The IEEE WiMob is an international forum for the exchange of knowledge and experience among researchers, developers and practitioners of wireless and mobile technology. For seven years, the International IEEE WiMob conference has provided unique opportunities for researchers and developers to interact, share new results, show live demonstrations, and discuss emerging directions in Wireless Communications, Mobile Networking and Ubiquitous Computing. Please refer to the Call For Papers for more details. WiMob 2012 will take place at Barcelona, during October 8 to 10th, 2012. Barcelona is Spain's second largest city, and the capital of Catalonia. The city is located in the Mediterranean and has a rich history dating back at least 2,000 years when it was a Roman town.

2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) took place 8-10 October 2012 in Barcelona, Spain.

IEEE catalog number:	CFP12609-ART
ISBN:	978-1-4673-1430-5

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. Copyright © 2012 by IEEE.

Executive Committee

ORGANIZATION COMMITTEES

GENERAL CHAIR

Abderrahim Benslimane (University of Avignon, France)

GENERAL CO-CHAIRS

Vicente Casares-Giner (Universitat Politècnica de Valencia, Spain)

Jorge Garcia-Vidal (Technical University of Catalonia (UPC), Spain)

STEERING COMMITTEE CHAIR

Samuel Pierre (Ecole Polytechnique de Montreal, Canada)

STEERING COMMITTEE

Abderrahim Benslimane (University of Avignon, France)

Pierre Boucher (Ericsson Canada, Canada)

Van Thanh Do (Telenor/ Norwegian University of Science and Technology, Norway)

Ibrahim Habib (City University of New York, USA)

Khaled Ben Letaief (Hong Kong University of Science & Technology, Hong Kong)

Hussein Mouftah (University of Ottawa, Canada)

Samuel Pierre (Ecole Polytechnique de Montreal, Canada)

PROGRAM CO-CHAIRS

Jose M. Barcelo-Ordinas (Universitat Politècnica de Catalunya (UPC), Spain)

Wen Chen (Shanghai Jiao Tong University, P.R. China)

Alejandro Quintero (Ecole Polytechnique de Montreal, Canada)

WORKSHOP CO-CHAIRS

Ronald Beaubrun (Université Laval, Canada)

Ali Miri (Ryerson University, Canada)

PUBLICITY CO-CHAIRS

Jaime Lloret (Universidad Politécnica de Valencia, Spain)

Marc St-Hilaire (Carleton University, Canada)

Nam Xuan Tran (Le Quy Don University (LQDTU), Vietnam)

LOCAL CO-CHAIRS

Jose M. Barcelo-Ordinas (Universitat Politècnica de Catalunya (UPC), Spain)

Llorenç Cerdà-Alabern (Universitat Politècnica de Catalunya, Spain)

WORKSHOPS

PEMOS 2012 WORKSHOP CO-CHAIR

Shihab Jimaa (Khalifa University, UAE)

VECON 2012 WORKSHOP CO-CHAIRS

Juan Jose Alcaraz (Universidad Politécnica de Cartagena, Spain)

Esteban Egea-Lopez (Polytechnic University of Cartagena (UPCT), Spain)

CNBuB 2012 WORKSHOP CO-CHAIRS

Roger Baig (Fundació Privada per a la Xarxa Oberta, Lliure i Neutral Guifi.net, Spain)

Felix Freitag (Technical University of Catalonia, Spain)

WMSN 2012 WORKSHOP CO-CHAIRS

Jose M. Barcelo-Ordinas (Universitat Politècnica de Catalunya (UPC), Spain)

Llorenç Cerdà-Alabern (Universitat Politècnica de Catalunya, Spain)

STWiMob 2012 WORKSHOP CO-CHAIR

Abderrahim Benslimane (University of Avignon, France)

Technical Program Committee

Technical Program Committee

Alaeddin Abu-Abed	University of Central Oklahoma	USA
Nael Abu-Ghazaleh	State University of New York at Binghamton	USA
Ibrahim Abualhaol	Khalifa University	UAE
Ramón Agüero	University of Cantabria	Spain
Wessam Ajib	Université du Québec à Montréal	Canada
Iyad Al falujah	University of Texas at Arlington	USA
Mohammad Alaei	Universitat Politècnica de Catalunya (UPC)	Spain
Juan Jose Alcaraz	Universidad Politécnica de Cartagena	Spain
Taimour Aldalgamouni	Jordan University of Science and Technology	Jordan
Jesus Alonso-Zarate	Centre Tecnologic de Telecomunicacions de Catalunya - CTTC	Spain
Sahel Alouneh	German-Jordanian University	Jordan
Osama Amin	Assiut University	Egypt
Vishal Anand	The College at Brockport, State University of New York	USA
Nelson Antunes	University of Algarve	Portugal
Chadi Assi	Concordia University	Canada
Edward Au	Huawei Technologies	Canada
Stefano Avallone	University of Naples	Italy
Fulvio Babich	University of Trieste	Italy
Osamah Badarneh	Yarmouk University	Jordan
Antoine Bagula	University of Cape Town	South Africa

Roger Baig	Fundació Privada per a la Xarxa Oberta, Lliure i Neutral Guifi.net	Spain
Andrea Baiocchi	University of Roma Sapienza	Italy
Mohammad Banat	Jordan University of Science and Technology	Jordan
Luis Barbosa	University of Castilla La Mancha	Spain
Jose M. Barcelo-Ordinas	Universitat Politècnica de Catalunya (UPC)	Spain
Christoph Barz	Fraunhofer FKIE	Germany
Kpatcha Bayarou	Fraunhofer Institute for Secure Information Technology	Germany
Abdelfettah Belghith	University of Manouba	Tunisia
Boris Bellalta	Universitat Pompeu Fabra	Spain
Paolo Bellavista	University of Bologna	Italy
Jalel Ben-Othman	University of Paris 13	France
Abderrahim Benslimane	University of Avignon	France
Carlos Bernardos	Universidad Carlos III de Madrid	Spain
Chris Blondia	University of Antwerp	Belgium
Rajesh Bodade	Military College of Telecommunication Engineering	India
Harald Bongartz	Fraunhofer Institute for Communication, Information Processing and Ergonomics	Germany
Roksana Boreli	National ICT Australia	Australia
Bart Braem	IBBT	Belgium
Herwig Bruneel	Ghent University	Belgium
Vicente Casares-Giner	Universitat Politècnica de Valencia	Spain
Claudio Casetti	Politecnico di Torino	Italy
Eduardo Casilari	Universidad de Malaga	Spain
Maurizio Casoni	University of Modena and Reggio Emilia	Italy
Llorenç Cerdà-Alabern	Universitat Politècnica de Catalunya	Spain
Fernando Cerdan	Technical University of Cartagena	Spain
Matteo Cesana	Politecnico di Milano	Italy
Kok Keong (Michael) Chai	Queen Mary, University of London	United Kingdom
Eddie Chan	The Hong Kong University of Science and Technology	Hong Kong
Xiaolin Chang	Beijing Jiaotong University	P.R. China
Periklis Chatzimisios	Alexander Technological Educational Institute of Thessaloniki	Greece
Hui Chen	Virginia State University	USA
Wen Chen	Shanghai Jiao Tong University	P.R. China
Xianbo Chen	Broadcom Corporation	USA
Yu Chen	State University of New York - Binghamton	USA
Chi Chung Cheung	The Hong Kong Polytechnic University	Hong Kong
Feng-Tsun Chien	National Chiao Tung University	Taiwan
Naveen Chilamkurti	La Trobe University	Australia
Woon Hau Chin	Toshiba Research Europe Limited	United Kingdom
Kaushik Chowdhury	Northeastern University	USA
Antonio Cianfrani	University of Roma "La Sapienza"	Italy
Laura Cottatellucci	EURECOM	France
Costas Courcoubetis	Athens University of Economics and Business	Greece
Stefan Couturier	Fraunhofer-Institut FKIE	Germany

Felipe Cruz-Pérez	Cinvestav-IPN	Mexico
Tadeusz Czachorski	Institute of Theoretical and Applied Informatics of Polish Academy of Sciences	Poland
Robil Daher	University of Rostock	Germany
Jacek Danda	AGH University of Science and Technology	Poland
Zaher Dawy	American University of Beirut	Lebanon
Carl Debono	University of Malta	Malta
Javier Del Ser	TECNALIA	Spain
Isabelle Demeure	Telecom Paristech	France
Prathapasinghe Dharmawansa	Aalto University	Finland
Mehrdad Dianati	University of Surrey	United Kingdom
Wei Ding	New York Institute of Technology	USA
Yanwu Ding	Wichita state university	USA
Djamel Djenouri	Centre de Recherche sur l'Information Scientifique et Technique (CERIST), Algiers	Algeria
Hongwei Du	Harbin Institute of Technology Shenzhen Graduate School	P.R. China
Stefan Dulman	Delft University of Technology	The Netherlands
Alban Duverdier	Centre National D'Etudes Spatiales (CNES)	France
George Efthymoglou	University of Piraeus	Greece
Esteban Egea-Lopez	Polytechnic University of Cartagena (UPCT)	Spain
Khaled El-Maleh	Qualcomm Inc.	USA
Thierry Ernst	Mines ParisTech	France
Cem Ersoy	Bogazici University	Turkey
Pingyi Fan	Tsinghua University	P.R. China
Maria Julia Fernandez- Getino Garcia	University Carlos III of Madrid	Spain
Gianluigi Ferrari	University of Parma	Italy
Andreas Festag	NEC Laboratories Europe	Germany
Felipe Fgarcia-Sanchez	Universidad Politecnica de Cartagena (UPCT)	Spain
Marco Fiore	INSA Lyon	France
John Fitzpatrick	University College Dublin	Ireland
Raphael Frank	University of Luxembourg	Luxemburg
Felix Freitag	Technical University of Catalonia	Spain
Weihuang Fu	Cisco Systems	USA
Weihua Gao	Qualcomm Inc.	USA
Joan Garcia-Haro	Technical University of Cartagena	Spain
Antonio-Javier Garcia- Sanchez	Technical University of Cartagena	Spain
Jorge Garcia-Vidal	Technical University of Catalonia (UPC)	Spain
Rung-Hung Gau	National Chiao Tung University	Taiwan
Damianos Gavalas	University of the Aegean	Greece
Amjad Gawanmeh	Khalifa University of Science, Technology and Research	UAE
Thierry Gayraud	LAAS-CNRS, Université de Toulouse	France
Paul Gendron	SSC-Pacific	USA

Khalida Ghanem	PMU University	Saudi Arabia
Steluta Gheorghiu	i2CAT	Spain
Javier Gozalvez	Universidad Miguel Hernandez de Elche	Spain
Annie Gravey	Institut Mines Telecom - Telecom Bretagne	France
Antonio Grilo	INESC/IST	Portugal
Stefanos Gritzalis	University of the Aegean	Greece
Tao Gu	University of Southern Denmark	Denmark
Manel Guerrero Zapata	Technical University of Catalonia (UPC)	Spain
T. Aaron Gulliver	University of Victoria	Canada
David Haccoun	Ecole Polytechnique de Montréal	Canada
Abdelhakim Hafid	University of Montreal	Canada
Ridha Hamila	Department of Electrical Engineering	Qatar
Ali Hazmi	Tampere University of Technology	Finland
An He	Qualcomm	USA
Realized He	A stars the base to	United
Jianhua He	Aston University	Kingdom
Simon Heimlicher	Technicolor	France
Liang Hong	Tennessee State University	USA
Zhihong Hong	Communications Research Centre	Canada
Chih-Lin Hu	National Central University	Taiwan
Jiankun Hu	University of New South Wales	Australia
Nen-Fu Huang	National Tsing Hua University	Taiwan
Weimin Huang	Memorial University	Canada
Yueh-Min Huang	National Cheng Kung University	Taiwan
Karin Hummel	ETH Zurich	Switzerland
Ali Humos	Jackson State University	USA
Aissa Ikhlef	University of British Columbia	Canada
Salama Ikki	INRS	Canada
Bhushan Jagyasi	TCS Innovation Labs Mumbai	India
Terje Jensen	Telenor	Norway
Hai Jiang	University of Alberta	Canada
Shihab Jimaa	Khalifa University	UAE
Volker Jungnickel	Fraunhofer Heinrich Hertz Institute	Germany
Georgios Kambourakis	University of the Aegean	Greece
Salil Kanhere	The University of New South Wales	Australia
George Karagiannidis	Aristotle University of Thessaloniki	Greece
Onur Kaya	Isik University	Turkey
Chih-Heng Ke	National Kinmen Institute of Technology	Taiwan
Jong-Ok Kim	Korea University	Korea
Sooyoung Kim	Chonbuk National University	Korea
Adrian Kliks	Poznan University of Technology	Poland
Peng-Yong Kong	Khalifa University of Science, Technology & Research (KUSTAR)	UAE
Ivaylo Kostadinov	Quantix	United Kingdom
Dimitrios Koukopoulos	University of Western Greece	Greece
Polychronis Koutsakis	Technical University of Crete	Greece

