R)l}, so V(4 1) = AN ® )@ ulue I(R),}. O

By Theorem 13, if x € I(R)}, then we obtain a description of the set of

sub-eigenvectors on the following theorem:

Theorem 14. Given a matrix A #ge I(R)™". If L >WA) and

&

> g, then

A®x<A®x, xel(R)!
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if and only if
x=AL'® B u ue I(R);.

Furthermore, we give the properties of the sub-eigenvectors in the

Lemma 6. Given an irreducible matrix 4 # € € I(R):x”, A®x <

following lemmas.

L@ x with x # g, h € I(R),, then x € I(R)".

Proof. If A® x <A ®x with x#¢& hel(R), then x =[x, X]
15 )

such that 4® x <A ® x with x # ¢, LeﬁR)g and A®Y<A®X
with ¥ #¢ A eI(R),. Consequently, x e I(R )’ and ¥ eI(R)", so

xel(R)". O

Lemma 7. Given a matrix A € I(R)." and WMA) >¢e. If x eV (4)

and (i, j) € Ec(A), then 4; @xj— = R(A)@xr

Proof. Since x € ¥ (4) and V" (4) = V(4 W(APw X € I(R)" and
)

A® x <MA)®x, so x =[x, X] such that x, X € /(R)" and 4 ® x <
MA)®x, ABX <A(4)® iéonsequently, xeV7(4,1(4) and ¥ €
V*(4, M(4)). Since V*(4) = *&, M4)) and V7(4)=V"(4, n(4)),
x eV (4) and X € V*(4). By (i, j) € Ec(4), then (i, j)e Ec(4) and
(i, j) € Ec(A4). Therefore, we have Ay ® x; = M4) ® x; and 3{; X;
=MA)®X;, 50 4; ® x; = A(A4) ® x;. O

Lemma Séfwzn a matrix A e I(R)"" and W(4)> s. If z e V7 (4),

£

then M(A)=2 ®A®z= min x" ® A x, where z° =z is the
xel(R)"

conjugate transpose of z.
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Proof. Since z € V' (4) and V7(4)=V"(4, M(4)), z e I(R)" and
A®z < 7\(&@ z, 50 z = [z, Z] such that z,Z e I(R)" and 4 ®z <
MA)®z, 4 ®X <h(4)®X. Consequently, z € V' (4, 1(4)) and Z e
V(4. 1(4)). Since V"(4)=V"(4, M(4) and V'(4)=V"(4, k(4)),

zeV7(4) and Z € V*(A4). Hence, we have

MA)=2"®A4®z= mn X" @40 x

xel(®)"
and
MA)=T ®A®Z = mmre]tg)ﬂf ®A4ARX
And thus
MA) =z ®A®z=mmxd(:{)ﬂx ®A4® x O

We give the connection between the average maximum cycle with sub-

eigenvector as follows.

Lemma9.If 4 e I(R)™", then
MA)=infL|A® x <A ®x, xeI(R)").
If M(A) < € or 4 =g, then the infimum is reached.

Proof. If 4 ~ [4, A] e I(R)!*", then

MA)=infL|A®x <AL ®x, xel(R)}

and A(4)=inf{A|A® X <A ®X¥, ¥ e I(R)"} and so A(4) =inf{h|4 ®

x<A®x, xel(R)}. O
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3. Concluding Remarks

Based on the above discussion, some conclusions can be drawn as

follows:

The maximum average cycle is an eigenvalue of each square matrix
on max-plus algebra interval, and the average is the only eigenvalue
corresponding to the finite eigenvector. For an irreducible square matrix,
the eigenvalues are unique, namely the average maximum cycle, and the

corresponding eigenvectors are finite eigenvectors.

(2) Criterion for the existence of maximum of a finite eigenvector for

the matrix 4 is the following: for a given matrix 4 e I(R);"

, the finite

eigenvector of the matrix 4 exists:

(a) If the maximum of columns j of the matrix [(4; ) is in [(R)",

where j is at a critical point set of 4.

(b) If the average maximum cycle of the matrix 4 is finite and in
digraphs D, for each point i digraph D, there is a critical point j so that

the point j can be achieved by the point i.

(c) If the value of A(A4) is an eigenvalue of all final classes in each super

block.

(d) When a final grade has eigenvalues less than A(4).
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