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strength in intermittently-connected networks like opportunistic networks. The author also models
intercontact events in such human contact networks as bursty events. The author exploits the
burstiness metric from "Goh and Barabasi" to express the variations of intercontact time distributions.
Finally, together with the statistical mean of intercontact times, the author uses this burstiness metric
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the statistical distributions of the observed data (an objective approach) will improve the performance
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using the authors' preferences (a subjective approach). Consequently, the author proposed a method
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Using simulation driven by these real human mobility scenarios, the author showed that the objective
method of construction membership functions could improve the performance of FRIMF, particularly
in terms of delivery cost and delay. Furthermore, compared with some existing routing algorithms, the
proposed scheme can significantly decrease the number of replicas in the networks while maintaining
the delivery success rate as high as the benchmarks.
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- the paper adequately puts the progress it reports in the context of previous works, representative
referencing, and introductory discussion
- the conclusions and potential impacts of the paper are made clear.

As a consequence, the paper can be accepted. Anyhow, a revision of English could improve the quality
of the article.
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* I know the journal guidelines might not require it, but it would be interesting if the authors could
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* The arrival of user queries to Web Search engines also exhibits bursty patterns; here is a reference
should the authors decide to include it: https://dl.acm.org/doi/10.5555/2590084.2590085
* In general, the fonts of most figures are too small in comparison to the text of the article. You may
want to increase their size.
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* In the introduction, OMNs are presented as an alternative communication system in challenging



environments. However, the study uses contact datasets (Haggle and Reality) obtained in different
(non-challenged nor disastrous) environments. Considering that the mobility patterns of the users
could be very different in a disaster scenario, how well do you think the proposed whole routing
algorithm would perform in such a case?

* It would be interesting to test the algorithm in a catastrophe scenario (as future work, maybe?) since
the rate of messages sent by users would be very high (much more than 3 per hour). I think it would
be a very interesting use test case, or the authors might think it is unsuitable.

* In case you think it is worth mentioning, please indicate a realistic scenario where the proposed
method would work.

* This question might be too naive, but here it is anyway. Why the delivery ratio is never 100% (in
figures 13 and 14)? If you consider the answer would add value to your work, please include it in
section IV.
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number). 
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environments..." 
* Page 2, second column, line 4. Perhaps you meant "being" instead of "is". 
* Page 14, second column, lines 37 to 38, add a comma: "We choose Prophet because of several reasons, 
as follows:" 
* Page 4, second column, lines 52-53. Perhaps should be "Uses" instead of "used". 

Author response:  We agree with the reviewer. 

Author action: We removed all the grammatical errors and typos, and fixed them according to the reviewer’s 
suggestions. 

 

 

Reviewer#2, Concern # 2: Page 2, line 22 (in the abstract), mentions the acronym i.i.d. Authors should 
indicate its meaning. 
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Author response: we agree with the reviewer.  

Author action: We added a footnote on page 11 that mentions the URL link of repository containing the 
codes of the proposed algorithm. 

 

 

Reviewer#2, Concern # 5: The arrival of user queries to Web Search engines also exhibits bursty patterns; 
here is a reference should the authors decide to include it: 
https://dl.acm.org/doi/10.5555/2590084.2590085 

Author response: we absolutely agree with the reviewer that the reference is relevant with the discussion of 
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could be very different in a disaster scenario, how well do you think the proposed whole routing algorithm 
would perform in such a case? 

Author response: We agree with the reviewer that OMNs are introduced as alternative communication 
networks in challenging environments or where infrastructures of communications are not available. As we 
mentioned in page 1 that OMNs have been realized in distinct applications, including vehicular networks, 
human contact networks, and etc. Our paper, however, focused on human-centric OMNs or particularly 
mobile social networks (MSNs), where people’s mobility is impacted by their social relationships, such as in 
daily activities at campus or the workplace. As investigated by Goh and Barabasi [11], human (daily) activities 
exhibit a bursty pattern, indicated by changes in the interevent distributions. 

Author action: On page 2, line 37-43, we included a few statements that assert the scenarios for human 
mobility that served as the foundation of our investigation. 
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Author response: Based on the authors of [49] in the paper, the human movements in catastrophe or disaster 
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is unsuitable in those circumstances. In this paper, we assume that human contacts are driven by their social 
needs/interests, and as investigated by Goh and Barabasi, the intercontact times in human-based networks 
exhibit a bursty pattern. We, in turn, considered this characteristic to identify the tie (social) strength 
between two nodes (individuals) in the network. 

Author action: As suggested by the reviewer, we added a statement on page 9, line 14-16, regarding why 
catastrophe or disaster scenarios may not be appropriate to our proposed algorithm. 

 

 

Reviewer#2, Concern # 9: In case you think it is worth mentioning, please indicate a realistic scenario where 
the proposed method would work. 
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scenario of human contact networks where our proposed routing algorithm would work properly.  

 

 

Reviewer#2, Concern # 10: This question might be too naive, but here it is anyway. Why the delivery ratio is 
never 100% (in figures 13 and 14)? If you consider the answer would add value to your work, please include 
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Author response: using the simulation settings we mentioned in the paper, we run several times of all the 
algorithms. We found that even Epidemic, which theoretically is the best scheme to achieve an optimal 
delivery ratio, never attained 100% success rate due to the restricted resources of the network nodes. 
Nevertheless, one thing that is more important in this performance evaluation is that our proposed algorithm 
is capable of successfully delivering messages with a probability that is close to that of Epidemic with a less 
delivery cost (numbers of forwards).  

Author action:  as suggested by the reviewer, we added in page 15, line 25-32, the discussion of suboptimal 
of Epidemic in the delivery ratio performance as well as the effectiveness of our proposed algorithm in 
delivering messages to the destinations with fewer replicas, but it can achieve a delivery ratio approaching 
that of Epidemic. 
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ABSTRACT This article proposes FRIMF, a fuzzy routing scheme for opportunistic mobile networks 

(OMNs). In FRIMF, we exploit the pairwise intercontact times to evaluate the connection strength between 

nodes. Instead of assuming a random movement model, in the present case we consider node contact 

processes in OMNs as bursty events. Consequently, we introduce a burstiness parameter to characterize the 

variability in the dynamics of pairwise interactions. This variance metric, along with the statistical mean of 

pairwise intercontact times, is used to define a single FRIMF routing metric called closeness through a fuzzy 

inference system. This reflects the tie strength of the pair nodes. To improve the transmission environment, 

we further propose a method to develop optimal membership functions for the FRIMF’s fuzzy parameters 

based on the contact information. Particularly, we leverage the membership function elicitation techniques 

commonly used in collective opinion aggregations based on a direct rating process to establish the relevancy 

between vagueness estimates of the routing parameters and statistical distributions of the pairwise 

intercontact times in a way that eventually presents asymmetric triangular fuzzy numbers. In turn, these TFNs 

are used to properly define the fuzzy sets of the FRIMF’s routing parameters. Through simulations in the real 

human mobility environments, we show that FRIMF utilizing the enhanced asymmetric TFNs can outperform 

that using the typical symmetric TFNs developed based on our subjective preferences. Lastly, comparing 

with several algorithm benchmarks, we confirm the efficiency of FRIMF in transmission cost and delay. 

INDEX TERMS asymmetric triangular fuzzy numbers, bursty contacts, opportunistic mobile networks, 

pair connection strength

I. INTRODUCTION 

To date, opportunistic mobile networks (OMNs) [1] have 

attracted great attention from researchers for an alternative 

communication system in challenging environments; for 

example, in rural or disaster regions where the 

communication infrastructures are unavailable or damaged, 

respectively, or in areas with the communication 

infrastructures, but the network connections are inaccessible 

due to restricted or full of capacity. OMNs are an extension 

of mobile ad-hoc networks (MANETs). While in MANETs 

end-to-end paths from sources and destinations are assumed 

to exist at all the time, in OMNs links intermittently occur 

created by pairwise stochastic contacts, and consequently 

instantaneous end-to-end paths cannot be guaranteed. To 

share information or services, these networks rely on 

probabilistic encounters, leading to a considerably higher 

delivery latency than that of MANETs. Thus, information 

dissemination in OMNs being inherently delay-tolerant, and 

OMNs are an instance of delay tolerant networks (DTNs) [2]. 

Nowadays, OMNs have been realized in a variety of 

applications, including vehicular networks [3], emergency 

and disaster scenarios [4], and human contact networks [5]. 

The fast growing use of mobile devices, such as gadgets, 

smart phones, and laptops, has greatly contributed to the 

development of these systems. 

Routing in OMNs is more challenging than that in 

MANETs, and routing algorithms proposed for MANETs 

would fail in this setting. OMN routing algorithms completely 

modify the paradigm of routing in MANETs to enable 

message delivery with the nonexistence of stable paths 

between sources and destinations. The algorithms deliver 

messages to the destinations over a sequence of contact events. 
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Nonetheless, the multi-hop forwarding over such 

intermittently-connected networks possesses some challenges: 

the dynamic changes of the network’s topology, the long delay 

to obtain the network’s state data, and the cost of flooding of 

this global information, imply that routing algorithms for 

conventional networks, e.g., the Internet and MANETs, that 

rely on global knowledge are suboptimal and costly. Instead, 

routing algorithms for OMNs may use either a naïve approach 

(by increasing message replicas distributed in the network) or 

a heuristic approach (by estimating a pairwise contact 

probability based on the node’s locally available information). 