Evangelos Kranakis	Carleton University	Canada
Udo R. Krieger	Otto-Friedrich University Bamberg	Germany
Shonali Krishnaswamy	Monash University	Australia
Pawel Kulakowski	AGH University of Science and Technology	Poland
Nasreddine Lagraa	Amar Thelidji University, Laghouat	Algeria
Abderrahmane Lakas	UAEU	UAE
Peter Langendoerfer	IHP Microelectronics	Germany
Long Le	INRS, University of Quebec	Canada
Victor Leung	The University of British Columbia	Canada
Frank Li	University of Agder	Norway
		USA
Husheng Li	University of Tennessee	USA
Tiffany Jing Li	Lehigh University	
Shiguo Lian	France Telecom R&D Beijing	P.R. China
David Lin	National Chiao Tung University	Taiwan
Di Lin	McGill University	Canada
Hai Lin	Osaka Prefecture University	Japan
Valeria Loscrí	University of Calabria	Italy
Pavel Loskot	Swansea University	United Kingdom
Kejie Lu	University of Puerto Rico at Mayaguez	Puerto Rico
Amine Maaref	Huawei Technologies Canada	Canada
Elsa Macías López	University of Las Palmas de Gran Canaria	Spain
Maurizio Magarini	Politecnico di Milano	Italy
Christian Makaya	Telcordia Technologies	USA
Reza Malekian	Uiversity of Technology Malaysia	Canada
Petteri Mannersalo	VTT Technical Research Centre of Finland	Finland
Enrico Masala	Politecnico di Torino	Italy
Barbara Masini	IEIIT-CNR	Italy
Tommaso Melodia	State University of New York at Buffalo	USÁ
David Michelson	University of British Columbia	Canada
Jelena Mišić	Ryerson University	Canada
Seshadri Mohan	University of Arkansas at Little Rock	USA
Edmundo Monteiro	University of Coimbra	Portugal
Julian Morillo	BSC	Spain
Amir Mowlaei	KAR-TECH, Inc.	USA
Sami Muhaidat	Simon Fraser University	Canada
Kumudu Munasinghe	University of Sydney	Australia
Jogesh K. Muppala	Hong Kong University of Science and Technology	Hong Kong
Hidekazu Murata	Kyoto University	
Thuekazu Murata	Ryoto Oniversity	Japan Saudi
Nidal Nasser	Alfaisal University	Arabia
Bala Natarajan	Kansas State University	USA
Leandro Navarro	Universitat Politècnica de Catalunya	Spain
Dirk Neumann	University of Freiburg	Germany
Derrick Wing Kwan Ng	University Erlangen-Nürnberg	Germany
Nhut Nguyen	Samsung Telecomms America	USA
Esam Obiedat	CommScope Inc.	USA
Hideki Ochiai	Yokohama National University	Japan

Evgeny Osipov	LTU Luleå University of Technology	Sweden
Hadi Otrok	Khalifa University of Science, Technology & Research (KUSTAR)	UAE
Shumao Ou	Oxford Brookes University	United Kingdom
Sangheon Pack	Korea University	Korea
Dorin Panaitopol	NEC Technologies	France
Evangelos Papapetrou	University of Ioannina	Greece
Dirk Pesch	Cork Institute of Technology	Ireland
CongDuc Pham	University of Pau	France
Ermanno Pietrosemoli	International Centre for Theoretical Physics (ICTP)	Italy
Vicent Pla	Universitat Politecnica de Valencia	Spain
Larissa Popova	University of Erlangen-Nuremberg	Germany
Anand Prasad	NEC Corporation	Japan
Tony Q. S. Quek	Singapore University of Technology and Design (SUTD)	Singapore
Alejandro Quintero	Ecole Polytechnique de Montreal	Canada
Abderrezak Rachedi	University Paris-Est Marne-la-Vallée	France
Redha Radaydeh	Alfaisal University	Saudi Arabia
Peter Reiher	UCLA	USA
Nasser-Eddine Rikli	King Saud University	Saudi Arabia
Mona Rizvi	Norfolk State University	USA
Daniel Rodellar	Swisscom Switzerland	Switzerland
Luca Rugini	University of Perugia	Italy
Brian Sadler	Army Research Laboratory	USA
Altair Santin	Pontifical Catholic University of Parana (PUCPR)	Brazil
Susana Sargento	Instituto de Telecomunicações, Universidade de Aveiro	Portugal
Wee Ser	Nanyang Technological University	Singapore
Yue Shang	The MathWorks	USA
Hamid Sharif	University of Nebraska-Lincoln	USA
Tetsuya Shimamura	Saitama University	Japan
Hyundong Shin	Kyung Hee University	Korea
Lei Shu	Guangdong University of Petrochemical Technology	P.R. China
Sabrina Sicari	University of Insubria	Italy
Mujdat Soyturk	Istanbul Technical University	Turkey
Zhou Su	Waseda University	Japan
Alvaro Suárez-Sarmiento	University of Las Palmas de Gran Canaria	Spain
Yichuang Sun	University of Hertfordshire	United Kingdom
Himal Suraweera	Singapore University of Technology and Design	Singapore
Akshya Swain	University of Auckland	New Zealand
Krzysztof Szczypiorski	Warsaw University of Technology	Poland
Bulent Tavli	TOBB University of Economics and Technology	Turkey
Jo-Yew Tham	Institute for Infocomm Research, A*STAR	Singapore
Fabrice Theoleyre	CNRS - University of Strasbourg	France
Petia Todorova	Fraunhofer-FOKUS	Germany

	Simon Fraser University	Canada
Nghi Tran	University of Akron	USA
Phuoc Tran-Gia	University of Wuerzburg	Germany
Tuan Trinh Anh	Budapest University of Technology and Economics	Hungary
Charalampos Tsimenidis	Newcastle University	United Kingdom
Kurt Tutschku	University of Vienna	Austria
Guillaume Urvoy-Keller	Université de Nice Sophia-Antipolis	France
Fabrice Valois	INSA Lyon	France
Dhadesugoor Vaman	Priarie View A&M University	USA
Emmanouel Varvarigos	University of Patras & Computer Technology Institute	Greece
Véronique Vèque	University of Paris-Sud 11	France
Alexey Vinel	Tampere University of Technology	Finland
Mehmet Vuran	University of Nebraska-Lincoln	USA
Chonggang Wang	InterDigital Communications	USA
Dandan Wang	Alcatel-Lucent	USA
Pu Wang	Georgia Institute of Technology	USA
Wei Wang	South Dakota State University	USA
Zehua Wang	Memorial University	Canada
Sabine Wittevrongel	Ghent University	Belgium
Isaac Woungang	Ryerson University	Canada
Weidong Xiang	University of Michigan, Dearborn	USA
Qin Xin	University of the Faroe Islands	Faroe Islands
Zheng Yan	Xidian University	P.R. China
Yu-Dong Yao	Stevens Institute of Technology	USA
Fei Ye	University Washington	USA
Qiang Ye	University of Prince Edward Island	Canada
Sameh Zakhary	University of Nottingham	United Kingdom
Alberto Zanella	Istituto di Elettronica e di Ingegneria dell'Inform. e delle Telecomunicazioni	Italy
Qing-An Zeng	North Carolina A&T State University	USA
Marco Zennaro	ICTP - The Abdus Salam International Centre for Theoretical Physics	Italy
	Blekinge Institute of Technology	Sweden
Hans-Juergen Zepernick		
Hans-Juergen Zepernick Liang Zhang	Communications Research Centre Canada	Canada
• •	Communications Research Centre Canada Simula Research Laboratory and University of Oslo	Canada Norway

2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

WIRELESS SENSOR NETWORKS I

	Minimum 2-connected distance-k p-dominating set in wireless sensor networks Louisa Harutyunyan (Concordia University, Canada), Lata Narayanan (Concordia University, Canada)	1
	CPWS: An Efficient Routing Protocol for RGB Sensor-based Fish Pond Monitoring System Nidal Nasser (Alfaisal University, Saudi Arabia), Ahmad N K Zaman (University of Guelph, Canada), Lutful Karim (University de Moncton, Canada), Nargis Khan (Ryerson University, Canada)	
	SARI-MAC: The Self Adapting Receiver Initiated MAC Protocol for Wireless Sensor Networks Quentin Lampin (Orange Labs, France), Dominique Barthel (Orange Labs, France), Isabelle Augé-Blum (CITI, INSA Lyon, France), Fabrice Valois (INSA Lyon, France)	
	Optimized packet size for energy efficient delay-tolerant sensor networks Károly Lendvai (Budapest University of Technology and Economics, Hungary), Ákos Milánkovich (Budapest University of Technology and Economics, Hungary), Sándor Imre (Technical University of Budapest, Hungary), Sándor Szabó (Budapest University of Technology and Economics, Hungary)	19
	Energy-Efficient Multicast Tree Construction Protocol for Real-Time Data Streaming in WSNs Nedal Ababneh (University of Bahrain, Bahrain), Antonio M. Ortiz (WiSAR Lab, Ireland), Nick Francis Timmons (Letterkenny Institute of Technology, Ireland), Jim Morrison (WiSAR Lab - Letterkennt Insitute of Technology, Ireland)	26
	 A Lightweight Inter-User Interference Mitigation Method in Body Sensor Networks Wen Sun (National University of Singapore, Singapore), Yu Ge (Institute for Infocomm Research, Singapore), Wai-Choong Wong (National University of Singapore, Singapore) 	34
HAND	OFF MANAGEMENT	
	Cooperative end-to-end roaming through homogeneous and heterogeneous networks Abdellatif Ezzouhairi (École Polytechnique de Montréal, Canada), Samuel Pierre (Ecole Polytechnique de Montreal, Canada), Alejandro	

O-PMIPv6: Efficient Handover with Route Optimization in Proxy Mobile IPv6 Domain

Quintero (Ecole Polytechnique de Montreal, Canada) 47

	Ahmad Rasem (Carleton University, Canada), Christian Makaya (Telcordia Technologies, USA), Marc St-Hilaire (Carleton University, Canada)	
	Achieving Efficient Network Resources Utilization in Bicasting Proxy Mobile IPv6 Lebajoa Mphatsi (University of Cape Town, South Africa), Olabisi	
	Emmanuel Falowo (University of Cape Town, South Africa) Host-based Distributed Mobility Management Support Protocol for IPv6 Mobile Networks Jong-Hyouk Lee (TELECOM Bretagne, France), Jean-Marie Bonnin (Institut Mines Telecom / Telecom Bretagne, France), Xavier Lagrange (Institut Mines Telecom / Telecom Bretagne, France)	55
	MOSAIC: Stateless Mobility for HTTP-based Applications Wonsang Song (Columbia University, USA), Georg Hampel (Bell Labs, Alcatel-Lucent, USA), Anil Rana (Bell Labs, USA), Thierry E Klein (Alcatel-Lucent, USA), Henning Schulzrinne (Columbia University, USA)	69
	Using Data Mining and Fingerprinting Extension with Device Orientation Information for WLAN Efficient Indoor Location Estimation David Sánchez (University of Las Palmas de Gran Canaria, Spain), Jose Quinteiro (Universidad de Las Palmas de Gran Canaria, Spain), Pablo Hernández-Morera (University of Las Palmas de Gran Canaria, Spain), Ernestina Martel-Jordán (University of Las Palmas de Gran Canaria, Spain)	77
0504	and CDMA TECHNOLOGIES and SYSTEMS	
OFDM	Contention Resolution in Wireless LANs Using Frequency-Domain Backoff Sheeraz A. Alvi (National University of Sciences and Technology, Pakistan), Adeel Baig (National University of Sciences and Technology, Pakistan)	84
OFDM	Contention Resolution in Wireless LANs Using Frequency-Domain Backoff Sheeraz A. Alvi (National University of Sciences and Technology, Pakistan), Adeel Baig (National University of Sciences and Technology, Pakistan)	84 92
OFDM	 Contention Resolution in Wireless LANs Using Frequency-Domain Backoff Sheeraz A. Alvi (National University of Sciences and Technology, Pakistan), Adeel Baig (National University of Sciences and Technology, Pakistan) An Adaptive Resource Allocation in OFDMA Multi-hop Relay Networks Yue Zhao (Southwest Jiaotong University, P.R. China), Xuming Fang (Southwest Jiaotong University, P.R. China), Miao Pan (Texas Southern University, USA), Rongsheng Huang (Olympus Communication Technology of America, USA), Yuguang Fang (University of Florida, 	
OFDM	 Contention Resolution in Wireless LANs Using Frequency-Domain Backoff Sheeraz A. Alvi (National University of Sciences and Technology, Pakistan), Adeel Baig (National University of Sciences and Technology, Pakistan) An Adaptive Resource Allocation in OFDMA Multi-hop Relay Networks Yue Zhao (Southwest Jiaotong University, P.R. China), Xuming Fang (Southwest Jiaotong University, P.R. China), Miao Pan (Texas Southern University, USA), Rongsheng Huang (Olympus Communication Technology of America, USA), Yuguang Fang (University of Florida, USA), Yu Chen (Southwest Jiaotong University, P.R. China) A real-time FPGA-based implementation of a high-performance MIMO-OFDM transceiver featuring a closed-loop communication scheme Oriol Font-Bach (Centre Tecnològic de Telecomunicacions de Catalunya, Spain), Nikolaos Bartzoudis (CTTC, Spain), Antonio Pascual-Iserte (Universitat Politècnica de Catalunya, Spain), David López Bueno 	92 100

