
[Algorithms] Manuscript ID: algorithms-1760905 - Revision Reminder

riley.song@mdpi.com <riley.song@mdpi.com>
on behalf of
Algorithms Editorial Office <algorithms@mdpi.com>
Thu 6/9/2022 8:27 AM

To: Soelistijanto B <b.soelistijanto@usd.ac.id>
Cc: Vittalis Ayu <vittalis.ayu@usd.ac.id>;Algorithms Editorial Office <algorithms@mdpi.com>

Dear Dr. Soelistijanto,

We sent a revision request for the following manuscript on 2 June 2022. 

Manuscript ID: algorithms-1760905
Type of manuscript: Article 
Title: Improving Traffic Load Distribution Fairness in Mobile Social Networks 
Authors: Bambang Soelistijanto *, And Vittalis Ayu 
Received: 23 May 2022 
E-mails: b.soelistijanto@usd.ac.id, vittalis.ayu@usd.ac.id 
Submitted to section: Algorithms for Multidisciplinary Applications, 
https://www.mdpi.com/journal/algorithms/sections/Algorithms_for_Multidisciplinary_Applications 
Algorithms for Communication Networks 
https://www.mdpi.com/journal/algorithms/special_issues/algorithm_communication_network 

May we kindly ask you to update us on the progress of your revisions? If you  
have finished your revisions, please upload the revised version together with  
your responses to the reviewers as soon as possible.  

You can find your manuscript and review reports at this link: 
https://susy.mdpi.com/user/manuscripts/resubmit/9e31cd0f502d97b254078bc466855b21 

Thank you in advance for your kind cooperation and we look forward to hearing  
from you soon. 

Kind regards, 
Ms. Riley Song 

https://www.mdpi.com/journal/algorithms/sections/Algorithms_for_Multidisciplinary_Applications
https://www.mdpi.com/journal/algorithms/special_issues/algorithm_communication_network
https://susy.mdpi.com/user/manuscripts/resubmit/9e31cd0f502d97b254078bc466855b21


E-Mail: riley.song@mdpi.com 

-- 
MDPI Wuhan Office No.6 Jingan Road, 5.5 Creative Industry Park, 25th Floor,  
Hubei Province, China 

MDPI Algorithms Editorial Office 
St. Alban-Anlage 66, 4052 Basel, Switzerland 
E-Mail: algorithms@mdpi.com 
http://www.mdpi.com/journal/algorithms 

http://www.mdpi.com/journal/algorithms




















Dear Reviewer 1, 

We thank you for the valuable comments and the opportunity to improve our paper.  

In response to your review, we revised our manuscript with our point-by-point response to the 

comments explained below.  

Best regards,  

Bambang Soelistijanto and Vittalis Ayu 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Comment#1: The authors should please state more clearly how their approach is related to existing 

approaches and how it advances the fields in terms of improving traffic load distribution 

over social networks. How does this approach relevantly promote the state of the art, and 

how relevant is this for social networks that are already now handled well by existing 

approaches in terms of load distribution fairness? As it stands. I am not convinced in terms 

of novelty. This is mainly a modification of many similar approaches for improving traffic 

load distribution. 

Author response: We agree with the reviewer. 

Author action: We updated the Related Work and add more the related literatures as comparisons of 

our work to the existing approaches, so that  our contributions can be described clearly . 

_____________________________________________________________________________________ 

Comment#2:  In the Introduction, several key works are overlooked, especially: Saving human lives: 

What complexity science and information systems can contribute, Dirk Helbing,et al. 

J.Stat.Phys. 158. 753-781 (2015) and Social Physics, Marko Jusup, et al., Phy. Rep. 948, 1-

148 (2022). Where precisely such approaches have been reviewed in the light of many 

preceeding similar methods for improving traffic. The introduction should be much 

improved in terms of relevant precesing work.  

Author response: We agree with the reviewer 

Author action: We improve the Introduction, adding the some literatures suggested by the reviewers  so 

that the rationale behind our work can be stated clearly.  

_____________________________________________________________________________________ 

Comment#3:  It would also improve the paper of the figure captions would be made more self-

contained. In addition to briefly stating what is shown, one could also consider a sentence 

or two saying what is the main message of the each figure. 

Author response: We agree with the reviewer. 

Author action: We add captions in all figures in the manuscript , adding more detail description to each 

of the figure.  



_____________________________________________________________________________________ 

Comment#4:  More importantly, the presentation of the results is quite abstract, with very little guidance 

of the reader throughout the many algorithms and mathematical details. Since Algorithms 

is not a purely computer science or applied mathematics journal, such style will likely or not 

appeal and not be understandable to the majority of the reader. The authors must improve 

the clarity of the writing. 

Author response: We agree with the reviewer. 

Author action: We improve explanation of our results and to add clarity through the proposed 

algorithm, we also add calculation examples and illustrations, such as in Figure 6.  