OMNs are commonly modelled as a time-varying graph G= 

(V, E), since both the edges E and the states of vertices V 

continuously vary in time. When two nodes come into contact, 

the link is established between them, and they are able to 

exchange messages. Understanding the characteristics of pair 

connections is therefore beneficial for message transfers in 

OMNs. A link prediction between OMN nodes is commonly 

calculated based on various contact metrics, such as contact 

times, contact frequency, or intercontact times. The study in 

[6], [7] revealed that real objects’ meetings exhibit a repetitive 

pattern to some extent. Yet, some studies simply assumed a 

random i.i.d. (independent-identically-distributed) model for 

contact processes in OMNs [8]. However, [9], [10] showed 

that the pairwise intermeeting time patterns in real human 

mobility cases fit power-law distributions better than 

exponential ones. Goh and Barabási [11] argued that the 

dynamics of real systems, such as earthquake patterns, gene 

expression, and human behaviours, exhibit a bursty, 

intermittent nature. The authors furthermore identified two 

distinct processes that lead to the burstiness, namely memory 

and interevent time distribution. While the memory has a 

substantial impact on the burstiness of natural events, e.g., 

earthquakes and weather patterns, the burstiness of human 

dynamics is mostly caused by changes in the interevent time 

distribution. 

In this research, we focus on human-centric OMNs, also 

referred to as mobile social networks (MSNs) [12], where 

people’s mobility is impacted by their social relationships, 

such as in daily activities at campus or the workplace, or in 

temporary events, e.g., conferences or seminars. From [11], 

we can assume that the contact patterns in such OMNs possess 

a bursty nature. We characterize the burstiness of node 

meetings based on the dynamics in pairwise intercontact time 

distribution. The distribution of pairwise intercontact times 

has been thoroughly studied under different mobility models 

in several papers [13], [14]. Moreover, the authors of [15] 

argued that the statistical mean and variance of pairwise 

intercontact times can comprehensively measure the ability of 

a link to exchange information between nodes. In this paper, 

we introduce a burstiness parameter [11] to measure the 

variation of pairwise intercontact times between OMN nodes. 

Using this variance metric along with the mean of pairwise 

intercontact times, we develop a single routing metric called 

closeness through a fuzzy inference system [16]. This 

parameter weighs the connection strength between a pair of 

nodes. According to the hill-climbing heuristic search [17], the 

proposed routing algorithm FRIMF suggests that a message 

will be transmitted to future relays with the closeness value to 

the destination is higher than that of the current node. 

To improve the transmission environment, we further 

propose a method to construct optimal membership functions 

for the FRIMF’s fuzzy parameters. Defining membership 

functions is one of the most essential tasks when evaluating 

systems or solving problems using fuzzy logic. Membership 

functions are used to define fuzzy sets of the inputs of a fuzzy 

inference system. Obviously, a more precisely defined 

membership function leads to a more accurate output or a 

more efficient fuzzy analysis system. From the literature, 

methodologies to develop membership functions can be based 

on subjective or objective information [18], [19]. In the former 

case, the subjective opinion of experts is commonly used in 

the analysis of uncertainty of events. In the latter case, 

membership functions are defined based on statistical 

distributions of the observed data. 

To date, numerous fuzzy routing schemes have been 

proposed for OMNs [20]–[24]. However, none of them 

considers statistical distributions of the routing parameters 

when defining the membership functions. Instead, the 

algorithms typically rely on the authors’ assumptions or 

estimations when analyzing the vagueness of the routing 

metrics. This paper, in contrast, discusses a method to develop 

membership functions of the FRIMF’s routing parameters 

based on statistical distributions of the pairwise intercontact 

times. To our best knowledge, FRIMF is the first OMN fuzzy 

routing algorithm that takes into account the encounter 

information when determining the membership functions of 

the routing metrics. Furthermore, we leverage the membership 

function elicitation methods typically used in collective 

opinion aggregations based on a direct rating process, e.g., in 

[25], [26], to establish the relevancy between vagueness 

estimates of the routing parameters and statistical distributions 

of the pairwise intercontact times. This eventually results in 

asymmetric triangular fuzzy numbers (TFNs), which in turn 

are used to properly define the fuzzy sets of the FRIMF’s 

routing parameters. Finally, our contributions in this paper are 

summarized as follows: 

• We introduce a concise, yet comprehensive closeness 

metric to abstract the relationship between a pair of 

nodes. This measure is derived from the burstiness 

variation and the mean of pairwise intercontact times 

through a fuzzy inference system. 

• To improve the transmission environment, we develop 

optimal membership functions for the FRIMF’s fuzzy 

parameters based on the statistical distributions of 

pairwise intercontact times. We leverage the 

membership function elicitation strategies  employed 

in group opinion aggregations based on a grading 

process in [25], [26] to produce asymmetric TFNs. 
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• According to the hill-climbing heuristic search [17], 

the proposed algorithm FRIMF (Fuzzy Routing with 

Improved Membership Functions) forwards messages 

to future relays with a higher closeness value to the 

destination than that of the current carrier. 

• In accordance with the simulation results in the ONE 

environment [27] and real human mobility scenarios, 

FRIMF using the improved asymmetric TFNs can 

outperform that utilizing the typical symmetric ones 

defined based on our subjective preferences. Finally, 

FRIMF enhances performances on delivery cost and 

latency of some given algorithm benchmarks. 

 

The rest of the paper is structured as follows: a brief 

introduction to the related literatures is given in Section II; 

FRIMF is proposed and analyzed in Section III; simulation 

results are presented and discussed in Section IV; and finally, 

Section V concludes the paper. 

 
II. RELATED WORKS 

A. PAIRWISE INTERCONTACT TIME DISTRIBUTIONS IN 

OMNs 

Early works in OMNs used a simple random walk model to 

define node movements [8]. However, recent studies reveal 

that this random model is not realistic in real mobility cases. 

The authors of [6], [7] argued that real object movements show 

a repetitive pattern to some extent. On the other hand, the 

authors of [11] and [28] observed that the dynamics of most 

real systems, such as weather and earthquake patterns, human 

behaviours, and user queries to a web search engine, exhibit a 

bursty, intermittent nature, characterized by intense activities 

over short periods of time followed by reduced or no activity 

over long periods of time. Two different processes lead to 

burstiness in the real-life settings: memory and interevent time 

distribution [11]. While memory is more dominant in the 

burstiness in natural phenomena, for human dynamics the 

bursty character is mainly due to the variations in the 

distribution of interevent times. Furthermore, the authors of 

[9], [10] revealed that the pairwise intercontact time 

distributions in human contact networks tend to fit log-normal 

distributions better than exponential ones, asserting the 

heterogeneity of contacts across any pair of nodes. 

Until now, there has been a growing interest in 

understanding the distribution of pairwise intercontact times 

in OMNs. The distribution of pairwise intercontact times have 

been thoroughly studied under different realistic mobility 

models [13], [14]. Several routing algorithms proposed for 

OMNs have exploited pairwise intercontact time distributions 

when choosing better message carriers [15], [29], [30]. The 

authors of [15] argued that properly identifying the 

distribution of pairwise intercontact times can help to improve 

message transfers between a pair of nodes. In addition, [29], 

[30] showed that intercontact times can outperform both 

duration and frequency of contacts in identifying the dynamics 

of node encounters in human contact networks. Furthermore, 

[15], [29] proposed the mean of intercontact times as a 

comprehensive metric to evaluate a pair connection strength, 

since it can reflect both the duration and frequency of the 

contacts. In this paper, we introduce a closeness metric derived 

from the mean and variance of pairwise intercontact times 

through a fuzzy inference system to evaluate the connection 

strength between OMN nodes. Here, a burstiness metric [11] 

is considered to assess the variation of pairwise intercontact 

time distributions. 

B. PROBABILISTIC ROUTING VS. FUZZY ROUTING 

ALGORITHMS 

In typical probabilistic routing schemes, a delivery 

predictability metric is established based on the historical 

encounters between a pair of nodes to indicate how likely a 

future contact will occur between them. Clearly, a higher 

delivery predictability of the two nodes indicates a better 

chance between them to meet and exchange messages. A 

message is replicated to the encountered node whenever the 

node’s delivery predictability to the destination is higher than 

that of the carrier node (Prophet [31]) or when it is higher than 

a given threshold (FairRoute [32]). By doing so, the 

algorithms can achieve a high delivery ratio as well as 

satisfying a low delivery cost. Nonetheless, such forwarding 

strategies may impose two potential issues, as follows. Firstly, 

the algorithms may result in a high message redundancy. For 

instance, Prophet always transfers a replica to the encountered 

node even though its delivery predictability (to the destination 

D) is only slightly higher than that of the current carrier. 

Secondly, on the contrary, the algorithms may cause the 

diffusion speed of replicas in the network relatively slow. For 

example, FairRoute suggests that the nodes having a delivery 

predictability higher than 0.5 are considered as good relays. 

Consequently, node A with the delivery predictability ��� =0.53 will be chosen as a good relay, but not for the case of 

node B with �	� = 0.48. The decision-making problems 

emerge in these two cases that because node preferences (as 

optimal relays) are defined by utilizing either exact numbers 

or crisp thresholds. Due to the uncertainty of information or 

lack of complete knowledge, it is hard for the OMN routing 

algorithms to express their preferences towards the 

encountered nodes based on precise values or crisp 

boundaries. Alternatively, it is easier for the algorithms to use 

fuzzy terms (linguistic labels) to describe node preferences. 