Performance Analysis of Pilot Arrangement for OFDM Systems over Time Varying Frequency Selective Channels Begüm Korunur Engiz (Ondokuz Mayıs University, Turkey), Cetin Kurnaz (Ondokuz Mayıs University, Turkey), Hatice Sezgin (Ondokuz Mayıs University, Turkey)	113
Computationally Efficient Modulation of Well-Localised Signals for OFDM Dmitry Petrov (Magister Solutions Ltd., Finland), Pavel Gonchukov (University of Juväskylä, Finland), Timo Hämäläinen (University of Jyväskylä, Finland)	118
CONTEXT-AWARE SYSTEMS/VANETs	
A Web Platform and a Methodology to promote a Collaborative Development of Context-Aware Systems David Martín (CICtourGUNE, Spain), Carlos Lamsfus (CICtourGUNE, Spain), Aurkene Alzua (CICtourGUNE, Spain), Diego López-de-Ipiña (Deusto Institute of Technology - DeustoTech, University of Deusto, Spain)	126
Decentralized Search and Retrieval for Mobile Networks using SMS Isai Michel Lombera (University of California, Santa Barbara, USA), Louise E. Moser (University of California, Santa Barbara, USA), Michael Melliar-Smith (University of California, Santa Barbara, USA), Yung-Ting Chuang (University of California, Santa Barbara, USA)	134
A Programming Model for Context-Aware Applications in Large-Scale Pervasive Systems Sanjin Sehic (Vienna University of Technology, Austria), Fei Li (Vienna University of Technology, Austria), Stefan Nastic (Vienna University of Technology, Austria), Schahram Dustdar (Vienna University of Technology, Austria)	142
A Multi-metric QoS-balancing Scheme for Gateway Selection in a Clustered Hybrid VANET network Ghayet el mouna Zhioua (Sup'Com - TUNISIA, Tunisia), Houda Labiod (TELECOM ParisTech (ex: ENST), France), Nabil Tabbane (Sup'com, Tunisia), Sami Tabbane (Sup Telecom, Tunisia)	150
Analysis of Information Relay Processing in Inter-Vehicle Communication: A novel visit Ahmed Soua (Institut Telecom, France), Walid Ben-Ameur (Telecom SudParis, France), Hossam Afifi (Institut Telecom, France)	157
Simulation-based evaluation of techniques for privacy protection in VANETs Andreas Tomandl (University of Regensburg, Germany), Florian Scheuer (University of Regensburg, Germany), Hannes Federrath (University of Hamburg, Germany)	165
WIRELESS SENSOR NETWORKS II	173

An Energy Efficient Tracking Algorithm in UWB-based Sensor Networks

Mingbo Dai (Politecnico Di Torino, Italy), Francesco Sottile (ISMB, Italy), Maurizio A. Spirito (ISMB, Italy), Roberto Garello (Politecnico di Torino, Italy)	
Content centric and Load-balancing aware Dynamic Data Aggregation in Multihop Wireless Networks Yichao Jin (Toshiba Research Europe Ltd, United Kingdom), Parag Kulkarni (Toshiba Research Europe Ltd., United Kingdom), Sedat Gormus (Toshiba Research Europe Ltd., United Kingdom), Mahesh Sooriyabandara (Toshiba Research Europe Limited, United Kingdom)	179
A GRASP Based Algorithm For Efficient Cluster Formation in Wireless Sensor Networks Victor Matos (Universidade Federal de Viçosa, Brazil), Jose Elias Claudio Arroyo (Universidade Federal de Vicosa, Brazil), André dos Santos (Universidade Federal de Viçosa, Brazil), Luciana Gonçalves (Universidade Federal de Viçosa, Brazil)	187
Adding QoS Support For Timeliness To The Observe Extension Of CoAP Alessandro Ludovici (Universitat Politecnica de Catalunya, Spain), Ernesto Garcia (Universitat Politècnica de Catalunya, Spain), Xavi Gimeno (Universitat Politècnica de Catalunya, Spain), Anna Calveras Augé (Universtidad Politècnica de Catalunya, Spain)	195
ASF: an Attack Simulation Framework for wireless sensor networks Gianluca Dini (University of Pisa, Italy), Marco Tiloca (University of Pisa, Italy)	203
MODULATION AND CODING	
Interference-free regions with Han-Kobayashi Scheme for M-QAM and Scalar channels Paresh Saxena (Universitat Autonoma de Barcelona, Spain), Maria- Angeles Vázquez-Castro (Universidad Autónoma de Barcelona, Spain)	211
Interference Mitigation with Rate Splitting in Multi-Cell Wireless Networks Guangxia Zhou (Intel Mobile Communications, Germany), Wen Xu (Intel, Germany), Gerhard Bauch (Universitaet der Bundeswehr Munich, Germany)	219
Lattice Network Codes Based on Eisenstein Integers Qifu T Sun (The Chinese University of Hong Kong, Hong Kong), Jinhong Yuan (University of New South Wales, Australia)	225
Impact of intra-flow network coding on the relay channel performance: an analytical study Anya Apavatjrut (Chiang Mai University, Thailand), Claire Goursaud (INSA-Lyon, France), Katia Jaffrès-Runser (University of Toulouse, France), Jean-Marie Gorce (INSA-Lyon, France)	240
Impact of Rateless Codes on System Delay and Throughout for Network-	

coded Multi-source and Multi-destination Scenarios

	ong University, P.R. China), Zhiguo Ding ed Kingdom), Pingzhi Fan (Southwest R. China)	
Interest Transmission in 3D Medica Victor Sanchez (Universitat Au Sagrista (Universitat Autonoma	utonoma de Barcelona, Spain), Joan Serra- na de Barcelona, Spain)	245
ENERGY EFFICIENT PROTOCOLS	S for WIRELESS NETWORKS	
the DEEP Platforms	nsport through Adaptive Compression using f California, Los Angeles, USA), William a, Los Angeles, USA)	253
for Everyday Electronic Devices Norbert Druml (Graz University (Graz University of Technology, of Technology, Austria), Christi Austria), Reinhold Weiss (Graz	on Interface Enabling Zero Energy Standby ty of Technology, Austria), Manuel Menghin y, Austria), Rejhan Basagic (Graz University tian Steger (Graz University of Technology, az University of Technology, Austria), Holger Austria), Josef Haid (Infineon Technologies	261
Joaquim Oller (Universitat F Demirkol (Universitat Politecni (UPC, Spain), Jordi Casade	ng Mechanism for Wake-up Receivers Politecnica de Catalunya, Spain), Ilker nica de Catalunya, Spain), Josep Paradells emont (Technical University of Catalonia Iman (University of Rochester, USA)	268
WIRELESS MESH NETWORKS		
Forwarding in Wireless Mesh Netwo Jonas Karlsson (Karlstad Ur University, Sweden), Anna B	Jniversity, Sweden), Per Hurtig (Karlstad Brunstrom (Karlstad University, Sweden), d University, Sweden), Giovanni Di Stasi	276
Mesh Networks Amira Bezzina (University of M of La Manouba - Tunisia, Tun	etric for Multi-Radio Multi-Channel Wireless Manouba, Tunisia), Mouna Ayari (University nisia), Rami Langar (UPMC - University of Joun (SESAME University, Tunisia)	284
Secure Routing in Indoor Wireless Mohamad Sbeiti (Dortmund U	University of Technology, Germany), Jonas of Technology, Germany), Christian Wietfeld	292

CELLULAR SYSTEMS I

Dimensioning of the Shared Transport Network for Collocated Multiradio: LTE and HSDPA Xi Li (University of Bremen, Germany), Ming Li (Hamburg University of Technology, Germany), Umar Toseef (University of Bremen, Germany), Dominik Dulas (Nokia Siemens Networks, Poland), Michal Nowacki (Nokia Siemens Networks, Germany), Andreas Timm-Giel (Hamburg University of Technology, Germany), Carmelita Goerg (University of Bremen, Germany), Radoslaw Ruchala (Nokia Siemens Networks,	Co-ch C U	ne Relay Placement Problem in a Multi-cell LTE-Advanced System with hannel Interference Omar Abdallah Elgendy, O. A. Elgendy (Faculty of Engineering, Cairo Jniversity, Egypt), Mahmoud H. Ismail (Cairo University, Egypt), Khaled Elsayed (Cairo University, Egypt)	300
	and H X Ti D (1 U B	<i>HSDPA</i> Ki Li (University of Bremen, Germany), Ming Li (Hamburg University of Fechnology, Germany), Umar Toseef (University of Bremen, Germany), Dominik Dulas (Nokia Siemens Networks, Poland), Michal Nowacki Nokia Siemens Networks, Germany), Andreas Timm-Giel (Hamburg Jniversity of Technology, Germany), Carmelita Goerg (University of Bremen, Germany), Radoslaw Ruchala (Nokia Siemens Networks,	308

OPPORTUNISTIC NETWORKS and DTN

Context Sensing for Autonomic Forwarding in Opportunistic Networks Elena Pagani (University of Milano, Italy), Gian Paolo Rossi (Università degli Studi di Milano, Italy)	316
Energy-Efficient Cooperative Download for Smartphone Users through Contact Time Estimation Keiichi Yasumoto (Nara Institute of Science and Technology, Japan), Weihua Sun (Nara Institute of Science and Technology, Japan), Minoru Ito (Nara Institute of Science and Technology, Japan)	324
DTN-Based Data Aggregation for Timely Information Collection in Disaster Areas Jovilyn Therese B Fajardo (Nara Institute of Science and Technology, Japan), Keiichi Yasumoto (Nara Institute of Science and Technology, Japan), Naoki Shibata (Shiga University, Japan), Weihua Sun (Nara Institute of Science and Technology, Japan), Minoru Ito (Nara Institute of Science and Technology, Japan)	333
Mistify: Augmenting Cloud Storage With Delay-Tolerant Cooperative Backup Karthik Nilakant (University of Cambridge, United Kingdom), Jon Crowcroft (University of Cambridge, United Kingdom), Eiko Yoneki (University of Cambridge, United Kingdom)	341
Dynamic Temporal Scalability: video adaptation in sparse Mobile Ad-Hoc Networks Sergio Cabrero (University of Oviedo, Spain), Thomas Plagemann (University of Oslo, Norway), Xabiel García Pañeda (University of Oviedo, Spain), Roberto García (University of Oviedo, Spain), David Melendi (University of Oviedo, Spain)	349