_____________________________________________________________________________________ 

Comment#5: It would be very useful if the authors would make their source code available as 

supplementary materials. This would promote the usage of the proposed algorithm and 

allow also others to take advantage of this research, and also to allow them to reproduce 

the results.  

Author response: We agree with the reviewer. 

Author action: We add the link of the source code of TraLDA as supplemantary material, so it can accessed 

publicly. 

_____________________________________________________________________________________ 

Comment#6:  Some references contains errors and inconsistent formatting. It is difficult to give credit to 

research if even such elementary aspects of the works are not error free. The references 

should be made error free and formatted in agreement with the journal guidelines.   

Author response: We agree with the reviewer. 

Author action: We improve the references to be error-free and adjusting the style with Multidiciplinary 

Digital Publishing Institute formatting. 

_____________________________________________________________________________________ 

Comment#7:  Finally, do not use so many abbreviations in the abstract and elsewhere. In the absence of 

stringent space constraints, the use of abbreviation is not a good idea because it decreases 

ease of reading if a person has to remenmber all the abbreviations. The paper is at places 

further difficult to follow due to the excessive use of abbreviations.   

Author response: We agree with the reviewer. 

Author action: We improve our manuscript by removing the abbrevations and write the respective term 

as it is to increase clarity.  

___________________________________________________________________________________ 

 



Dear Reviewer 2, 

We thank you for the valuable comments and the opportunity to improve our paper.  

In response to your review, we revised our manuscript with our point-by-point response to the 

comments explained below.  

Best regards,  

Bambang Soelistijanto and Vittalis Ayu 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Comment#1: In my opinion, the paper is extremely interesting but there are some points for 

improvements. In particular, the authors should separate the introduction from the Related 

Literature. In the introduction they should explain the rationale behind their work and 

should provide an overview of the proposed approach.  

Author response: We agree with the reviewer. 

Author action: We improved the paper by separating Introduction from Related Literature and explain 

the rationale behind our work in the Introduction.  

_____________________________________________________________________________________ 

Comment#2:  Instead, the description of related approaches should be placed in the Related Literature 

section.  

Author response: We agree with the reviewer 

Author action: We improved the paper by separating Introduction from Related Literature and describe 

the related approaches in Related Literature.  

_____________________________________________________________________________________ 

Comment#3:  Regarding that section I see many similarities between the problem considered by the 

authors and the corresponding solution proposed by them, on the one hand, and the 

problem of computing the trust and reputation of a smart objct in a MultiIOT context, on 

the other hand. In particular, I would suggest that the authors compare their approacah 

with those described in the following papers,”An approach to evaluate trust and reputation 

of things in a MultiIOTs scenario” and “An approach to compute the scope of a social object 

in a MultiIOT scenario.” 

Author response: We agree with the reviewer. 

Author action: We improve Related Literature by adding comparison with the approaches suggested by 

the reviewer.   

_____________________________________________________________________________________ 



Comment#4:   Finally, in order to make the many formulas included in the paper mode understandable, I 

suggest that the authors add a leading example throughout Section 3 and possibly along 

Section 2 as well.  

Author response: We agree with the reviewer. 

Author action: To explain the many formulas, we include calculation example and illustration such as in 

Figure 6. In addition, we provide the implementation of those formulas in TraLDA’s source code is 

attached in supplementary file 

_____________________________________________________________________________________ 
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Improving Traffic Load Distribution Fairness in Mobile Social 2 

Networks 3 

Bambang Soelistijanto 1,*, and Vittalis Ayu 1 4 

1 Department of Informatics, Sanata Dharma University; b.soelistijanto@usd.ac.id; vittalis.ayu@usd.ac.id 5 

* Correspondence: b.soelistijanto@usd.ac.id 6 

Abstract: Mobile social networks suffer from an unbalanced traffic load distribution due to the het-7 

erogeneity in mobility of nodes (humans) in the network. A few nodes in these networks are highly 8 

mobile, and the proposed social-based routing algorithms are likely to choose these most "social" 9 

nodes as the best message relays. Finally, this could lead to inequitable traffic load distribution and 10 

resource utilization, such as faster battery drain and/or storage consumption of the most (socially) 11 

popular nodes. We propose a framework called Traffic Load Distribution Aware (TraLDA) to improve 12 

traffic load balancing across network nodes. We present a novel method for calculating node pop-13 

ularity which takes into account both node inherent and social-relations popularity. The former is 14 

purely determined by the node’s sociability level in the network, and in TraLDA is computed using 15 

the Kalman-prediction which considers the node's periodicity behaviour. However, the latter takes 16 

the benefit of interactions with more popular neighbours (acquaintances) to boost the popularity of 17 

lower (social) level nodes. Using extensive simulations in the Opportunistic Network Environment 18 

(ONE) driven by real human mobility scenarios, we show that our proposed strategy enhances the 19 

traffic load distribution fairness of the classical, yet popular social-aware routing algorithms Bub-20 

bleRap and SimBet without negatively impacting the overall delivery performance. 21 