To date, a number of routing algorithms based on fuzzy 

logic have been proposed for OMNs [20]–[24]. In [23], 

routing metrics, namely distance, neighbour quantity, and 

relative velocity, were evaluated in four linguistic variables 

(TFNs) to select good relays in VDTNs. PaSS [24] uses node 

similarity metrics, both position and social similarities, and 

applies a fuzzy inference system to choose optimal message 

carriers. Similarly, FCNS [22] determines node preferences 

through fuzzy inference of social and mobile similarities. Wu 

et. al [20] proposed FDQLR that combines fuzzy logic with 
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the Q-learning algorithm to search the best route to the 

destination. Here, we introduce a closeness metric deduced 

from the fuzzy sets of the mean and variance of pairwise 

intercontact times to select optimal relays to the message 

destination. Furthermore, to enhance the routing performance, 

we propose a method to properly define the membership 

functions of the FRIMF’s routing parameters based on 

statistical distributions of the intercontact times. Nevertheless, 

none of the abovementioned fuzzy routing schemes 

considered statistical distributions of the routing parameters 

when constructing the membership functions. Instead, the 

related works typically relied on the authors’ subjectivities 

when performing such tasks. 

C. MEMBERSHIP FUNCTION ELICITATION METHODS 

Since the introduction of fuzzy sets [16], one of the main 

issues has been with the determination of membership 

functions. While in classical sets category membership is 

merely a yes-or-no choice, in fuzzy sets the idea of graded 

membership is considered when defining membership in a set. 

A membership function is used to assign a membership value 

to a fuzzy variable. The membership function essentially 

captures all fuzziness for a fuzzy set, and consequently a fuzzy 

set is entirely characterized by the membership function. 

Because of their importance, the development of these 

functions has received a lot of attention from the researchers. 

A number of methods for eliciting membership functions have 

been put out so far. Ross [18] introduced direct methods to 

construct membership functions, such as those based on 

intuition, inference, rank ordering, and inductive reasoning. 

The authors of [19], [33] discussed several practical 

techniques used in experiments with the aim of developing 

membership functions, e.g., polling, direct rating, interval 

estimation, and pairwise comparison. However, Dykhta et al. 

[34] proposed a method to build membership functions based 

on mathematical analysis in the fuzzy set theory. 

In general, methodologies to elicit membership functions 

can be based on either subjective or objective information 

[18], [35], [36]. In the former case, experts’ judgement is used 

in the analysis of uncertainty of an event. While this heuristic 

approach is simple, but it needs more knowledge or expertise 

in the particular area to produce optimal membership 

functions. On the other hand, a more rigorous technique to 

construct membership functions is based on statistical 

methods. This objective approach develops the membership 

function of a fuzzy set whose elements’ features are 

statistically known. Specifically, this strategy transforms the 

probability distribution function into a possibility distribution 

function, which in turn is used to determine a fuzzy set of the 

objective information. The relations between possibility and 

probability theories have been broadly discussed in [37]–[39]. 

Civanlar and Trussell [40] described the techniques for 

deriving optimal membership functions for some common 

probability density functions, such as uniform and Gaussian 

distribution functions. Yet, Pedrycz and Vukovich [36] 

combined the subjective opinions and the associated objective 

(experimental) data to construct the membership function of a 

fuzzy set. Tamaki et. al. [41] proposed a strategy for 

identifying membership functions based on the fuzzy 

observation data. Methods for developing membership 

functions commonly used in the case of group opinion 

aggregations based on a direct rating process have been 

proposed in [25], [26], [42]. In [42] the method generates a 

symmetric triangular fuzzy number (TFN), whose mode is 

given by the average opinion scores and the spread is 

determined by the maximum deviation of various scores from 

the mean point. In contrast, the strategies in [25], [26] build an 

asymmetric TFN whose spread is calculated separately for the 

left and right sides based on the left and right score deviations 

from the average value, respectively. Finally, the studies in 

[43] and [44] emphasized the effectiveness of asymmetric 

TFNs compared with symmetric TFNs in fuzzy decision trees 

and fuzzy regression methods, respectively, for classification 

problems. In this paper, we utilize the strategies in [25], [26] 

to develop asymmetric TFNs for the fuzzy sets of the FRIMF’s 

routing parameters with reference to the statistical 

distributions of pairwise intercontact times. 

 
III. SYSTEM MODEL DESIGN 

Designing FRIMF comprises three main tasks: calculation of 

a closeness metric by the fuzzy inference system, 

development of a method to create optimal membership 

functions for the FRIMF’s fuzzy parameters based on 

statistical contact data, and construction of the forwarding 

strategy of FRIMF. 

A. CALCULATION OF A CLOSENESS METRIC USING 

THE FUZZY INFERENCE SYSTEM 

 
 
FIGURE 1. Block diagram of the fuzzy inference system of FRIMF routing.  
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One of the main issues of routing in OMNs is how to evaluate 

a link between a pair of nodes with intermittent connections. 

Possible candidates to measure the strength of a pair 

connection include contact times, contact frequency, and 

intercontact times. Classical routing algorithms typically rely 

on a single contact metric when selecting candidate relays 

[31], [32]. However, a contact metric may be ineffective to 

thoroughly describe the relations between two nodes. Recent 

routing schemes exploit several contact metrics when 

determining optimal relays [21]–[23]. Yet, considering 

multiple contact metrics on the routing decisions clearly 

increases the algorithm’s complexity. In FRIMF, we condense 

the contact information between nodes u and v into a single 

closeness metric �,� to comprehensively describe the 

connection strength between them. This metric is calculated 

based on the mean and variance of pairwise intercontact times. 

Furthermore, we hypothesize the contact processes in social-

based OMNs possess a bursty nature. We introduce a 

burstiness parameter [11] to characterize the variation of 

pairwise intercontact time distributions, calculated as follows �,� ≡ ��� ��⁄  ������ ��⁄ ��� = �������������� (1) 

where �� and �� are the average and standard deviation of 

intercontact times �, respectively. �,� has a value in the 

bounded range of  1, −1#, for “1” is the most bursty contact 

event, and “−1” is a perfectly regular contact event between 

the two nodes. Clearly, a lower �,� is desirable since the two 

nodes can meet at a more regular interval, leading to a lower 

delay variation of information exchanges between them. 

In addition to the burstiness metric, the second parameter 

required in the calculation of �,�  is the mean of pairwise 

intercontact times, ��. This statistical parameter represents 

the average waiting time of nodes u and v to meet in the future. 

We further normalize �� using the Gaussian similarity 

function [45] as follows 

$,� = %�&'�(()( *
 (2) 

where s is a scaling parameter for intercontact times, and $,� 

has a value in the range of  0,1#. Obviously, a higher $,� is 

more preferable for message delivery, since it indicates a 

higher probability that nodes u and v encounter in the near 

future, leading to a lower average transfer delay between them. 

Finally, we employ a fuzzy inference system to determine the 

degree of closeness between nodes u and v, �,�, based on two 

distinct input variables, namely the normalized mean $,� and 

the burstiness variation �,� of the pairwise intercontact times. 

Furthermore, we adopt the Mamdani fuzzy system [46] in this 

fuzzy system due to its widespread use in various fields. The 

FRIMF’s fuzzy inference system consists of three main 

process blocks (as shown in Fig. 1): fuzzification, fuzzy 

inference, and defuzzification. In the following, we discuss the 

implementation of each component of the fuzzy evaluation 

system in detail. 

 

1) FUZZIFICATION 

In fuzzification, the values of inputs of the fuzzy system are 

converted to membership degrees of fuzzy sets using the 

membership functions. A membership function for a fuzzy 

variable x denoted µ(x) maps x to a value that quantifies the 

membership degree of x in a fuzzy set. In our fuzzification 

component, there are two distinct input variables: G and B, and 

for each variable we define three different fuzzy sets: low, 

medium, and high. As a consequence, we need to develop three 

distinct membership functions for these fuzzy sets. In the 

present case, we select triangular membership functions due to 

their low computation in mobile nodes. Additionally, we 

consider two different strategies to create the membership 

functions, namely a subjective and an objective method. In the 

former case, the triangular membership functions are 

developed based on our own preferences. For instance, in Fig. 

2 (left) and (right) we show the membership functions that 

translate the values of the normalized mean G and the 

burstiness variation B, respectively, to membership degrees in 

three different classes of symmetric triangular fuzzy numbers 

(TFNs). Indeed, these membership functions are simple and 

straightforward, as they are defined without taking into 

account the statistical distributions of G and B. In the latter 

case, however, the membership functions of the FRIMF’s 

fuzzy parameters are developed based contact data (an 

 
 

FIGURE 2. Symmetric TFNs of the FRIMF’s fuzzy parameters: normalized mean (G) and burstiness variation (B).  
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objective approach). Particularly, we establish the relevancy 

between vagueness estimates of the FRIMF’ parameters and 

statistical distributions of the pairwise intercontact times in a 

way that finally presents asymmetric triangular membership 

functions (we give the detail discussion of the proposed 

method in Section III.B). 

 

2) FUZZY INFERENCE 

The essence of fuzzy inference is determined by the fuzzy 

rules. We assume that a (encountered) node having a high 

normalized mean (G) and a low burstiness variation (B) with 

the destination is the best message carrier. Based on this 

assumption, the fuzzy if-and-then rules are developed, such as: 

• IF normalized mean G is high AND burstiness variation B 

is low, THEN node closeness C is high. 

• IF normalized mean G is medium AND burstiness 

variation B is medium, THEN node closeness C is medium. 

• IF normalized mean G is low AND burstiness variation B 

is high, THEN node closeness C is low. 

 

We list all 9 rules to enumerate all possible FRIMF’s input 

conditions in Table I. This rule set complies with our intuition 

towards the node closeness concept in OMNs when the mean 

and variance of pairwise intercontact times are considered. In 

the fuzzy inference process, we deduce all the rules in parallel 

and then combine all terms in the premise to determine the 

resulting membership. We use the min-max inference of the 

Mamdani fuzzy system, where the AND (minimization) and 

OR (maximization) operations are applied. In each rule, we 

use the fuzzy operator AND between two input variables (G, 

B), and the minimum of the two inputs’ fuzzy weights is taken 

to define the support degree of the given rule in the cumulative 

fuzzy set. Subsequently, the aggregate operator (OR) is used 

that combines the results of all the rules into a single fuzzy set. 