ALGORITHMS and MODELS

Modeling Routing in Smartphones-Based Wirele Graphs David Soler (Universitat Politècnica de Valé (Universitat Politècnica de València, Spain), l Politècnica de València, Spain), Pietro Manz de Valencia, Spain)	encia, Spain), José Albiach Eulalia Martínez (Universitat
<i>Mitigating the Effect of Mobility on Cooperation in</i> Amr E. Hilal (Virginia Tech, USA), Allen B. USA)	
How to Reduce and Stabilize MPR sets in OLSR Leonardo Maccari (University of Trento, (University of Trento, Italy)	
Mean Degree of Ad Hoc Networks in Environmen Cédric Aboue-nze (University of Le Havre, Fr Havre University, France)	
On the Topology Characterization of Guifi.net Llorenç Cerdà-Alabern (Universitat Politècnic	a de Catalunya, Spain) 389
On the Modeling of a Realistic Wireless Chan Markov Process David Gómez (Universidad de Cantabria (University of Cantabria, Spain), Marta G Cantabria, Spain), Luis Muñoz (University of	, Spain), Ramón Agüero arcia-Arranz (University of
COGNITIVE RADIO	
Optimal Random Access and Random Spectru Harvesting Cognitive Radio Ahmed El Shafie (Wireless Intelligent Netw University, Egypt), Ahmed Sultan (Alexandria	vorks Center (WINC), Nile
Optimal Policy for Joint Spectrum Resource I Cognitive Radio Networks Junichi Suga (Fujitsu Laboratories LTD., Jap Surrey, United Kingdom), Rahim Tafazolli (I Kingdom)	an), Tao Guo (University of
Enhanced Protection of Hidden Primary Users Suspect Channels Classification Jose Marinho (Instituto Superior de Enger Portugal), Edmundo Monteiro (University of C	nharia de Coimbra (ISEC),
Heterogeneous torus Quorum-based Rendezvous Networks	s in Cognitive Radio Ad Hoc

Sylwia Antonina Romaszko (RWTH Aachen University, Germany), Petri Mähönen (RWTH Aachen University, Germany) 427

SECURITY, PRIVACY & LOCATION AWARE APPLICATIONS

	Dziong (École de technologie supérieure, University of Quebec, Canada) eployment and Interface Design Considerations for Radio Environment laps Siva Subramani (Toshiba Research Europe Limited, United Kingdom), Tim D Farnham (Toshiba Research Europe Ltd., United Kingdom), Mahesh Sooriyabandara (Toshiba Research Europe Limited, United Kingdom)	474
		474
	esource Allocation in Macrocell-Femtocell Network using Genetic Algorithm Hanaa Marshoud (Khalifa University of Science, Technology & Research (KUSTAR), UAE), Hadi Otrok (Khalifa University of Science, Technology & Research (KUSTAR), UAE), Hassan Barada (Khalifa University of Science, Technology and Research, UAE), Rebeca Estrada (ETS, Canada), Abdallah Jarray (University of Ottawa, Canada), Zbigniew	
Pa	AR SYSTEMS II aGeO: Pareto-based Genetic Optimization for LTE Radio-over-Fiber Cellular ackhauling Ahmed Haddad (Telecom ParisTech, France), Maurice Gagnaire (Telecom ParisTech (Ecole Nationale Superieure des Telecommunications), France)	466
AL	uthenticating a Mobile Device's Location Using Voice Signatures Jack Brassil (HP Laboratories, USA), Ravi Netravali (Columbia University, USA), Stuart Haber (HP Laboratories, USA), Pratyusa K Manadhata (Hewlett Packard, USA), Prasad Rao (Hewlett Packard, USA)	458
Co	ontainer Security Device Chain Network for Safe Railway Transportation Younghwan Yoo (Pusan National University, Korea)	451
Εv	valuating the threat of epidemic mobile malware Christian Szongott (Leibniz Universität Hannover, Germany), Benjamin Henne (Leibniz Universität Hannover, Germany), Matthew Smith (Leibniz Universität Hannover, Germany)	443
	 ath Privacy Protection in Continuous Location-Based Services over Road etworks Kai-Ting Yang (National Taiwan University of Science and Technology, Taiwan), Ge-Ming Chiu (National Taiwan University of Science and Technology, Taiwan), Huei-Jhih Lyu (National Taiwan University of Science and Technology, Taiwan), Ding-Jie Huang (National Taiwan University of Science and Technology, Taiwan), Wei-Chung Teng (National Taiwan University of Science and Technology, Taiwan) 	435

On the Impact of Power Allocation on Coalition Formation in Cooperative Wireless Networks

Mohammed W. Baidas (Kuwait University, Kuwait), Allen B. MacKenzie (Virginia Tech, USA)	
Power Allocation in Multi-node Cooperative Network in Rician Fading Channels	
Mulugeta K Fikadu (University of Vaasa, Finland), Mohammed Salem Elmusrati (University of Vasa, Finland), Reino Virrankoski (University of Vaasa, Finland)	496
Adaptive Candidate Selection Scheme in QRM-MLD Algorithm for MIMO Detection	
Wei Hou (The Uinversity of Electro-Communications, Japan), Tadashi Fujino (The University of Electro-Communications, Japan), Toshiharu Kojima (The University of Electro-Communications, Japan)	502
A Simple Model for Imperfect Channel State Information and Its Application for the Assessment of Interference Alignment	
Danish Aziz (Alcatel-Lucent Bell Labs, Germany), Sevil Sentuerk (Alcatel- Lucent, Germany), Andreas Weber (Alcatel-Lucent, Germany), Thorsten Wild (Alcatel-Lucent Bell Labs, Germany)	507

PEMOS 2012: 2012 Third International Workshop on the Performance Enhancements in MIMO OFDM Systems

3rd International Workshop on the Performance Enhancements in MIMO-OFDM Systems

Resource Allocation Scheme for MIMO-OFDMA Systems with Proportional Fairness Constraints	
Mohammed Ali (KFUPM, Saudi Arabia), Samir Al-Ghadhban (KFUPM, Saudi Arabia), Ashraf Mahmoud (KFUPM, Saudi Arabia)	512
Outage performance analysis and optimization of OFDM-based relaying protocols	
Nassar Ksairi (HIAST, Syria)	517
Performance of Space Time Trellis Code Using Fading Channel Muhammad Ehsan ul Haq (National University of Modern Languages,	
Pakistan)	523

3rd International Workshop on the Performance Enhancements in MIMO-OFDM Systems

Channel Estimation Using RF Signal Processor Based on OFDM System Md. Abdul Latif Sarker (Chonbuk Nattional University, Korea), Moon Ho	
Lee (Chonbuk National University, Korea)	528
An Improved Sphere Decoder for MIMO Systems Goodwell Kapfunde (University of Hertfordshire, United Kingdom), Yichuang Sun (University of Hertfordshire, United Kingdom), Nandini Alinier (University of Hertfordshire, United Kingdom)	533

	Robust adaptive detection in linearly precoded MIMO-OFDM systems with hard/soft decoding Felip Riera-Palou (University of the Balearic Islands, Spain), Guillem Femenias (University of the Balearic Islands, Spain)	538
	Enhanced Channel Estimation Technique in MIMO-OFDM System Mohamed Ahmed (Khalifa University of Science, Technology and Research, UAE), Shihab Jimaa (Khalifa University, UAE), Ibrahim Abualhaol (Khalifa University, UAE)	545
Comr	ON 2012: 2012 Second International Workshop on Veh nunications and Networking	
2nd Int	Continue Management of Contractions and Networkin Optimum maneuvering under time constraints for high speed vehicles Juan-Bautista Tomas-Gabarron (Polytechnic University of Cartagena,	ng
	Spain), Esteban Egea-Lopez (Polytechnic University of Cartagena (UPCT), Spain), Joan Garcia-Haro (Technical University of Cartagena, Spain)	550
	Enhancing Broadcast Vehicular Communications Using Beamforming Technique Ahmed Soua (Institut Telecom, France), Walid Ben-Ameur (Telecom SudParis, France), Hossam Afifi (Institut Telecom, France)	557
	Advances in the Analysis of Urban VANETs: Scalable Integration of RADII in a Network Simulator Riccardo M. Scopigno (Istituto Superiore Mario Boella, Italy), Hector Agustin Cozzetti (Istituto Superiore Mario Boella, Italy), Luca Pilosu (Istituto Superiore Mario Boella, Italy), Francesco Fileppo (Istituto	

Superiore Mario Boella, Italy)	563
Multi-objective OLSR optimization for VANETs	
Jamal Toutouh (University of Malaga, Spain), Enrique Alba (University of	
Malaga, Spain)	571

2nd International Workshop on Vehicular Communications and Networking

EHealth Service Support In IPv6 Vehicular Networks Sofiane Imadali (University of Paris-Sud 11, France), Athanasia Karanasiou (Vidavo, Greece), Alexandru Petrescu (Commissariat à l'Énergie Atomique, France), Ioannis Sifniadis (Vidavo, Greece), Véronique Vèque (University of Paris-Sud 11, France), Pantelis Angelidis (University of Western Macedonia, Greece)	579
Field Trial Results on Uplink Joint Detection for Moving Relays	
Michael Grieger (Technische Universität Dresden, Germany), Gerhard Fettweis (Technische Universität Dresden, Germany)	593
······································	

Distributed Clustering in Vehicular Networks

Leandros A. Maglaras (University of Thessaly, Greece), Dimitrios Katsaros (University of Thessaly, Greece) Physical-Layer Network Coding based on Integer-Forcing Precoded Compute and Forward Smrati Gupta (Universitat Autonoma de Barcelona, Spain), Maria-Angeles Vázquez-Castro (Universidad Autónoma de Barcelona, Spain)

600

CNBuB'2012: 1st International Workshop on Community Networks and Bottom-up-Broadband (CNBuB 2012)

1st Workshop on Community Networks and Bottom-up-Broadband

On	the Relevance of Using Affordable Tools for White Spaces Identification Marco Zennaro (ICTP - The Abdus Salam International Centre for Theoretical Physics, Italy), Ermanno Pietrosemoli (International Centre for Theoretical Physics (ICTP), Italy), Antoine Bigomokero Bagula (University of Cape Town, South Africa), Sindiso Nleya (Computer Science Department, Zimbabwe)	606
Το	pology patterns of a community network: Guifi.net Davide Vega (Universitat Politècnica de Catalunya, Spain), Llorenç Cerdà-Alabern (Universitat Politècnica de Catalunya, Spain), Leandro Navarro (Universitat Politècnica de Catalunya, Spain), Roc Meseguer (Universitat Politècnica de Catalunya, Spain)	612
	mmunity-Lab: Architecture of a Community Networking Testbed for the ture Internet Axel Neumann (Pangea, Spain), Ivan Vilata (Pangea, Spain), Xavier León (Universitat Politècnica de Catalunya, Spain), Pau Escrich (Guifi.net Foundation, Spain), Leandro Navarro (Universitat Politècnica de Catalunya, Spain), Ester López (Universitat Politècnica de Catalunya, Spain)	620
	aracterizing the Multimedia Service Capacity of Wireless Mesh Networks Rural Communities Joaquin Chung (University of Panama, Panama), Grace González (University of Panama, Costa Rica), Ivan Armuelles (University of Panama, Panama), Tomás Robles (Technical University of Madrid, Spain), Ramon Alcarria (Universidad Politécnica de Madrid, Spain), Augusto Morales (Technical University of Madrid, Spain)	628

1st Workshop on Community Networks and Bottom-up-Broadband

Improved Community Network Node Design using a DLEP based Radio-to-Router Interface

Christoph Barz (Fraunhofer FKIE, Germany), Henning Rogge (Fraunhofer Inst. for Communication, Information Processing and Ergonomics FKIE, Germany) 643

Overhead Analysis of Embedded Wireless Testbeds

Nathan Samson (University of Antwerp, Belgium), Glenn Daneels	
(University of Antwerp, Belgium), Bart Braem (IBBT, Belgium), Chris	
Blondia (University of Antwerp, Belgium)	
An evaluation of BMX6 for Community Wireless Networks	
Axel Neumann (Pangea, Spain), Ester López (Universitat Politècnica	
de Catalunya, Spain), Leandro Navarro (Universitat Politècnica de	
Catalunya, Spain)	651
Improving Mesh-Agnostic Client Announcement in B.A.T.M.A.NAdvanced	
Antonio Quartulli (University of Trento, Italy), Renato Lo Cigno (University	
of Trento, Italy)	659

WMSN'2012: 1st International Workshop on Wireless Multimedia Sensor Networks (WMSN'12)