Finally, the aggregated result is ready for defuzzification. 

 
TABLE I 

FUZZY INFERENCE RULES 

Rules + , → - 

1 H H → M 

2 H M → H 

3 H L → H 

4 M H → L 

5 M M → M 

6 M L → M 

7 L H → L 

8 L M → L 

9 L L → L 

 

3) DEFUZZIFICATION 

The final step of the fuzzy inference system is defuzzification. 

Defuzzification is a process of deducing the membership 

degrees of a fuzzy set into a crisp value. In this case, closeness 

C as the output of the FRIMF’s fuzzy evaluation system has 

three grades: low, medium, and high. We use triangular 

membership functions for the fuzzy outputs as shown in Fig. 

3. The final fuzzy output of closeness C is generated by 

defuzzifying from the aggregated result, taking the centre of 

area (centroid) of the superimposed membership curve. The 

final (crisp) value of C* is computed as follows 

�∗ = / 0 .  1234534�0� .  60/ 1234534�0� .  60  (3) 

where µoutput(C) represents a cumulative membership function 

aggregated from the outputs of the associated rules. 

B. DEVELOPMENT OF MEMBERSHIP FUNCTIONS 

BASED ON STATISTICAL DISTRIBUTIONS OF THE 

FUZZY VARIABLES 

In this section, we discuss a technique to improve the typical 

symmetric triangular membership functions of the FRIMF’s 

fuzzy parameters in Fig. 2. The identification of membership 

functions in this section is performed by the mathematical 

procedure that establishes the relations between a possibility 

distribution and a statistical distribution of the observed 

parameter. When both a probability and a possibility 

distribution deal with some kind of uncertainty and use the 

bounded interval of [0,1] for their measures, they differ from 

each other in some sense. For instance, given the statement 

“Michael drinks X cups of coffee for his breakfast”, a variable 

X can be related with both a probability and a possibility 

distribution in dissimilar interpretations as follows. The 

possibility distribution function 78�9� can be deduced as the 

degree of ease of Michael is able to drink x cups of coffee 

during his breakfast, but the probability distribution function :8�9� can be interpreted as the likelihood that he drinks x cups 

of coffee at breakfast by observing him for 100 days. 

Furthermore, from the possibility-probability consistency 

principle by Zadeh [16], an event that has a high degree of 

possibility does not necessarily have a high degree of 

probability as well, and an event that is impossible to occur is 

certainly also improbable. Nevertheless, the consistency 

principle is not intended as an exact principle where the 

conversion between possibility and probability can be 

calculated precisely, but rather is a heuristic one that describes 

 
 
FIGURE 3. Membership functions of the FRIMF’s fuzzy inference 

system output: node closeness (C). 
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the principle relations between them. In general, the possibility 

distribution function 78�9� is determined to be numerically 

equal to the membership function ;<�9� as ∀9 ∈ ?, 78�9� ≜ ;<�9� (4) 

In the present case, the (graded) possibility distribution of 

crisp values of a variable is represented by a triangular fuzzy 

number (TFN). A fuzzy number F is a fuzzy set defined on the 

real number and is characterized by a membership function ;<: ℜ →  0,1#. It satisfies that F is normal, convex, and 

piecewise continuous. TFNs are a class of L-R fuzzy numbers 

with the membership function has a triangular form as follows 

D�E; G, �, H� = I1 − ��8��J  ,   G ≤ E ≤ �1 − 8��L��  ,   � ≤ E ≤ H0 ,             %MN%Oℎ%Q%     (5) 

A TFN is generally represented as (a,m,b), where m denotes 

the mode, which is the most possible value of the fuzzy 

number (;<��� = 1), and a and b are the left and right 

endpoints, which indicate the left and right distances to the 

mode, respectively (;<�G� = ;<�H� = 0). 

We now propose a method to construct a TFN based on the 

strategies in [25], [26] that aggregated the opinions of group 

members in a grading process. In those decision-making 

strategies, each individual in a group assessed a (surveyed) 

object in a predefined scale, and the collective opinion was 

finally obtained by aggregating the scores of all the group 

members. Due to the subjective divergence in the grading 

process, the individuals’ opinions were therefore represented 

by a fuzzy number. Chang et al. [42] utilized a TFN in a 

grading process to study an ergonomic issue related to a video 

display terminal. A group of individuals were asked to observe 

the impacts of character size against viewing distance by 

proofreading passages displayed on the screen. The judgement 

scores were given by the participants, and eventually all the 

scores were converted to a TFN. In that case, the TFN was 

assumed to have a symmetric form, whose mode (m) was 

given by the mean of all the scores, and spreads (a,b) were 

simply defined by the maximum deviation from the mean 

value. However, the authors of [25], [26] argued that the 

symmetric TFN is ineffective to detect the distribution of the 

judgement scores. Alternatively, an asymmetric TFN was 

chosen to improve the detection of the observed parameter 

distribution in the grading process. 

In light of this, for each FRIMF’s fuzzy system input we 

build an asymmetric TFN based on the strategies in [25], [26] 

as follows. Initially, we transform the statistical distribution of 

(continuous) values of the FRIMF’s input (G and B) into the 

frequency distribution of (discrete) crisp scores of a (surveyed) 

parameter in a predefined scale. As an example, in Table II we 

show a chart of the frequency distribution of the normalized 

mean G of a hypothetical contact dataset within a bounded 

range of [0,1]. We initially define the range of values in each 

bin (in this case, of 0.1), and then count how many values fall 

into each interval. Subsequently, a crisp value ER in each bin is 

determined that represents all the values within the given 

interval. Ultimately, we calculate the parameters required to 

construct an asymmetric TFN, namely mode (m), left spread 

(a), and right spread (b), based on the given frequency 

distribution of the crisp scores ER, as follows. 

At first, we discuss how to determine the mode of the TFN. 

Calculating the mode of a TFN involves finding the centre 

around which all ER gather. Moreover, the ordinary methods, 

e.g., in [26], [42], that consider statistical data to generate 

TFNs simply use the average value to define the mode value. 

Alternatively, we use the weight determination technique of 

[25] in the estimation process and take into account the 

frequency distribution of scores ER to calculate the mode of the 

TFN, as follows. To estimate the centre of ER, the pairwise 

relative distances between any values of ER are calculated. 

Afterwards, the pairwise relative distance matrix S =TURVWX×X is established with URV = ZER − EVZ, and thus URV =UVR and URR = 0. The mean of relative distances for each ER to 

all other scores EV is calculated as U̅R = ∑ URV .XV]� V̂  _∑ V̂XV]� ` −⁄ 1  (6) 

This average of relative distance U̅R measures the proximity of ER to the centre of the values. Clearly, a smaller U̅R implies ER 
is closer to the centre, and thus ER will be assigned with a 

higher weight during the calculation of mode m. To define the 

weight of ER, a pairwise comparison between ER and EV is 

computed based on their average distances as QRV = U̅R/U̅V (7) 

Next, a pairwise comparison matrix b = TQRVWX×X is defined, 

where QRV  is the relative importance of ER compared to EV, and 

this implies QRV = 1/QVR  and QRR = 1. We now need to calculate 

the weight of ER based on its pairwise comparison to any other 

score EV. Since b is achieved from pairwise distance 

comparison calculations, it is truly consistent, that is, there 

exists a coherent judgement in determining the pairwise 

comparison of the weight of ER. Suppose OR  be the actual 

weight of ER and has a value of [0,1]. Due to the consistency 

of b, we are able to define QRV  in (7) as 

 QRV = cdce ,   ∀f, g (8) 

TABLE II 

An illustrative of a frequency distribution of the normalized mean (G) of a hypothetical contact dataset 
 

Interval (G) 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

Crisp value (hi) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Freq. (ji) 39 19 35 47 10 75 45 83 106 191 
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Further, we establish k as a column vector of OR , and from (8) 

we can define bk = lk (9) 

where n and k are an eigenvalue and eigenvector of b, 

respectively. Moreover, given that ∑ ORXR]� = 1, k is then 

solved, where the weight of ER is calculated as follows OR = �∑ medneop ,      f = 1, … , l (10) 

with OR  represents the significant degree of ER in the 

calculation of the mode m. Finally, the mode m of the TFN is 

defined as � = ∑ ORERXR]�  (11) 

After obtaining the mode m, we now need to compute the 

spreads of the fuzzy number, that is the left (a) and right (b) 

endpoints of the TFN. The calculation initially requires the 

knowledge of deviation (σ) of the fuzzy number. From [25], 

the mean deviation of a TFN (a,m,b) is typically calculated as 

� = / |8��|.1s�8�68tu / 1s�8�68tu  (12) 

For ;<�E� be a triangular membership function, (12) can be 

solved as 

� = ���J�(��L���(v�L�J�  (13) 

Let φ be the fraction between the left and right spreads as  w = ��JL�� (14) 

From (13) and (14), the left (a) and right (b) endpoints of the 

TFN are solved as G = � − v���x�x���x(  (15) 

H = � + v���x����x(  (16) 

To calculate a and b, both � and φ are required to be known at 

first. An approximation strategy is then used to solve these 

parameters. Firstly, to approximate �, a mean deviation s is 

computed from the given scores ER and their respective 

weights OR  as � ≈ N = ∑ ORXR]� |ER − �| (17) 

Secondly, φ is calculated as follows: to approximate the left 

(a) and right (b) endpoints of the TFN, we initially define E{ 
and Em be the weighted mean of the scores ER that are below 

and above m, respectively, at the α– cut (see Fig. 4). Moreover, 

let |� = }f|ER < �, f ∈ �� 

and |� = }f|ER > �, f ∈ �� 

 

for � = }1, … , l�, the computation of E{ and Em are given as E{ = ∑    cd8dd∈��∑       cdd∈��  (18) 

Em = ∑    cd8dd∈��∑        cdd∈��  (19) 

since E{ and Em are defined at the same α–level, from (14) φ 

can be approximated as 

w� = ��8�8��� (20) 

 
 
FIGURE 4. The left and right spreads of a TFN (a,m,b) at α-level. 