1st Workshop on Wireless Multimedia Sensor Networks

QoV: Assessing the Monitoring Quality in Visual Sensor Networks Daniel G. Costa (State University of Feira de Santana, Brazil), Luiz Affonso Guedes (Federal University of Rio Grande do Norte, Brazil), Francisco Vasques (University of Porto, Portugal), Paulo Portugal (University of Porto, Portugal)	667
Packet Scheduling in Multi-Channel Layered-Video Streaming over Wireless Networks Ronit Nossenson (Jerusalem College of Technology, Israel), Noam Amram (LiveU, Israel)	675
Fusion Techniques for Multi-hop Relay Wireless Sensor Networks Joumana Farah (Holy-Spirit University of Kaslik, Lebanon), Anthony Beylerian (Holy-Spirit University of Kaslik, Lebanon), Charles Yaacoub (Holy-Spirit University of Kaslik, Lebanon), Ralph Stephan (Holy-Spirit University of Kaslik, Lebanon)	681
QoE-aware FEC Mechanism for Intrusion Detection in Multi-tier Wireless Multimedia Sensor Networks Zhongliang Zhao (University of Bern, Switzerland), Torsten Ingo Braun (University of Bern, Switzerland), Denis Lima Rosário (Federal University of Para, Brazil), Eduardo Cerqueira (Federal University of Para, Brazil), Roger Immich (University of Coimbra, Portugal), Marilia Curado (University of Coimbra, Portugal)	689

Workshop on Wireless Multimedia Sensor Networks

Cross-Layer Caching Based Optimization for Wireless Multimedia Sensor	
Networks	
Nestor Tiglao (INESC-ID/IST, Portugal), Antonio M. Grilo (INESC/IST,	
Portugal)	705

Detecting and Coding Region of Interests in Bi-Level Images for Data Reduction in Wireless Visual Sensor Network

Khursheed Khursheed (Mid Sweden University, Sweden), Naeem Ahmad (Mid Sweden University, Sweden), Muhammad Imran (Mid Sweden University, Sweden), Mattias O'Nils (Mid Sweden University, Sweden)

Motion	estimation	on	decoder	side	for	low-complexity	video	encoding	in	
wireless	s sensor net	twor	rks							
Joł	nannes Karl	ssoi	n (Umeå l	Jnive	rsity	, Sweden)				713

STWiMob'2012: 2012 Fifth International Workshop on Selected Topics in Mobile and Wireless Computing

5th International Workshop on Selected Topics in Mobile and Wireless Computing

A Combined Spectrum Sensing and Terminals Localization Technique for Cognitive Radio Networks Wael Guibène (EURECOM, France)	719
Signal Detection for Spread Spectrum Communication Systems with Gradient Algorithm Samantha Sriyananda (University of Jyväskylä, Finland), Jyrki Joutsensalo (University of Jyvaskyla, Finland), Timo Hämäläinen (University of Jyväskylä, Finland)	728
 TOA Location Estimation based on Cognitive Radio Channel Occupancy Prediction Robin Thomas (University of Pretoria, South Africa), Simon Barnes (University of Pretoria, South Africa), Bodhaswar TJ Maharaj (University of Pretoria, South Africa) 	733
Effect of Spatial Correlation on MMSE-Based Interference Alignment in a Multiuser MIMO MB-OFDM System Chung Le (Wilhelm Leibniz University Hannover, Institute of Communications Technology, Germany), Emil Dimitrov (Leibniz Universität Hannover, Germany), Anggia Anggraini (University of Hannover, Germany), Jürgen Peissig (Leibniz Universität Hannover, Germany), Hans-Peter Kuchenbecker (University of Hannover, Institut fuer Allgemeine Nachrichtentechnik, Germany)	739
Analyzing Randomly Placed Multiple Antennas for MIMO Wireless Communication Thomas Janson (University of Freiburg, Germany), Christian Schindelhauer (University of Freiburg, Germany)	745

5th International Workshop on Selected Topics in Mobile and Wireless Computing

Multicast Routing Protocol for Vehicular Delay-Tolerant Networks	
Adriano Palma (INESC-ID, Instituto Superior Técnico, Technical	
University of Lisbon, Portugal), Paulo Pereira (INESC-ID, Portugal),	
Augusto J. D. Casaca (Instituto Superior Técnico in Lisbon, Portugal)	753
A Hybrid Network for Maritime On-Board Communications	
Liping Mu (Universtiy of Agder, Norway)	761

Implementing Personal Home Controllers on Smartphones for Service- Oriented Home Network Keisuke Tokuda (Kobe University, Japan), Shinsuke Matsumoto (Kobe University, Japan), Masahide Nakamura (Kobe University, Japan)	769
Optimising file delivery in a maritime environment through inter-vessel connectivity predictions Panayiotis Kolios (Cyprus University of Technology, Cyprus), Lambros Lambrinos (Cyprus University of Technology, Cyprus)	777
Moving the Mobile Evolved Packet Core to the Cloud James Kempf (Ericsson Research, USA), Bengt Johansson (Ericsson, Sweden), Sten Pettersson (Ericsson, Sweden), Harald Lüning (Ericsson, Sweden), Tord Nilsson (Ericsson, Sweden)	784
Mobile Clouds: Comparative Study of Architectures and Formation Mechanisms Hamidreza Bagheri (University of Oulu, Finland), Prasanth Karunakaran (University of Erlangen-Nuremberg, Germany), Kaveh Ghaboosi (Airvana, LLC., USA), Timo Bräysy (University of Oulu, Finland), Marcos D Katz (University of Oulu, Finland)	792

5th International Workshop on Selected Topics in Mobile and Wireless Computing

Cross-Layer adaptive power save control method for wireless local area networks Hirokazu Kobayashi (Panasonic Corporation, Japan), Masaaki Harada (Panasonic Corporation, Japan), Satoshi Senga (Panasonic Corporation, Japan), Kazushige Yamada (Panasonic Corporation, Japan), Junichiro Soeda (Panasonic Corporation, Japan), Tsutomu Sekibe (Panasonic Corporation, Japan) 8 Traffic Distribution and Network Capacity Analysis in Social Opportunistic Networks Bambang Soelistijanto (University of Surrey, United Kingdom), Michael P.	The Effect of Symmetric Block Ciphers on WSN Performance and Behavior Christos Antonopoulos (Technological Educational Institute of Mesolonghi, Greece), Christos Petropoulos (Technological Educational Institute of Messolonghi, Greece), Konstantinos Antonopoulos (Technological Educational Institute of Messolonghi, Greece), Vasilios Triantafyllou (Technical University of Messology, Greece), Nikolaos Voros (Dept. of Telecommunication Systems and Networks, Greece)	799
networks Hirokazu Kobayashi (Panasonic Corporation, Japan), Masaaki Harada (Panasonic Corporation, Japan), Satoshi Senga (Panasonic Corporation, Japan), Kazushige Yamada (Panasonic Corporation, Japan), Junichiro Soeda (Panasonic Corporation, Japan), Tsutomu Sekibe (Panasonic Corporation, Japan) 8 Traffic Distribution and Network Capacity Analysis in Social Opportunistic Networks Bambang Soelistijanto (University of Surrey, United Kingdom), Michael P.	Channel Alfredo Matos (Caixa Mágica Software, Portugal), Daniel Romão (Caixa Mágica Software, Portugal), Paulo Trezentos (Caixa Mágica Software	807
Networks Bambang Soelistijanto (University of Surrey, United Kingdom), Michael P.	networks Hirokazu Kobayashi (Panasonic Corporation, Japan), Masaaki Harada (Panasonic Corporation, Japan), Satoshi Senga (Panasonic Corporation, Japan), Kazushige Yamada (Panasonic Corporation, Japan), Junichiro Soeda (Panasonic Corporation, Japan), Tsutomu Sekibe (Panasonic	815
Impact of Semantic-aware Radio Resource Management Schemes on Video	Networks Bambang Soelistijanto (University of Surrey, United Kingdom), Michael P. Howarth (University of Surrey, United Kingdom)	831

Impact of Semantic-aware Radio Resource Management Schemes on Video Streaming Service Luis Guillermo Martinez Ballesteros (KTH Royal Institute of Technology, Sweden), Pietro Lungaro (Royal Institute of Technology (KTH), Sweden), Zary Segall (KTH Royal Institute of Technology, Sweden)

5th International Workshop on Selected Topics in Mobile and Wireless Computing

Real Time Radio Coverage Monitoring in Self-organizing Networks with User Feedback Kejiong Li (Queen Mary, University of London, United Kingdom), Peng Jiang (Queen Mary University of London, United Kingdom), Eliane Bodanese (Queen Mary, University of London, United Kingdom), John Bigham (Queen Mary, University of London, United Kingdom)	837
Physical-layer Intrusion Detection for Wireless Networks using Compressed Sensing Alexandros Fragkiadakis (Institute of Computer Science, FORTH, Greece), Sofia Nikitaki (FORTH-ICS and University of Crete, Greece), Panagiotis Tsakalides (FORTH-ICS and University of Crete, Greece)	845
An Approach of Secure and Fashionable Recognition for Pervasive Face-to- Face Social Communications Zheng Yan (Xidian University, P.R. China), Yu Chen (Swiss Federal Institute of Technology (EPFL), Switzerland), Peng Zhang (Xian University of Posts and Telecommunications, P.R. China)	853
A Deployable Scheme of CMT-SCTP with Off-the-Shelf Android Smartphones Atsuo Tachibana (KDDI R&D Laboratories, Japan), Teruyuki Hasegawa (KDDI R&D Laboratories Inc., Japan)	861
Correlated Movement Mobility Model and Constant Acceleration Model for EKF-Based Tracking Applications Oktay Alkin (Southern Illinois University Edwardsville, USA), Binod Pant (Southern Illinois University Edwardsville, USA)	869

Traffic Distribution and Network Capacity Analysis in Social Opportunistic Networks

Bambang Soelistijanto and Michael Howarth

Centre for Communication Systems Research University of Surrey, UK {b.soelistijanto, m.howarth}@surrey.ac.uk

Abstract — Social opportunistic networks are intermittently connected mobile ad hoc networks (ICNs) that exploit human mobility to physically carry messages between disconnected parts of the network. Human mobility thus plays an essential role in the performance of forwarding protocols in the networks, and people's movements are in turn affected by their social interactions with each other. In this paper we present an analysis of the traffic distribution among the nodes of social opportunistic networks and its impact on network capacity. For our analysis, we use a human contact graph that represents a social network of individuals. We characterize the graph as a scale-free network and apply forwarding strategies based on the information required by a node to select relays for its messages, categorising this information either as isolated or complete network or local network knowledge. We use a social network property, centrality, for the forwarding strategies, additionally considering tie strength in the forwarding metric and investigate their impact on traffic distribution. We show that all the strategies result in unfair traffic distribution due to a strong non-random structure of the networks, where hub nodes process much more relay traffic than non-hub nodes. Finally, we present a mathematical model of network capacity as an upper-bound of network delivery performance where hub nodes' resources become the limiting factors, and show that including tie strength in the forwarding metric improves the network capacity.

Keywords: opportunistic networks, traffic distribution, network capacity, scale-free graph, centrality, tie strength

I. INTRODUCTION

Intermittently connected mobile ad hoc networks (ICNs) are networks which can operate in the presence of disrupted links or long transfer delays; they also in the literature sometimes referred to as delay- and/or disruption- tolerant networks (DTNs). One scenario in which ICNs can be useful is in networking for devices carried by users of mobile and portable devices, such as pocket switched and mobile social networks (PSNs) [1]. PSNs use opportunistic data dissemination to facilitate data communication among users in a dynamic and frequently disconnected network environment. The nodes in PSNs make use of a store-carry-forward mechanism to carry messages to the destinations, and so a user's mobility therefore plays an essential role in the protocol's performance. People's movement behaviours are strongly affected by their social interactions with each others. Furthermore, it has been proved that knowledge of social structure can help in designing better forwarding algorithms in opportunistic networks [2].

In ICNs, there are two scenarios for node movements, i.e. deterministic and stochastic. In a deterministic scenario, future node movements and connections are completely known and hence the entire network topology is known ahead of time. In a stochastic scenario, however, node contacts are unpredictable and the network behaviour is random and unknown, and hence routing is a complex task. The simplest forwarding decision is to forward each copy of a message to any node in contact, i.e. Epidemic routing [3], while other approaches may be based on history data, mobility patterns or other information. A history contact based routing, e.g. Prophet [4], uses a probabilistic metric that indicates the likelihood of the relay to be able to deliver a message to the destination. At every contact, nodes exchange delivery probability vectors containing the delivery predictability information for destinations known by the nodes. However, given the unpredictable node mobility and frequent changes of network topology, this strategy will create much control traffic during a node contact which may be of short duration.

Recently, a novel approach of a history-based routing algorithm that uses structural information of individuals in a social network has been developed. These social-aware routing protocols use some characteristics of a social network that are less volatile than a physical network. In the networks formed by people, social relationships vary much more slowly and therefore they can be used as routing metrics. The routing algorithms may use social network properties, such as centrality and community, as routing metrics. Centrality is a measure of the relative importance of an individual within a social network and can be assessed by various metrics such as degree, betweeness, closeness centrality etc. [5]. A high centrality indicates that a person appears to be more popular and thus has more contacts than less popular people. On the other hand, people inherently form groups and this creates the concept of community. People within a given community are more likely to meet each other than randomly chosen people.

Unfortunately, despite its benefits, a social-aware forwarding algorithm presents a drawback in traffic distribution among nodes in the network. Since the algorithm favours high rank (high centrality) nodes as traffic relays, a few nodes will receive much more traffic than others. So there is a need to further uncover the impact of social-aware forwarding algorithms on traffic distribution. The contribution of this paper is therefore as follows. First, we perform an analysis of the effect on traffic distribution of using centrality and tie strength as the metrics for traffic forwarding strategies. Second, we present a model to calculate network capacity of opportunistic networks. While most of the existing models of network capacity are derived with respect to betweeness centrality, we use node degree instead. We argue that betweeness centrality is hard to calculate in ICNs since it requires complete network knowledge, while node degree is information that is locally available at a node. To the best of our knowledge, our work is the first that uses node degree to derive network capacity. Given that the focus of this paper is traffic distribution and network capacity, we do not consider here other metrics such as message delay within the network.

The remainder of the paper is organized as follows. Section II describes related work in the area of traffic distribution and balancing in social opportunistic networks. Section III presents our model of traffic distribution in social opportunistic networks for different forwarding strategies. In Section IV, we derive an analytical model of network capacity of a social opportunistic network. Finally, we discuss the results in Section V, which is followed by conclusion and future work in Section VI.

II. RELATED WORK

The uses of social network properties for designing forwarding protocols in ICNs have been broadly discussed in the literatures, e.g. in [2,6,7,8]. A social-aware forwarding scheme, LABEL [6], assumes every node possess a label indicating its community, and forwards messages to relay nodes that belong to the same community as the destination. RANK [2] uses node centrality as a forwarding metric and forwards a message to nodes that have a higher ranking (i.e. larger centrality) than the current node until the destination is reached. SimBet [7] and Bubble Rap [2] use both centrality and community as the forwarding metrics. Bubble Rap combines degree centrality and community structure to decide relay nodes. Degree centrality is the total number of links that a node has. Meanwhile, SimBet uses locally-calculated (ego) betweeness centrality and similarity as its routing metrics. The betweeness centrality of a node is expressed as a fraction and is the number of shortest paths that pass through the node divided by the number of shortest paths in the network. Similarity, on the other hand, indicates the ratio of common neighbours between individuals in social networks. When a social network displays a high degree of clustering, the probability of two nodes being connected is higher if the nodes have common neighbours. Investigations in [2,7] showed that both SimBet and Bubble Rap need lower total control traffic than Prophet but they are able to keep the delivery ratio as high as Prophet.

Wang et al. [9] studied the impact of social structures, in terms of centrality and community, on forwarding performance, i.e. delivery success ratio and average hop counts, in social opportunistic networks. Nevertheless, only a few papers discuss the main drawback of social-aware forwarding strategies, i.e. unfair traffic distribution among nodes in opportunistic networks. This unfair traffic distribution is not sustainable as it can quickly deplete resources in the heavy utilized (hub) nodes and eventually will degrade overall delivery ratio. The authors in [10] investigated the drawback of SimBet in term of traffic distribution in the network and then proposed Fair Route to address the issue. CAFé [11] has also

been proposed with the aim of distributing load away from hub nodes. The approach adopted by both Fair Route and CAFé is to reduce the effect of centrality by smoothing its value (in CAFé) or decreasing it in time (in Fair Route). Interaction strength, i.e. some measure of the strength of a link between two nodes, was also added in the forwarding metrics of [10,11] to improve the algorithm performance. Similarly, the authors of SimBet [7] improved their existing algorithm by adding tie strength in the routing metric. This improved algorithm, SimbetTS [12], combines the frequency of contact, contact duration and the age of contact as measures of the tie strength between two nodes in the network. Unfortunately, it has been shown in [10,11,12] that improving the contact data, i.e. centrality and tie strength, has failed to provide a proper solution for traffic balancing. Hence, we agree with the authors of [10,11] that both Fair Route and CAFé need an additional strategy, e.g. (storage) congestion control, which reduces the traffic in hub nodes. In this paper we investigate the impact of two metrics, i.e. centrality and tie strength, on forwarding algorithms in terms of traffic distribution and network capacity of social opportunistic networks. We take an analytical approach, and use the graph that resembles a human contact graph representing a social (relation) network.

III. TRAFFIC DISTRIBUTION MODEL

In communications, some nodes are usually more important than others. In a network, a node may be considered more important if many shortest paths traverse it. Typically, centrality metrics are suitable for analysis in well-connected networks, such as the Internet and MANETs. In an ICN, however, the network topology changes very rapidly and the physical connectivity of the network might be extremely unstable. Several papers simply define the topology of ICNs as unpredictable, but others argue that temporal connection models are better suited than spatial models [13]. Research topics concerned with the topology of ICNs are still wide open today. Human mobility characteristics discussed in [14] show that there exists a virtual, social (relation) graph that drives humans to move, and that this graph is less volatile than physical topology. The overlay graph represents a macroscopic property of human mobility, and the ICN steady-state (longterm behaviour) of protocol performance analysis can be performed over this abstract/logical layer, as in [15]. We illustrate the structural topology of a social opportunistic network in Figure 1.

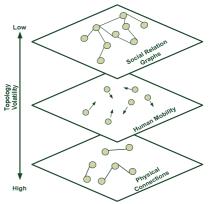


Figure 1. Structural topology of a social opportunistic network

A. Network topology generation

Hossmann et al. [16] studied several real human contact traces and argued that the derived contact graphs have a strong non-random structure (complex graph). Ferreti et al. [17] studied the feasibility of coupling between scale free graphs and social opportunistic networks. By employing real data traces, they set up contact graphs by varying the aggregated time interval and the minimum link value threshold and found that the resultant graphs possess a scale free structure. A scale free graph is one whose degree distribution, P(k), follows a power law as $P(k) \sim k^{-\gamma}$, where k and γ are node degree and degree exponent, respectively. For our model, we use the Barabasi-Albert (BA) algorithm [18] to generate a binary scale free network: this binary network consists of two link states: '1' if a direct link exists between two nodes, and '0' if otherwise. The numerical analysis in [18] indicated that the BA network evolves into a scale invariant state with a range of degree exponents similar to many real social networks, i.e. $2 < \gamma_{BA} < 3.$

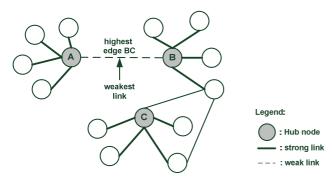


Figure 2. Illustration of the weak tie hypothesis of Onella [19]

We then improve the binary BA network to better represent a human contact graph by including tie strength in each link of the network. We call this a weighted BA network. Tie strength is a quantitative property that measures how strong a link is between two nodes. It can depend on several factors, e.g. frequency of contact, contact duration or elapsed time since last contact. We follow the 'weak-tie' hypothesis of Onella et al. [19] when assigning tie strength to the links of the binary network. This hypothesis postulates that the weakest links -interms of total connected time - are those with the highest betweeness centrality (BC) in the network. This hypothesis was validated in social opportunistic networks by Williamson [20], who investigated the distribution of link connected time in real human contact traces. As illustrated in Figure 2, the link between nodes A and B has the highest edge BC and hence the link is considered as the weakest link in the network because it is the most critical link in maintaining network connectivity (since more shortest paths pass through it than through any other link). Subsequently, to assign values of tie-strength to the links of the binary network we use the work of Williamson [20] that found the distribution of link connected time in the Reality Mining dataset [21] fits a power law distribution as $f(x) \sim x^{-2.049}$, where x is the percentage of total link connected time. In our work, we define tie-strength as a function of the total contact duration between two nodes and thus consider f(x)as the distribution of tie-strength in the network. The detailed procedure of assigning tie-strength in the links is described in Algorithm 1. This algorithm produces a weighted scale free network where the weights represent the tie strength between nodes. These weights are not the same as conventional link weights used in routing, since in our case higher weights (or tie strength) are regarded as more desirable.

Algorithm 1. Assigning tie strength to links for the BA network

- 1) Generate a binary scale free network using BA algorithm
- 2) Calculate an edge betweeness centrality (BC) for every link in the network and sort the links in increasing order of BC
- 3) Determine the range of tie strength values used in the network (e.g. we choose tie strength in the range from 1 to 10).
- 4) Using the tie strength distribution (e.g. $f(x) \sim x^{-2.049}$), calculate f(x) (e.g. for x = 1 to 10) and determine the probability of each tie-strength value in the network as $f(x)/\Sigma_x f(x)$.
- 5) For each probability, multiply it by the total number of links to get the number of links that have the given tie-strength. Following the '*weak-tie*' hypothesis, assign the highest fraction of the links to the largest tie strength.
- 6) Sort the tie strengths in decreasing order and assign them to the links in increasing order of BC, so that the link with the highest BC has the lowest tie strength.

B. Markov model of steady state traffic distribution

To study node traffic analytically, we calculate the probability of a message being found in a given node, assuming steady state traffic flow. We define this probability as the occupation ratio of a node in steady state traffic. By assuming all the steady state processes in the network, i.e. message arrival, process and departure in a node, are *i.i.d* (identical and independently distributed) and that they follow a Poisson distribution, we can use the discrete Markov process to illustrate how a message moves from one node to another with a certain transition probability. We define p_{ij} as the probability that a message from node *i* moves to node *j*. With this definition, the transition matrix *P* of a finite Markov chain with *N* nodes has the form as follows:

$$P_{N \times N} = \begin{bmatrix} 0 & p_{12} & \dots & p_{1N} \\ p_{21} & 0 & \dots & p_{2N} \\ \vdots & \vdots & \dots & \vdots \\ p_{N1} & p_{N2} & \dots & 0 \end{bmatrix}$$
(1)

where $\sum_{j} p_{ij} = 1$ and p_{ij} is determined by the network routing strategy. If $\pi(i)$ denotes the probability distribution at *i*-th step, then the rule of a message walk can be expressed by a simple equation:

$$\pi(t) = (P^T)^t \pi(0)$$
 (2)

where $\pi(0)$ is the initial probability. If a chain is ergodic, then there is a unique steady state (equilibrium) distribution which solves the relation $\pi = \pi P$, where π is the steady state distribution vector. Then, the steady state probability of a message being found in node *i* is given by

$$\pi_i = \sum_{j=0}^N p_{ji} \pi_j \tag{3}$$

where p_{ji} is the transition probability a message departs from node *j* to *i* and π_j is the steady state probability of a message being found in node *j*.

C. Forwarding strategies for social opportunistic networks

In our study, we consider three forwarding strategies that can be divided based on the knowledge of the network structural information which is required by a node to determine its relays. We categorise these strategies as isolated, complete network and local network knowledge.

In the isolated knowledge strategy, a node selects neighbouring relays for its messages based only on its own knowledge. In the binary network, this knowledge is the number of direct neighbours and the current node will select its neighbours to be relays with equal probability, i.e. the inverse of its degree. In the weighted network, a node takes into account the tie strength of each link to the neighbours. Since the tie strength is proportional to the contact duration with the neighbours, a node requires no additional knowledge from the neighbours and hence this value of the weights can be considered as isolated knowledge. The probability of a message being relayed from node i to j, p_{ij} , for an isolated knowledge network is defined as follows

$$p_{ij} = \begin{cases} \frac{a_{ij}}{\sum_{n \in N} a_{in}}, & \text{if } a_{ij} \neq 0; N: \text{set of } i'\text{s neighbours} \\ 0, & \text{if } a_{ij} = 0 \end{cases}$$
(4)

where a_{ij} is the tie-strength between node *i* and *j*, and $\sum_j p_{ij} = 1$.