 
 
FIGURE 5. Frequency distributions of the discrete (crisp) values of the normalized mean (G) and burstiness parameter (B) of pairwise 

intercontact times in the Haggle dataset. 
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Finally, we apply the proposed membership function 

elicitation method on realistic node mobility scenarios. In the 

present study, we consider two real human contact datasets, 

namely Haggle [47] and Reality [48], which represent the 

short-term and long-term human behaviours in their social 

environments, respectively. The Haggle dataset recorded the 

contact events of 41 participants of the 2005 Infocomm 

conference lasted for 3 days in Miami, USA. However, the 

Reality trace captured the mobility of 97 students and staffs in 

the MIT campus during an academic year. In general, our 

proposed method works in any human mobility model as long 

as the node contacts follow certain probability distributions 

reflecting their social relationships. However, this is not the 

case for catastrophe or disaster scenarios, where human 

movements are sporadic and frequently random [49]. 

To build TFNs for the FRIMF’s fuzzy parameters (G and 

B), we firstly need to know the frequency distributions of the 

normalized mean and burstiness variation of pairwise 

intercontact times, respectively, for each contact dataset. 

Using a data mining technique, we gather information of 

pairwise intercontact times from all nodes across the given 

dataset. Using this knowledge, we calculate the burstiness 

metric (B) and the normalized mean (G) for each pair of nodes 

in the dataset using (1) and (2), respectively. Afterwards, we 

construct Table II for each parameter by initially defining the 

bin interval and next counting how many values fall into each 

bin. After the binning process, we portray the frequency 

distributions of the discrete (crisp) values of $R and �R  for 

Haggle and Reality in Figs. 5 and 6, respectively (in this case, 

we use the bin interval of 0.1 for both G and B distributions). 

From Figs. 5 (left) and 6 (left), we notice that both the 

datasets exhibit almost a similar characteristic in terms of the 

statistical mean distribution. Particularly, the number of nodes 

having a high normalized mean of intercontact times with their 

peers is large in both the datasets. In other words, in both the 

mobility scenarios many individuals have very close 

relationships with their mates/colleagues (shown by a high 

value of G or a low average intercontact time). However, if we 

notice the frequency distributions of the burstiness variation in 

Haggle and Reality in Figs. 5 (right) and 6 (right), respectively, 

it is clear that the contact events possess a bursty nature, 

indicated by the majority of B values are larger than zero. This 

also agrees with the work in [11] that confirmed the bursty 

characteristic in the interevent distribution in human 

dynamics. 

Based on the frequency distributions of the normalized 

mean and the burstiness variation of pairwise intercontact 

times in Figs. 5 and 6, we construct TFNs for both G and B in 

Haggle and Reality, respectively. We use the estimation 

method that exploits the weight determination technique of 

(6)-(20) to calculate the mode (m) and the spreads (a,b) of the 

TFN for G and B for each contact dataset. Finally, we show 

 
 
FIGURE 6. Frequency distributions of the discrete (crisp) values of the normalized mean (G) and burstiness parameter (B) of pairwise 
intercontact times in the Reality dataset.  

 
 

FIGURE 7. Asymmetric TFNs of the FRIMF’s fuzzy parameters: normalized mean (G) and burstiness variation (B) in the Haggle dataset 
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the obtained asymmetric TFNs (in solid black lines) for G and 

B in Figs. 7 and 8 for Haggle and Reality, respectively. These 

TFNs are fuzzy sets that represent the (graded) possibility 

distributions of G and B in the given dataset. We next 

categorize these TFNs as the fuzzy set of a medium (or 

ordinary) class. Given that we defined three classes for each 

FRIMF’s fuzzy system input (low, medium, and high) in the 

previous section, we now need to create the remaining ones. 

We determine the fuzzy sets for the low and high classes using 

the definition in [41], as follows. Let �R and �R�� be adjoining 

two fuzzy sets with an overlapped area (where �R and �R�� are 

defined in the real number ℜ). Therefore, for  ∀E ∈ �R ∩ �R��, ;R�E� + ;R���E� = 1 (21) 

holds, where ;R�E� and ;R���E� represents the membership 

degree of a variable E in the fuzzy sets f and f + 1, 

respectively. Since the fuzzy set of the medium class has 

already been known, we can easily define the fuzzy sets of the 

low and high classes using (21). As a result, we show the 

attained fuzzy sets of the low (in green dashed lines) and high 

(in red dotted lines) classes for both G and B in Figs. 7 and 8 

for Haggle and Reality, respectively. In Section IV.1., we will 

examine the delivery performance of FRIMF using the typical 

symmetric TFNs in Fig. 2 compared to that of FRIMF utilizing 

the enhanced asymmetric TFNs in Figs. 7 and 8 for Haggle 

and Reality, respectively. 

C. CONSTRUCTION OF THE FRIMF FORWARDING 

STRATEGY 

We now arrive at the final part of designing the FRIMF 

routing algorithm. Here, we discuss how a message is relayed 

hop-by-hop from the source to the destination effectively. To 

achieve this goal, a hill-climbing heuristic search is applied, 

where in each hop the routing algorithm greedily maximizes 

the utility function (i.e., the closeness to the destination) based 

on the node’s local knowledge. That is, when a contact occurs, 

the current node A calculates its closeness value to the 

destination D, and forwards its (copy) message to the peer B 

only when the B’s closeness value is higher than A’s (�	,� >��,�). Furthermore, to improve the heuristic routing 

performance, we add two properties in the forwarding 

decisions, namely social transitivity [50] and delegation 

forwarding [51]. 

Firstly, we exploit the transitive property of social networks 

to increase the message delivery likelihood in the network. 

When node A has a strong relationship with node B, and B has 

a high correlation with D, then A is more likely to be a good 

relay of messages destined for D. Equation (22) below shows 

how the transitivity now affecting the calculation of the 

closeness of A towards D, with β ∈ [0,1] controls the impact 

of transitivity in the overall computation. ��,� = ��,� + _1 − ��,�`. ��,	  . �	,�  . � (22) 

Secondly, to decrease the number of message copies 

distributed in the network, we apply the delegation forwarding 

(DF) [51] on the FRIMF’s routing decisions. DF implements 

the optimal stopping theorem from the probability theory. We 

briefly discuss how DF works based on a simple scenario in 

Fig. 9, as follows. Node S (source) initially produces a new 

message M with the forwarding threshold (FT) is set to “0”. 

During its mobility, S meets node G. Since the G’s closeness 

value (��,�=0.5) is higher than S’s (��,�=0.3), S then updates 

the M’s FT value with the G’s closeness value and promptly 

sends a copy of M to G. In the subsequent contact, S 

encounters A whose closeness value (��,�=0.4) is higher than 

that of S. However, S does not forward the message to A, since 

 
 
FIGURE 8. Asymmetric TFNs of the FRIMF’s fuzzy parameters: normalized mean (G) and burstiness variation (B) in the Reality dataset 

 
 
FIGURE 9. A brief scenario of Delegation Forwarding 
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the A’s closeness value is lower than the FT value of M. Lastly, 

S has a contact with node K whose closeness value (��,�=0.6) 

is higher than both the S’s closeness value and the M’s 

forwarding threshold. S then updates the M’s FT value with 

the K’s closeness value and transfers the message to K. 

To summarize how FRIMF works, we construct Algorithm-

1 to describe our proposed scheme in detail.1 During the 

warm-up time, each node in the network records its contact 

history with its peer nodes. When the training phase 

terminates, the node calculates the normalized mean (G) and 

the burstiness variation (B) for each previously contacted 

node. Through the fuzzy evaluation system in Fig. 1 and also 

considering the given TFNs for both FRIMF’s parameters in 

the particular contact dataset, the node infers its closeness 

degree to each peer. During the forwarding phase, when a 

contact occurs, the node computes its closeness value to the 

(message) destination using (22), and then exchanges this 

value to the encountered node. When the peer’s closeness 

value is higher than both the current node’s closeness value 

and the message’s forwarding threshold value, the current 

node promptly replicates the message to the peer. 

 

 

Algorithm 1. The FRIMF forwarding scheme (node A) 

 

Input: TFNG , TFNB for the given contact dataset 

 

The warm-up phase: 

Begin 

 collect enough information about the pairwise intercontact 

times with all peers; 

 For (each peer) do 

 compute GA,peer and BA,peer ; 

 compute CA,peer = fuzzy (GA,peer, TFNG, BA,peer, TFNB); 

 End for 

End 

 

The message forwarding phase: 

when a contact occurs with node B, and A decides to forward 

a message M destined for D; 

Begin 

 send CA,D ; 

 receive CB,D; 

 update CA,D based on the knowledge of CB,D; 

 If ((CB,D > CA,D) Λ (CB,D > FTM)) then 

 update FTM with CB,D; 

 sends a copy of M to the peer B; 

 End if 

End 

  

 
IV. SIMULATION RESULTS AND DISCUSSION 

                                                 
1 For the detail implementation of FRIMF in the ONE simulator, please 

refer to https://github.com/soelistijanto/FRIMF 

A. PERFORMANCE EVALUATION OF THE FRIMF 

ALGORITHM 

This section focuses on comparing the delivery performance 

of FRIMF when the routing parameters are fuzzified using the 

symmetric TFNs in Fig. 2 to that when the parameters are 

fuzzified using the asymmetric TFNs in Figs. 7 or 8, 

depending on the chosen contact dataset. For simulations, we 

adopt the ONE simulator [27] and real human mobility 

scenarios, namely Haggle [47] and Reality [48]. In these 

simulations, the number of nodes and the duration of 

simulation time vary depending on the mobility settings: we 

use 41 nodes with the simulation time of 3 days for Haggle, 

but for Reality we consider 97 nodes with the simulation 

period of 16 weeks. In order to provide an opportunity for 

nodes to gather the information of pairwise intercontact times 

with all the peers in the network, 30 percent of the simulation 

time is used as a warm-up phase. The buffer size of nodes and 

the size of messages are set to 20MB and 10kB, respectively. 

Each node generates messages to uniformly, randomly chosen 

destinations at a rate of 3 messages per hour for all scenarios, 

and for each new created message the time-to-live (TTL) is set 

to 6 hours and 1 week for Haggle and Reality, respectively. 

Finally, we concentrate on the following evaluation metrics 

for FRIMF’s performance analysis: 

- Delivery ratio: the fraction of total delivered messages to 

the number of messages created during the simulation 

time. 

- Average latency: the mean time from the creation of a 

message in the source until the forwarding it to the 

destination. 

- Overhead ratio: the cost to successfully transfer a 

message to the destination, calculated as the total 

forwarded (message) copies divided by the total 

delivered messages. 

- Total forwards: the total number of replicas created and 

forwarded during the node contacts throughout the 

simulation time. 

 

Before we investigate the delivery performance of FRIMF, 

we firstly discuss the characteristic of closeness (C) as the 

output of the FRIMF’s Mamdani fuzzy inference system with 

two different input variables: normalized mean (G) and 

burstiness variation (B). Using the MATLAB’s function 

gensurf, we portray the output surface of closeness in Fig. 10 

for two distinct cases: the first one is FRIMF when the input 

parameters are fuzzified using the typical symmetric TFNs in 

Fig. 2 (hereafter, we refer to this as symmetric–TFN), and the 

other one is that when the fuzzification uses the improved 

asymmetric TFNs in Figs. 7 and 8 for Haggle and Reality, 

respectively (hereafter, we call this asymmetric–TFN). From 

Fig. 10, we notice that in the case of asymmetric–TFNs, the 

closeness (C) is very low and is insensitive with the change of 

burstiness variation (B) when the normalized mean (G) is less 
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than 0.4 in both mobility scenarios. However, for all the cases 

(both symmetric–TFN and asymmetric–TFN), the closeness 

reaches its highest value when the normalized mean is high 

and the burstiness variation is low (B < 0). In other words, the 

tie strength between two nodes is high whenever the average 

separation time between consecutive contacts is low (indicated 

by a high value of G) and the contacts follow a more regular 

pattern (represented by a negative value of B). Subsequently, 

the impact of considering symmetric and asymmetric TFNs in 

the calculation of closeness (C) is investigated in terms of 

FRIMF’s delivery performances, as follows. 

 

 
 
FIGURE 10. Output surfaces of closeness (C) derived from the FRIMF’s Mamdani fuzzy inference system with two input variables: 
normalized mean (G) and burstiness variation (B), for two different cases: symmetric and asymmetric TFNs (Haggle and Reality)    

 

 
 
FIGURE 11. Delivery performances of FRIMF, comparing symmetric-TFN and asymmetric-TFN in four evaluation metrics in Haggle  
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We discuss the performance of FRIMF according to the 

provided evaluation metrics. In Figs. 11 and 12, we plot the 

delivery performance changes of symmetric–TFN versus 

asymmetric–TFN as the number of node contacts increasing 

in Haggle and Reality, respectively. From the figures, we 

observe almost similar performances of both schemes in terms 

of delivery ratio and average latency in the given mobility 

scenarios. In Haggle, both symmetric–TFN and asymmetric–

TFN are able to deliver the messages to the destinations in 

about the same success rate; yet, asymmetric–TFN performs 

somewhat better in Reality. Additionally, we also see slight 

variations in the delivery latency of the two schemes in both 

mobility schemes, suggesting that both of them are able to 

maintain roughly a similar delivery time. In contrast, we notice 

clear performance differences between symmetric–TFN and 

asymmetric–TFN in terms of delivery cost, evaluated in 

overhead ratio and total forwards, in both Haggle and Reality. 

In this case, asymmetric–TFN can significantly reduce the 

number of copies forwarded during the node contacts, 

indicated by a lower total forwards. With the low number of 

forwards combined with a delivery ratio that is as high as that 

of symmetric–TFN, asymmetric–TFN is thus superior to 

symmetric–TFN in the overhead ratio performance. This 

demonstrates the effectiveness of FRIMF with asymmetric 

TFNs in transmitting messages to the intended recipients. 

Thanks to the improved asymmetric TFNs, the routing 

algorithm carefully selects a small number of optimal carriers 

that can quickly transfer the messages to the final targets. To 

sum up the discussion, Table III compares the benefits and 

drawbacks of the subjective approach with those of the 

objective technique for developing membership functions for 

the FRIMF fuzzy parameters. 

B. COMPARING FRIMF WITH OTHER ALGORITHMS 

In this section, we benchmark FRIMF against other OMN 

routing schemes. For this purpose, we consider Prophet [31], 

FuzzyCom [52] and Epidemic [53]. We choose Prophet 

because of several reasons, as follows: first, Prophet is a 

classical, but prominent probabilistic routing scheme for 

OMNs; second, both Prophet and FRIMF use a single routing 

metric derived from contact statistics to define the connection 

strength between a pair of nodes; finally, we need a fair 

 

 
 

FIGURE 12. Delivery performances of FRIMF, comparing symmetric-TFN and asymmetric-TFN in four evaluation metrics in Reality.   

TABLE III 

Pros and cons of the subjective approach vs. the objective approach of the membership function elicitation methods in FRIMF 
 

 Subjective approach 

(symmetric-TFN) 

Objective approach 

(asymmetric-TFN) 

Methods simple, straightforward using mathematical procedures 

Required prior knowledge our assumptions/subjective preferences statistical distributions of the pairwise intercontact 

times 

Challenges in real-life OMN 

settings 

no/less effort a non-trivial task in collecting pairwise contact data 
from all the mobile nodes  

Routing performances less efficient (a larger number of forwards) more efficient (fewer created replicas) 
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performance comparison between routing decisions based on 

probability measures (Prophet) and those based on fuzzy terms 

(FRIMF). Subsequently, to have a reasonable benchmark with 

other fuzzy routing algorithms, we select FuzzyCom for the 

following reasons: first, like FRIMF, FuzzyCom merely uses 

encounter data as the input variables of the fuzzy inference 

system; second, while FRIMF only takes into account a single 

contact metric, namely intercontact times, to determine the 

closeness degree of a pair of nodes, FuzzyCom considers a 

number of contact metrics, including frequency contact, 

intercontact times, and longest contact separation; thus, we can 

investigate the performance differences of utilizing one 

contact metric against using numerous contact metrics; third, 

FuzzyCom ignores the contact information when defining the 

 

 
 

FIGURE 13. Delivery performances of FRIMF compared with those of the given benchmarks in four evaluation metrics in Haggle.   

 

 
 
FIGURE 14. Delivery performances of FRIMF compared with those of the given benchmarks in four evaluation metrics in Reality.   
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membership functions and simply uses symmetric TFNs for 

its routing metrics (subjective approach), while FRIMF uses 

asymmetric TFNs derived from the statistical distributions of 

intercontact times (objective method); finally, both FuzzyCom 

and FRIMF apply delegation forwarding (DF) in order to 

reduce the replicas forwarded during the node contacts. Lastly, 

in addition to Prophet and FuzzyCom, we also consider the 

flooding-based strategy Epidemic as the benchmark, since 

theoretically it has the best performance in terms of delivery 

ratio and latency when the network resources are supposed to 

be unlimited. 

We now discuss the delivery performance of FRIMF 

compared with that of the given benchmarks in the Haggle and 

Reality scenarios. For FRIMF, we only consider in the case of 

asymmetric–TFN. For simulations, we use the ONE simulator 

with the simulation settings similar to those in the previous 

section. For each algorithm, we run the simulations 5 times 

with different random seeds for both mobility scenarios. We 

eventually present in Figs. 13 and 14, for Haggle and Reality, 

respectively, the delivery performances of FRIMF and its 

benchmarks evaluated in the given evaluation metrics. In 

terms of delivery ratio, we see that FRIMF can maintain 

performance levels that are fairly comparable to those of 

Prophet and FuzzyCom in both scenarios, whereas Epidemic 

excels in this performance metric (yet, Epidemic as a flooding-

based strategy never achieves its ideal performance of 100% 

success rate in these circumstances due to the restricted 

resources of the network nodes). However, heuristic-based 

routing techniques, such as Prophet, FuzzyCom, and FRIMF, 

are capable of successfully delivering the messages with a 

probability that is close to that of Epidemic. 

Furthermore, FRIMF performs better than Prophet and 

FuzzyCom in terms of delivery delay in Haggle; yet, in Reality 

FRIMF slightly increases the delivery times beyond those of 

Epidemic and Prophet. However, FRIMF outperforms all the 

benchmarks in terms of delivery cost, as determined by the 

overhead ratio and total forwards. FRIMF produces the fewest 

total copies forwarded during node interactions while 

maintaining the delivery success rate at levels that are 

somewhat similar to the benchmarks. As a result, FRIMF 

retains the lowest overhead ratio in both scenarios. In 

particular, when contrasted with Prophet, this shows that the 

fuzzy-based routing decisions of FRIMF are superior to the 

probabilistic routing decisions made by Prophet. This implies 

that the FRIMF’s fuzzy inferences are more effective than the 

Prophet’s probabilistic estimates at determining the strength 

of pair connections, thus enabling FRIMF to choose fewer 

optimal carriers for a given destination. Finally, the use of DF 

to lower the number of replicas has a little impact on the 

FRIMF’s overall delivery performances, as it can keep both 

the delivery ratio and delay that are on par with those of 

Prophet. 