In the complete network knowledge strategy, we assume a node has knowledge of the network topology for all other nodes. Then the node can calculate the ranking of the importance of its neighbours in the network. We use node betweeness centrality (BC), which we define as the number of shortest-paths passing through the node. In the binary network, once a node has the entire network topology, it runs Dijkstra's algorithm to calculate the BC of its neighbour nodes. In the weighted network, on the other hand, where the weight is determined by tie strength, a higher weight means it is more probable that a link exists between two nodes at any time. Hence, the higher the weight the more desirable the link is and therefore it is more likely to be selected as part of the shortest path (this is the opposite of the conventional Dijkstra's algorithm). Hence, in both binary and weighted networks, the probability of a message being relayed from node *i* to *j* for a complete knowledge network can be calculated as

$$p_{ij} = \begin{cases} \frac{BC_j}{\sum_{n \in N} BC_n}, & \text{if } a_{ij} \neq 0 ; N: \text{set of } i' \text{s neighbours} \\ 0, & \text{if } a_{ii} = 0 \end{cases}$$
(5)

where BC_j is the betweeness centrality of node *j*, a_{ij} is the tiestrength between node *i* and *j*, and $\sum_j p_{ij} = 1$.

The calculation of betweeness centrality needs global knowledge of network topology, but obtaining this data is unrealistic in ICNs due to the intermittent connections and large transfer delay. More realistically, a forwarding algorithm for opportunistic networks can estimate node BC in a decentralized manner using locally available information. Therefore, in the local network knowledge strategy, we use two different metrics, node degree and ego betweeness, to represent the BC of neighbour nodes. The correlation between node degree and node BC has been discussed in [2]. If the node degree of the neighbour nodes is used as the metric for the local network knowledge strategy (as in RANK [2]), the algorithm will favour a higher neighbour node degree as a better relay node. In this case, the probability of node *j* being the relay for node *i*, p_{ij} , is given for the local knowledge network by

$$p_{ij} = \begin{cases} \frac{k_j}{\sum_{n \in N} k_n}, & \text{if } a_{ij} \neq 0; N: \text{set of } i'\text{s neighbours} \\ 0, & \text{if } a_{ij} = 0 \end{cases}$$
(6)

where k_j is the degree of node j and $\sum_j p_{ij} = 1$. For the weighted network, we define the node degree as the sum of the tie strengths of the links attached to the node.

The other local metric that can be used to determine the BC of neighbour nodes is ego betweeness, which can be calculated using the concept of the 'ego network' [22]. Here, the node BC is calculated by computing the number of nodes that are indirectly connected through the node. Then, the ego betweeness of a node is calculated as the sum of the reciprocal of the entries of $A^2[1 - a_{ij}]$, where A is an adjacency matrix and a_{ij} is the link weight between node *i* and *j*. This strategy favours the neighbour having a higher ego betweeness as a better relay. Hence, in this case the probability of node *j* being the relay node for node *i*, p_{ij} , can be calculated for the local knowledge network as follows

$$p_{ij} = \begin{cases} \frac{EB_j}{\sum_{n \in N} EB_n}, & \text{if } a_{ij} \neq 0; N: \text{set of } i'\text{s neighbours} \\ 0, & \text{if } a_{ij} = 0 \end{cases}$$
(7)

where EB_j is the ego betweeness of node *j* and $\sum_j p_{ij} = 1$.

IV. NETWORK CAPACITY MODEL

In a non-random structure network, there exist a few hub nodes that have a very large node degree and which process much more traffic than other nodes in the network. As a result, the main resources of these nodes, i.e. storage and power, will quickly be depleted and this will eventually degrade the network performance. Hence, a network capacity model is required to understand the maximum possible message transfer rate in a network. Suppose λ is the average rate of messages generated in a network node. We are then interested in a critical value λ_c (measured by the number of messages created at a node per unit time) where a 'phase transition' takes place in the network from free flow to congested flow. The value λ_c thus reflects the network's maximum traffic capacity.

Our network capacity model is derived with respect to node degree. Although most of the published network capacity models are based on betweeness centrality, we argue that node degree is locally available data and is easily obtained in the ICN context. We assume the network consists of N nodes and for each node we define the following variables: λ_i is the mean number of generated messages at node i in each time step and is assumed to follow a Poisson distribution and be independent

for each node; c_i is the maximum number of messages that can be forwarded by node *i* in each time step; and k_i is the degree of node *i*. We also assume the message length to be constant. Traffic at a node's network layer consists of two parts, i.e. arriving and departing traffic. Moreover, we can divide a node's arriving traffic into messages created by the node (local traffic) and messages that are transferred from other nodes (relay traffic). Hence, for each node *j*, we define the mean number of arrivals as

$$\alpha_j = \lambda_j + \sum_{i=1}^N p_{ij}\beta_i \tag{8}$$

where λ_j is the local traffic originating at node *j*, p_{ij} is the probability that messages will be forwarded from node *i* to *j* and β_i is the total relay traffic departing from node *i*. By assuming steady state flow in the network, i.e. $\alpha_i = \beta_i$, and by assuming the information generation rate to be uniform in all nodes as λ , then (8) becomes

$$\alpha_j = \lambda + \sum_{i=1}^N p_{ij} \alpha_i \tag{9}$$

We see that the summation $\sum_{i=1}^{N} p_{ij} \alpha_i$ in (9) reflects the total relay traffic that arrives at a node. Meanwhile, [23] shows that typically the load distribution in a scale free network follows a power law as

$$Prob_l(\ell) \sim \ell^{-\delta}$$
 (10)

where δ is the load exponent. The authors in [23] also argue that the load is highly correlated with node degree *k*, scaling as

$$\ell_k \sim k^{\eta}$$
, for $\eta = (\gamma - 1)/(\delta - 1)$ (11)

Barthelemy [24] stated that δ tightly depends on the network's degree exponent γ and the routing strategy. For shortest path forwarding, he found δ has the range 1.8 to 2.3. Applying (11) to (9), we are able to approximate the mean arrival rate of traffic in node *j* as

$$\alpha_i \approx \left(\varepsilon k_i^\eta\right) \lambda \tag{12}$$

where λ , k, η and ε are the average node message generation rate, node degree, degree-load exponent and load scaling constant, respectively.

To calculate the network capacity we model the traffic process in the network of *N* nodes as *N* queuing systems of *M/M/1*. As described in Section III.B, we assume that all the steady state processes in the network are *i.i.d* (identical and independently distributed). To be specific, we assume that the contact duration between two nodes is uniformly distributed and sufficiently long to exchange all messages and control data (e.g. network neighbourhood metrics). Furthermore, we assume that the inter-contact times between a node and any potential relay are *i.i.d*. and hence all the processes in the network, i.e. message arrival, service and departure, can be considered as exponential/Poisson processes. In queuing theory, typically the behaviour of the queue depends on the arrival process α_i and the service process c_i at node *i*. Our aim is to determine the critical message generating rate λ_c , where if $\lambda < \lambda_c$ the network can sustain a free flow state. Initially, we define the mean delay in the network as the summation of the delay of N queue systems as follows

$$T = \frac{1}{s} \sum_{j=1}^{N} \frac{c_j}{c_j - \alpha_j} \tag{13}$$

where $S = \sum_{j=1}^{N} c_j$. We solve the optimization problem, i.e. minimize the average delay *T* and maximize message generation rate λ subject to the constraint of network resources *S*. Then, the problem can be formulated as

n

$$\lim_{c_j} \sigma T + (1 - \sigma) \frac{1}{\lambda} \text{ subject to } S$$
(14)

where $0 \le \sigma \le 1$ is a weighted parameter. Subsequently, we devise the optimization problem in the form of the Lagrangian method with Lagrangian multiplier φ as

$$L = \frac{\sigma}{s} \sum_{j=1}^{N} \frac{c_j}{c_j - (sk_j^{\eta})\lambda} + (1-\sigma) \frac{1}{\lambda} + \varphi \left(\sum_{j=1}^{N} c_j - S \right)$$
(15)

The set of c_j and λ maximizes L under the conditions $\frac{\partial L}{\partial c_j} = 0$, $\frac{\partial L}{\partial \lambda} = 0$ and $\frac{\partial L}{\partial \varphi} = 0$. Finally, we get $\varphi = \frac{1-\sigma}{\lambda S}$ and arrive at the equation

$$c_{j} = \left(\left(\varepsilon k_{j}^{\eta} \right) + \sqrt{\frac{\sigma}{1 - \sigma} \left(\varepsilon k_{j}^{\eta} \right)} \right) \lambda \tag{16}$$

If we are only interested in maximizing λ , we can set $\sigma = 0$, in which case (16) becomes

$$c_j = \left(\varepsilon k_j^{\eta}\right)\lambda \tag{17}$$

We assume that the node local delivery capacity is constant, i.e. $c_j = c$ and without loss of generality we assume c = 1. Hence we obtain the node's critical message generation rate as

$$\lambda_{cr} = \frac{1}{\varepsilon k_{cr}^{\eta}} \tag{18}$$

where k_{cr} is the maximum degree k in the network and hence corresponds to the node that has the largest node degree. The authors in [25] describe how the maximum node degree in a scale free network varies with the total number of nodes N as $k_{max} \sim N^{1/(\gamma-1)}$ and thus we can rewrite (18) by substituting k_{max} into k_{cr} as

$$\lambda_{cr} = \frac{1}{\varepsilon N^{1/(\delta-1)}} \tag{19}$$

where N, δ and ε are the total number of nodes, load exponent and a scaling constant, respectively.

V. RESULTS AND EVALUATION

A. Traffic distribution analysis

In Section III.B, we defined the occupation ratio as the probability of a message being found in a network node in steady state traffic flow. We can also consider the occupation ratio as the fraction of the total messages (traffic) that arrive at a node in steady state flow. In other words, the occupation ratio is the ratio of the number of times a node acts as a relay node divided by the total relay traffic in the network. We now describe the metrics used in our performance comparison of forwarding strategies, i.e.:

- PAR (peak-to-average ratio): the ratio of maximum to mean occupation ratio (traffic) of nodes in the network. A lower PAR is desirable since this means that traffic is more evenly distributed across the network.
- The percentage of total traffic carried by the busiest nodes.

For our study, we generate a binary scale free network in MATLAB using the BA model for N = 100 nodes, $m_o = 5$ seed nodes, m = 3 edges and subsequently apply all three forwarding strategies (described in Section III.C) to it. We also create a weighted network by calculating tie strength for the links of the binary network using Algorithm 1. Again, we apply all three forwarding strategies to the weighted network. Hence, we can compare the performance of the forwarding strategies when tie strength is excluded (on the binary networks) and included (on the weighted networks) in our analysis. Our results presented here are the average of results obtained for ten different BA network topologies.

Figure 3. The average PAR in the binary and weighted network

In Figure 3, we show as a histogram the PAR for all three forwarding strategies in both the binary and weighted networks. In the case of the local network knowledge strategy we present separate results for node degree and ego betweeness metrics. We note that the higher the PAR, the worse the traffic distribution will be in the network. We notice that the isolated knowledge strategy shows the best performance among the strategies in distributing the traffic in the network. In this strategy, a node selects a relay node based on its own knowledge (regardless of the social properties of its neighbours) and Newman [26] argued that this type of forwarding can be considered as a 'random walk' in both binary and weighted networks. We also see that including tiestrength in the routing metric significantly improves the performance of the complete knowledge and ego-betweeness local knowledge strategies, and makes a modest improvement in the other two cases. As we have mentioned, these first two strategies (complete, and local ego-betweeness) favour nodes with higher betweeness centrality and ego betweeness as relay nodes for most of the traffic in the network. By adding tie strength, we significantly reduce the traffic relayed through hub nodes and redirect it to the well connected neighbour nodes.