Finally, when compared to FuzzyCom, the superior 

performance of FRIMF can be analyzed in several viewpoints, 

as follows. First, it demonstrates that a single contact metric, 

namely intercontact times, which is used by FRIMF, can 

outperform multiple encounter metrics used by FuzzyCom in 

defining the connection strength between a pair of nodes. This 

is further supported by the findings in [29], [30] which showed 

that intercontact times can surpass both duration and 

frequency contacts in assessing the dynamics of human 

relations in OMNs. Second, opposed to FuzzyCom, which 

uses the symmetric TFNs to fuzzify its routing parameters, 

FRIMF can more effectively transport the messages to the 

destinations thanks to the use of the asymmetric TFNs 

developed based on the contact information. This again 

verifies that the objective strategy of developing membership 

functions for the routing parameters indeed improves the 

delivery performance of OMN fuzzy routing algorithms. 

Lastly, it is evident that the usage of delegation forwarding 

(DF) in FuzzyCom and FRIMF can reduce the total forwards 

below those of Epidemic and Prophet. Nevertheless, this 

considerable drop in delivery cost has less of an impact on 

FRIMF, allowing it to rise the delivery ratio and latency 

performances beyond those of FuzzyCom. 

 
V. CONCLUSIONS 

The fuzzy routing scheme called FRIMF was proposed in this 

paper. It takes advantage of node closeness to select the most 

suitable message carriers for a particular destination. A fuzzy 

inference system was used to determine the strength of a pair 

connection based on the normalized mean and burstiness 

variation of pairwise intercontact times. In order to enhance 

the transmission environment, we further developed a method 

to create optimal membership functions for the FRIMF’s 

fuzzy parameters based on statistical distributions of the 

pairwise intercontact times. Eventually, asymmetric TFNs 

were obtained, and these were then employed to properly 

characterize the fuzzy sets of the FRIMF’s parameters. 

Simulation results, which were based on real human contact 

traces, showed that the asymmetric TFNs can improve the 

delivery performance of FRIMF with the typical symmetric 

TFNs defined based on our subjective preferences. Finally, 

FRIMF outperformed the given algorithm benchmarks in 

terms of delivery cost and latency. 

ACKNOWLEDGMENT 

Author thanks our student, Afra Rian Yudianto, for providing 

the Java codes of FRIMF in the ONE simulator. 

REFERENCES 
[1] Y. Cai, H. Zhang, Y. Fan, and H. Xia, “A survey on routing 

algorithms for opportunistic mobile social networks,” China 

Commun., vol. 18, no. 2, pp. 86–109, 2021. 
[2] “Delay tolerant networking research group (dtnrg).” [Online]. 

Available: https://irtf.org/concluded/dtnrg. [Accessed: 17-Aug-

2021]. 
[3] S. M. Tornell, C. T. Calafate, J. C. Cano, and P. Manzoni, “DTN 

protocols for vehicular networks: An application oriented 

overview,” IEEE Commun. Surv. Tutorials, vol. 17, no. 2, pp. 868–
887, 2015. 

[4] S. Basu, S. Roy, S. Bandyopadhyay, and S. Das Bit, “A utility 

driven post disaster emergency resource allocation system using 

soeli
Highlight

soeli
Highlight

soeli
Highlight

soeli
Highlight

soeli
Highlight



 

VOLUME XX, 2017 16 

DTN,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 50, no. 7, pp. 
2338–2350, 2020. 

[5] J. Wu and Y. Wang, “Hypercube-Based Multipath Social Feature 

Routing in Human Contact Networks,” IEEE Trans. Comput., vol. 
63, no. 2, pp. 383–396, 2014. 

[6] H. Barbosa et al., “Human mobility: models and applications,” 

Phys. Rep., vol. 734, pp. 1–74, 2018. 
[7] H. A. Nguyen and S. Giordano, “Context information prediction 

for social-based routing in opportunistic networks,” Ad Hoc 

Networks, vol. 10, no. 8, pp. 1557–1569, 2012. 
[8] T. Li, S. T. Kouyoumdjieva, G. Karlsson, and P. Hui, “Data 

collection and node counting by opportunistic communication,” in 

2019 IFIP Networking Conference (IFIP Networking), 2019, pp. 
1–9. 

[9] E. Hernández-Orallo, J. C. Cano, C. T. Calafate, and P. Manzoni, 

“New approaches for characterizing inter-contact times in 
opportunistic networks,” Ad Hoc Networks, vol. 52, pp. 160–172, 

2016. 

[10] P. Pirozmand, G. Wu, B. Jedari, and F. Xia, “Human mobility in 
opportunistic networks: Characteristics, models and prediction 

methods,” J. Netw. Comput. Appl., vol. 42, pp. 45–58, 2014. 

[11] K.-I. Goh and A.-L. Barabási, “Burstiness and memory in complex 
systems,” {EPL} (Europhysics Lett., vol. 81, no. 4, p. 48002, Jan. 

2008. 

[12] B. Soelistijanto and V. Ayu, “Improving Traffic Load Distribution 
Fairness in Mobile Social Networks,” Algorithms, vol. 15, no. 7, 

2022. 
[13] A. Passarella and M. Conti, “Analysis of Individual Pair and 

Aggregate Intercontact Times in Heterogeneous Opportunistic 

Networks,” IEEE Trans. Mob. Comput., vol. 12, no. 12, pp. 2483–
2495, 2013. 

[14] F. Cravo and T. Nowak, “Towards a Fast and Accurate Model of 

Intercontact Times for Epidemic Routing,” CoRR, vol. abs/2104.0, 
2021. 

[15] F. Li and J. Wu, “LocalCom: A community-based epidemic 

forwarding scheme in disruption-tolerant networks,” 2009 6th 
Annu. IEEE Commun. Soc. Conf. Sensor, Mesh Ad Hoc Commun. 

Networks, SECON 2009, 2009. 

[16] L. Zadeh and R. Aliev, Fuzzy Logic Theory and Applications: Part 
I and Part II. 2018. 

[17] Y. Bykov and S. Petrovic, “A Step Counting Hill Climbing 

Algorithm applied to University Examination Timetabling,” J. 
Sched., vol. 19, no. 4, pp. 479–492, 2016. 

[18] T. J. Ross, “Historical Methods of Developing Membership 

Functions,” in Fuzzy Logic with Engineering Applications, John 
Wiley & Sons, Ltd, 2016, pp. 163–200. 

[19] A. Sancho-Royo and J. L. Verdegay, “Methods for the 

Construction of Membership Functions,” Int. J. Intell. Syst., vol. 
14, no. 12, pp. 1213–1230, Dec. 1999. 

[20] J. Wu, F. Yuan, Y. Guo, H. Zhou, L. Liu, and M. McGuire, “A 

Fuzzy-Logic-Based Double Q-Learning Routing in Delay-Tolerant 
Networks,” Wirel. Commun. Mob. Comput., vol. 2021, Jan. 2021. 

[21] K. Sabeetha, A. Vincent Antony Kumar, R. S. D. Wahidabanu, and 

W. A. M. Othman, “Encounter based fuzzy logic routing in delay 
tolerant networks,” Wirel. Networks, vol. 21, no. 1, pp. 173–185, 

2015. 

[22] K. Liu, Z. Chen, J. Wu, and L. Wang, “FCNS: A fuzzy routing-
forwarding algorithm exploiting comprehensive node similarity in 

opportunistic social networks,” Symmetry (Basel)., vol. 10, no. 8, 

2018. 
[23] M. A. Rahimi, S., Jabraeil Jamali, “A hybrid geographic-DTN 

routing protocol based on fuzzy logic in vehicular ad hoc 

networks,” Peer-to-Peer Netw. Appl., vol. 12, pp. 88–101, 2019. 
[24] K. Jang, J. Lee, S. K. Kim, J. H. Yoon, and S. B. Yang, “An 

adaptive routing algorithm considering position and social 

similarities in an opportunistic network,” Wirel. Networks, vol. 22, 
no. 5, pp. 1537–1551, 2016. 

[25] C. Bin Cheng, “Group opinion aggregation based on a grading 

process: A method for constructing triangular fuzzy numbers,” 
Comput. Math. with Appl., vol. 48, no. 10–11, pp. 1619–1632, 

2004. 

[26] A. Amini and N. Nikraz, “A method for constructing non-isosceles 

triangular fuzzy numbers using frequency histogram and statistical 
parameters,” J. Soft Comput. Civ. Eng., vol. 1, no. 1, pp. 65–85, 

2017. 

[27] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for 
DTN Protocol Evaluation,” in Proceedings of the 2nd International 

Conference on Simulation Tools and Techniques, 2009. 

[28] I. Subašić and C. Castillo, “Investigating Query Bursts in a Web 
Search Engine,” Web Intelli. Agent Sys., vol. 11, no. 2, pp. 107–

124, Apr. 2013. 

[29] G. Luo, J. Zhang, H. Huang, K. Qin, and H. Sun, “Exploiting 
intercontact time for routing in delay tolerant networks,” Trans. 

Emerg. Telecommun. Technol., vol. 24, no. 6, pp. 589–599, 2013. 

[30] K. Wei, R. Duan, G. Shi, and K. Xu, “Distribution of inter-contact 
time: An analysis-based on social relationships,” J. Commun. 

Networks, vol. 15, no. 5, pp. 504–513, 2013. 

[31] S. G. A. Lindgren, A. Doria, E. Davies, “Probabilistic Routing 
Protocol for Intermittently Connected Networks,” 2012. 

[32] J. M. Pujol, A. L. Toledo, and P. Rodriguez, “Fair routing in delay 

tolerant networks,” Proc. - IEEE INFOCOM, pp. 837–845, 2009. 
[33] T. Bilgiç and I. B. Türk\csen, “Measurement of Membership 

Functions: Theoretical and Empirical Work,” in Fundamentals of 

Fuzzy Sets, D. Dubois and H. Prade, Eds. Boston, MA: Springer 
US, 2000, pp. 195–227. 

[34] L. Dykhta, N. Kozub, A. Malcheniuk, O. Novosadovskyi, A. 

Trunov, and A. Khomchenko, “Construction of the method for 
building analytical membership functions in order to apply 

operations of mathematical analysis in the theory of fuzzy sets,” 
Eastern-European J. Enterp. Technol., vol. 5, no. 4 (95), pp. 22–29, 

2018. 

[35] T. D. Pham and S. Valliappan, “Constructing the Membership 
Function of a Fuzzy Set with Objective and Subjective 

Information,” Comput. Civ. Infrastruct. Eng., vol. 8, no. 1, pp. 75–

82, 1993. 
[36] W. Pedrycz and G. Vukovich, “On elicitation of membership 

functions,” IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans, 

vol. 32, no. 6, pp. 761–767, 2002. 
[37] B. Kovalerchuk, “Relationships between probability and 

possibility theories,” Stud. Comput. Intell., vol. 683, pp. 97–122, 

2017. 
[38] D. Dubois and H. Prade, “Practical Methods for Constructing 

Possibility Distributions,” Int. J. Intell. Syst., vol. 31, no. 3, pp. 

215–239, 2016. 
[39] M. Oussalah, “On The Probability/Possibility Transformations:A 

Comparative Analysis,” Int. J. Gen. Syst., vol. 29, no. 5, pp. 671–

718, 2000. 
[40] M. R. Civanlar and H. J. Trussell, “Constructing membership 

functions using statistical data,” Fuzzy Sets Syst., vol. 18, no. 1, 

pp. 1–13, 1986. 
[41] F. Tamaki, A. Kanagawa, and H. Ohta, “Identification of 

membership functions based on fuzzy observation data,” Fuzzy 

Sets Syst., vol. 93, no. 3, pp. 311–318, 1998. 
[42] S. A. Chang, P. T. ; Lee, E. S.; Konz, “Applying fuzzy linear 

regression to VDT legibility,” Fuzzy Sets Syst., vol. 80, no. 2, 

1996. 
[43] J. F. Baldwin and S. B. Karale, “Asymmetric triangular fuzzy sets 

for classification models,” Lect. Notes Artif. Intell. (Subseries 

Lect. Notes Comput. Sci., vol. 2773 PART, pp. 364–370, 2003. 
[44] H. Ishibuchi and M. Nii, “Fuzzy regression using asymmetric fuzzy 

coefficients and fuzzified neural networks,” Fuzzy Sets Syst., vol. 

119, no. 2, pp. 273–290, 2001. 
[45] U. Von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., 

vol. 17, no. 4, pp. 395–416, 2007. 

[46] E. H. Mamdani, “Application of fuzzy logic to approximate 
reasoning using linguistic synthesis,” IEEE Trans. Comput., vol. 

C–26, no. 12, pp. 1182–1191, 1977. 

[47] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau, 
“CRAWDAD dataset cambridge/haggle (v.2009-05-29),” 

CRAWDAD Wirel. Netw. data Arch., 2009. 

[48] N. Eagle and A. (Sandy) Pentland, “Reality Mining: Sensing 
Complex Social Systems,” Pers. Ubiquitous Comput., vol. 10, no. 

4, pp. 255–268, Mar. 2006. 

[49] N. Aschenbruck, E. Gerhards-Padilla, and P. Martini, “Modeling 



 

VOLUME XX, 2017 17 

Mobility in Disaster Area Scenarios,” Perform. Eval., vol. 66, no. 
12, pp. 773–790, Dec. 2009. 

[50] S. Wasserman and K. Faust, “Structural balance and transitivity,” 

Soc. Netw. Anal., pp. 220–248, 2012. 
[51] V. Erramilli, M. Crovella, A. Chaintreau, and C. Diot, “Delegation 

forwarding,” Proc. Int. Symp. Mob. Ad Hoc Netw. Comput., pp. 

251–259, 2008. 
[52] F. Li, Y. Yang, J. Wu, and X. Zou, “Fuzzy closeness-based 

delegation forwarding in delay tolerant networks,” Proc. - 2010 

IEEE Int. Conf. Networking, Archit. Storage, NAS 2010, pp. 333–
340, 2010. 

[53] D. Vahdat, Amin; Becker, “Epidemic routing for partially-

connected ad hoc networks,” Durham, 2000. 
 

 
 

 

Bambang Soelistijanto received the B.S. 

degree and the M.S. degree both in electrical 

engineering from Gadjah Mada University, 

Indonesia, in 1993 and from Delft University of 

Technology (TU Delft), the Netherlands, in 2007, 

respectively. He obtained the Ph.D. degree in 

electrical engineering at University of Surrey, UK, 

in 2014. He is currently a senior lecturer with the 

Department of Informatics, Sanata Dharma 

University, Indonesia. His main research interests include routing and 

transport protocols, and security and privacy, applied in ad hoc networks and 

opportunistic mobile networks. 
 



IEEE Access - Decision on Manuscript ID Access-2022-31042

IEEE Access <onbehalfof@manuscriptcentral.com>
Fri 12/2/2022 12:21 AM

To: Soelistijanto B <b.soelistijanto@usd.ac.id>
Cc: hosam@lakeheadu.ca <hosam@lakeheadu.ca>;Soelistijanto B <b.soelistijanto@usd.ac.id>

1 attachments (210 KB)
Attached standard file: * Final-Files-Checklist.docx;

01-Dec-2022

Dear Dr. Soelistijanto:

Your manuscript entitled "Construction of optimal membership functions for a fuzzy routing scheme in
opportunistic mobile networks" has been accepted for publication in IEEE Access.  The comments of
the reviewers who evaluated your manuscript are included at the foot of this letter.  We ask that you
make minor changes to your manuscript based on those comments, before uploading final files. 

Please be advised that you are not permitted to add or remove authors or references post-
acceptance, regardless of the reviewers' request(s).  However, we encourage you to check the
formatting of your references to ensure that they are accurate in terms of bibliographic details as well
as consistent with IEEE style.  Additionally, please take this opportunity to improve the English
grammar and check spelling, as the article is only lightly edited before publication.

You can submit your final files through the IEEE Author Portal. 

All files intended for publication need to be submitted during this step, even if some files are
unchanged from the initial submission.  If you do not submit all files during this step, it can delay
the publication of your article, or result in certain files not being published.  Please be advised that
once you submit final files the article will be considered published and cannot be withdrawn.

To assist you with preparing your final files, attached please find a Final Files Checklist.
 
Once you have completed the submission of your final files, the accepted version of your article will
be posted Early Access on IEEE Xplore within 2-3 business days.  Within 7-10 business days you will
receive your page proofs, at which point you can make minor edits as necessary.  Once you approve
the proofs, the final version will replace the Early Access version on IEEE Xplore. 
 
For more information on what to expect after you submit final files, please visit our Post Acceptance
Guide.
 
After you submit final files you will automatically be directed to the Electronic Copyright Form. Once
the copyright information is completed, within a few business days you will receive an email from
Copyright Clearance Center (CCC) to settle your APC balance of $1,850 USD plus applicable local taxes
by check, credit card, or wire transfer. Please note that once you submit final files your article is
considered published, and you are responsible for covering the cost of the APC.  If you need
assistance with the payment process, please contact CCC Customer Service at

https://journals.ieeeauthorcenter.ieee.org/create-your-ieee-journal-article/create-the-text-of-your-article/ieee-editorial-style-manual/
https://ieee.atyponrex.com/journal/ieee-access
https://ieeeaccess.ieee.org/guide-for-authors/post-acceptance-guide/


IEEESupport@copyright.com.
 
Thank you for your fine contribution.  On behalf of the Editors of IEEE Access, we look forward to your
continued contributions to IEEE Access.

Sincerely,

Dr. Hosam El-Ocla
Associate Editor, IEEE Access
hosam@lakeheadu.ca

Reviewer(s)' Comments to Author:

Reviewer: 1

Recommendation: Accept (minor edits)

Comments:
The paper can be accepted.

Additional Questions:
1) Does the paper contribute to the body of knowledge?: Yes

2) Is the paper technically sound?: Yes

3) Is the subject matter presented in a comprehensive manner?: Yes

4) Are the references provided applicable and sufficient?: Yes

5) Are there references that are not appropriate for the topic being discussed?: No

5a) If yes, then please indicate which references should be removed.:

Reviewer: 2

Recommendation: Accept (minor edits)

Comments:
I agree with the author's answers and comments to my inquiries.

Additional Questions:
1) Does the paper contribute to the body of knowledge?: yes

2) Is the paper technically sound?: yes

3) Is the subject matter presented in a comprehensive manner?: yes

4) Are the references provided applicable and sufficient?: yes



5) Are there references that are not appropriate for the topic being discussed?: No

5a) If yes, then please indicate which references should be removed.:

If you have any questions, please contact article administrator: Mrs. Shilpa Verma
shilpa.verma@ieee.org