We also measure the performance of the forwarding strategies based on the total traffic carried by the busiest nodes in the networks. In Figure 4 and 5, we show histograms that represent the number of the busiest nodes that carry a given fraction of the total traffic (either 25%, 50% or 75%) in the

binary and weighted networks (for N = 100 nodes), respectively. In the binary network (Fig. 4), we note the trend in traffic distribution from fairest to least fair, i.e. isolated knowledge (fairest), local network knowledge (node degree), complete network knowledge and local network knowledge (ego-betweeness) (least fair). By comparison, all the forwarding strategies show performance improvements in the weighted networks (Fig. 5). Here, the performance of the complete network knowledge and local knowledge (ego betweeness) forwarding strategies increase significantly when tie strength is added in the routing metric. On the other hand, only modest improvements in traffic distribution are shown in the isolated and local knowledge (node degree) forwarding strategies.

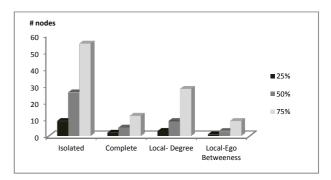


Figure 4. The percentage of total traffic carried by the busiest nodes in the binary network

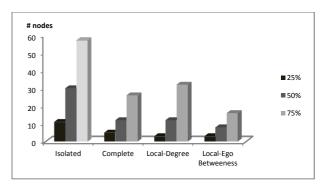


Figure 5. The percentage of total traffic carried by the busiest nodes in the weighted network

We also investigate the effect of increasing the number of nodes in the networks on the traffic distribution. We generate weighted networks for N = 200 to 1000 nodes and apply all the forwarding strategies to them. We present the results in Figure 6, which shows the percentage of the busiest nodes that between them are on average at any time carrying 50% of the traffic. As we can see, isolated knowledge forwarding exhibits the fairest traffic distribution, and this does not vary significantly as the number of nodes increases. As we commented above, according to Newman [26], the isolated knowledge forwarding (taking into account tie strength) can be considered as a 'random walk' and exhibits fairer traffic distribution compared to the other strategies. Meanwhile, in the local knowledge forwarding strategies (both node degree and ego betweeness) the percentage of nodes that carry 50% of the traffic decreases noticeably with the increase in the number of nodes in the network. The performance of the local knowledge strategies is significantly worse than the complete knowledge strategy in large networks. This is to be expected, since it seems reasonable that in larger networks local network information is not a good predictor of the overall path from the source to the destination.

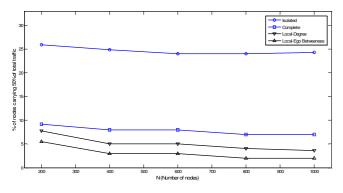


Figure 6. The percentage of total nodes carrying 50% of total traffic (weighted networks)

B. Network capacity analysis

As described in (10), typically the load distribution in a scale free network follows a power law. However, for the isolated knowledge forwarding we found that the occupation ratio increases linearly with the node degree in both the binary and weighted networks. These results are in line with the simulation results in [27] in that the mean arriving traffic of nodes increases linearly with the increasing node degree for random forwarding. As previously mentioned, to some extent isolated knowledge forwarding can be considered as random forwarding that will disregard the centrality of neighbour nodes when selecting relay nodes. We show in Figure 7 the relation between node degree and occupation ratio for the binary network case only, due to limited space.

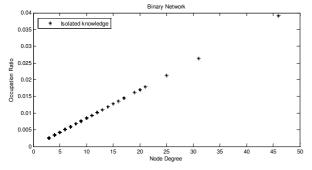


Figure 7. Occupation ratio vs. degree for isolated knowledge forwarding.

However, for the other forwarding strategies we found that the occupation (load) distributions follow a power law. We generate a network with N=500 nodes, $m_o = 5$ nodes, m = 3edges, apply the forwarding strategies and calculate the occupation (load) distribution for each run for both the binary and weighted networks. Our results are again the average of ten different network topologies. Subsequently, we get the load exponent δ for each forwarding strategy as listed in Table I. Furthermore, using (19) and the average values of δ of each forwarding strategy, we plot the critical message generation rate λ_{cr} as a function of network size, for N=100 to 1000 and $\varepsilon = 0.01$, in Figure 8 to 10.

TABLE I. Load exponent in the networks (ten different networks)

Forwarding	Load exponent (δ)			
strategy	Binary network	Weighted network		
Complete network	1.51 < δ < 1.732	1.659 < δ < 1.887		
knowledge	(Avg. 1.621)	(Avg. 1.779)		
Local knowledge	1.621 < δ < 1.853	1.635 < δ < 1.864		
(node degree)	(Avg. 1.713)	(Avg. 1.742)		
Local knowledge	1.319 < δ < 1.616	1.527 < δ < 1.866		
(ego betweeness)	(Avg. 1.416)	(Avg. 1.639)		

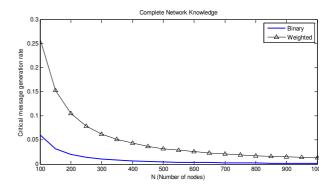
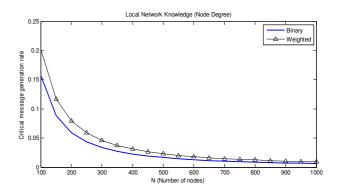



Figure 8. λ_{cr} vs. N, for complete network knowledge forwarding

Figure 9. λ_{cr} vs. N, for local network knowledge (node degree) forwarding

As we note in Figure 8, adding tie strength (i.e. the weighted network) significantly increases the critical message generation rate λ_{cr} for complete network knowledge forwarding. In the other words, adding tie strength in the routing metric in this strategy will significantly reduce the occupation ratio in the most important hub nodes in the network. This result is in line with the result in Figure 3, where the PAR in the complete knowledge network also significantly decreases. Meanwhile, in the local network knowledge (node degree) forwarding (Fig. 9), we can see that adding tie strength slightly increases the critical message generation rate, and therefore slightly reduces the occupation ratio in the most popular hub nodes (in Fig. 3, PAR also reduces slightly in this forwarding strategy). Finally, in Figure 10 we see that the performance of the local network knowledge (ego betweeness) forwarding strategy improves dramatically when tie strength is added in the routing metric. This result is in line with the PAR for this strategy where the occupation ratio of the most important hub node is reduced significantly by adding tie strength. However, this strategy shows the worst performance among other strategies, in terms of both traffic distribution (highest PAR) and network capacity (lowest λ_{cr}). Hence, we can argue that the future application of forwarding strategy based on ego betweeness especially in large networks is questionable. Researchers should seek other local metrics that may have better impact on traffic distribution in social opportunistic networks.

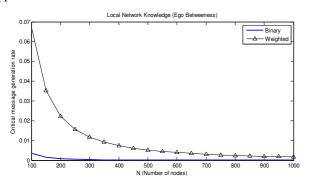


Figure 10. λ_{cr} vs. N, for local network knowledge (ego betweeness) forwarding

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have investigated the impact on traffic distribution and network capacity of including centrality and tie strength in forwarding strategies for social opportunistic networks. We showed that adding tie strength to the routing metric improves the performance of all forwarding strategies (isolated, complete and local knowledge) in term of traffic distribution. However, we have shown that all forwarding strategies still result in unfair traffic distribution, where some nodes process much more traffic than others. Furthermore, we found that the capacity of opportunistic networks to deliver messages strongly depends on the largest degree hub nodes. We also showed that including tie strength (i.e. the weighted networks) improves the network capacity of social opportunistic networks.

In the future, we will include community structure in the routing metric of the forwarding strategies and investigate its impact on global (in whole network) and local (within community) traffic distribution in social opportunistic networks.

REFERENCES

- G. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, C.Diot, "Pocket Switched Networks and Human Mobility in Conference Environments", *Proc. 2005 ACM SIGCOMM*, NY, 2005.
- [2] P. Hui, J. Crowcroft, E. Yoneki, "BUBBLE Rap: Social-based Forwarding in Delay Tolerant Networks", *Proc. 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing*, Hong Kong, China, 2008.
- [3] A. Vahdat, D. Becker, "Epidemic Routing for Partially Connected Ad Hoc Networks", *Tech Report CS-200006*, Duke University, 2000.

- [4] A. Lindgren, A. Doria, O. Schelen, "Probabilistic Routing in Intermittently Connected Networks", ACM SIGMOBILE Mobile Computing and Communication Review, vol.7, no. 3, pp. 19-20, 2003.
- [5] L.C. Freeman, "Centrality in Social Networks: Conceptual Clarification", *Social Networks*, vol. 1, no. 3, pp. 215-239, 1979.
- [6] P. Hui, J. Crocroft, "How Small Labels Create Big Improvements", Proc. CoNEXT'06 ACM Conference, NY, USA, 2006.
- [7] E. Daly, M. Haahr, "Social Network Analysis for Routing in Disconnected Delay Tolerant MANETs", Proc. 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Montreal, Canada, 2007.
- [8] P.Hui, E. Yoneki, S.Y. Chan, J. Crowcroft, "Distributed Community Detection in DTNs", Proc. 2nd ACM/IEEE Int'l Workshop on Mobility in the Evolving Internet, NY, USA, 2007.
- [9] N. Wang, E. Yoneki, "Impact of Social Structure on Forwarding Algorithms in Opportunistic Networks", Proc. iCOST Mobile and Wireless Networking Conference, Shanghai, China, 2011.
- [10] J.M. Pujol, A.L. Toledo, P. Rodriguez, "Fair Routing In Delay Tolerant Networks", *Proc. INFOCOM 2009*, Rio de Janeiro, 2009.
- [11] A. Grundy, M. Radenkovic, "Promoting Congestion Control In Opportunistic Networks", Proc. International Conference WiMob2010, 2010.
- [12] E. Daly, M. Haahr, "Social Network Analysis for Information Flow in Disconnected Delay-Tolerant MANETs", *IEEE Transactions on Mobile Computing*, vol. 8, no. 5, pp. 606-621, 2009.
- [13] C. Boldrini, M. Conti, M. A. Passarella, "Modelling Data Dissemination in Opportunistic Networks", Proc. 3rd ACM Workshop on Challenged Networks CHANTS 08, 2008.
- [14] V. Borrel, F. Legendre, M. Amorim, S. Fdida, "SIMPS: Using Sociology for Personal Mobility", *IEEE/ACM Transactions on Networks*, vol. 17, no. 3, pp. 831-842, 2009.
- [15] T. Hossmann, T. Spyropoulos, F. Legendre, "Social Network Analysis of Human Mobility and Implications For DTN Performance Analysis and Mobility Modeling", *TIK-Report No. 323 Computer Engineering* and Networks Laboratory, ETH Zurich, Switzerland, 2010.
- [16] T. Hossmann, T. Spyropoulos, F. Legendre, "A Complex Network Analysis of Human Mobility", Proc. IEEE Conference on Computer Communications Workshops 2011, Shanghai, 2011.
- [17] S. Ferreti, V. Ghini, "Scale-Free Opportunistic Network: is it Possible?", *Technical Report. arXiv:1107.1937*, July 2011.
- [18] R. Albert, A.L. Barabasi, "Statistical Mechanics of Complex Networks", *Reviews of Modern Physics*, vol. 74, no. 47, pp. 47-97, January 2002.
- [19] J.P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz, A.L. Barabasi, "Structure and Tie Strength in Mobile Communication Networks", *Proc. the National Academy of Sciences*, vol. 104, no.18, 2007.
- [20] G. Williamson, "Routing in Human Contact Networks", PhD thesis of National University of Ireland, Dublin, 2010.
- [21] N. Eagle, A. Pentland, D. Lazer, "Inferring Social Network Structure using Mobile Phone Data", *Proc. the National Academy of Sciences*, vol. 106, no. 36, 2009.
- [22] M. Everett, S.P. Borgatti, "Ego Network Betweeness", Social Networks, vol. 27, no. 1, pp. 31-38, 2005.
- [23] K.I. Goh, B. Kahng, D. Kim, "Universal Behavior of Load Distribution in Scale Free Networks", *Physical Review Letters*, vol. 87, no. 27, 278701, 2001.
- [24] M. Barthelemy, "Comment on Universal Behaviour of Load Distribution in Scale Free Networks", *Physical Review Letters*, vol. 91, no. 18, 189803, 2003.
- [25] P.L. Krapivsky, S. Redner, F. Leyvraz, "Connectivity of Growing Random Networks", *Physical Review Letters*, vol. 85, no. 21, 4629, 2000.
- [26] M.E.J. Newman, "Analysis of Weighted Networks", *Physical Review E*, vol. 70, no. 5, 056131, 2004.
- [27] R. Germano, A.P.S. de Moura, "Traffic of Particles in Complex Networks", *Physical Review E*, vol. 74, no. 3, 036117, 2006.