Keywords: fair traffic distribution; human mobility; node popularity; mobile social networks  22 

 23 

1. Introduction 24 

As a particular case of MANETsmobile ad-hoc networks (MANETs), opportunistic 25 

mobile networks (OMNs) [1] are unique dynamic wireless mobile networks. Unlike MA-26 

NETsMANETs, in such networks persistent connectivity is not a necessity, and end-to-27 

end paths from sources to destinations are not assumed to exist at all times. A link be-28 

tween a pair of nodes is established whenever they come into contact. In opportunistic 29 

mobile networks OMNs, pairwise node contacts occur randomly in time, and the duration 30 

of each contact is also random. Thanks to the omnipresence of mobile devices nowadays, 31 

e.g., mobile phones and tablets, human can exploit contact opportunities to exchange in-32 

formation by means of short radio range connections. This leads to human-centric oppor-33 

tunistic mobile networks, also referred to mobile social networks (MSNs) in [2,3]. These net-34 

works have mainly been introduced by combining social networks and mobile communi-35 

cation networks. MSNs take a human-centric approach to networking, closing the gap 36 

between networks and human behaviour. Moreover, studies in [4–6] revealed that social 37 

interactions influence human mobility. As a result, MSNs are closely linked to social (re-38 

lation) networks, and knowledge about social ties can be used to improve routing routing 39 

algorithms in such human-based networks. 40 

 41 

Researchers currently focus on studying social relation patterns, e.g., node popular-42 

ity and social similarity, as the choice parameters of relay nodes. Furthermore, the pro-43 

posed social-based routing algorithms [7–9] typically favour nodes with many social ties 44 
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as optimal carriers for message transfers [7–9]. This might end up in heavy traffic load in 45 

the (socially) popular nodes, quickly draining the nodes’ constraint resources, such as 46 

power and storage, and this unbalanced traffic load eventually deteriorates the network’s 47 

delivery performance [10]. In addition, the poor traffic load balancing also results in unfair 48 

delivery success rate among individuals, where messages from popular individuals can 49 

reach the destinations with a high probability, but individuals with few social connections 50 

will experience in low delivery success [11]. This variance of the delivery rate becomes a 51 

deterrent for nodes to participate in the message forwarding. Ultimately, the unfairness 52 

of traffic load makes popular nodes are easy target of attacks [12]. 53 

Unbalanced traffic distribution across network nodes leading to traffic congestion in 54 

social networks has been extensively studied in several areas [13–15]. [x,x,x]. In [13] [x] 55 

(data) traffic congestion during crowd disaster was thoroughly discussed. In that crowd 56 

management scenario, mobile devices carried by individuals is used to detect and inform 57 

to the crowd managers about the crowd density. However, in crowded areas traffic can 58 

increase dramatically within a short period of time, and, in turn, traffic congestion starts 59 

to occur, making the crowd managers fail to handle the crowd. In [14]  [x] traffic in social 60 

networks was investigated in various applications, ranging from vehicular traffic in urban 61 

environments to data traffic in Internet of Things and human-machine networks. In these 62 

settings, local failures such as traffic congestion in some parts of networks might provoke 63 

a cascade of failures throughout systems. Machine learning approaches were therefore 64 

nominated to address such issues. In [15] [x] pocket switched networks were proposed to 65 

transfer data between users’ mobile devices. Such opportunistic networks exploit human 66 

mobility to enable a store-carry-forward mechanism to deliver messages from sources to 67 

destinations. In each contact, social-based routing algorithms [7–9] typically select popu-68 

lar nodes (individuals) as the best relays in the network, resulting in unbalanced traffic 69 

distribution across nodes and traffic congestion in the most central nodes. 70 

Social-based routing algorithms are a class of utility-based routing algorithms. In 71 

such schemes, heuristic methods are used to determine the “quality” (utility) of a node as 72 

a relay. Each node i retains 𝑈𝑖(𝑗), a utility function that denotes the likelihood of i deliv-73 

ering a message to j. The utility function can be based on some different parameters, such 74 

as contact history, mobility model, social relations, etc. Spyropoulos et al. [16] categorized 75 

utility functions into two types: destination-dependent (DD) and destination-independent (DI). 76 

In DD, node utility is dependent of the destination; i.e., node i is an optimal relay for one 77 

destination 𝑑1, yet node j is the best one for another 𝑑2, or 𝑈𝑖(𝑑1) > 𝑈𝑗(𝑑1), but 𝑈𝑖(𝑑2) <78 

𝑈𝑗(𝑑2) for 𝑑1 ≠ 𝑑2. DD functions could be based on last-contact, social similarity, or cor-79 

related mobility pattern, with the given destination. However, destination-dependent 80 

(DD) imposes a large overhead on nodes, since the nodes should keep a single entry for 81 

each peer in the network. As opposed to DD, node utility in DI is independent of any 82 

destination, for example, a single node may be the best carrier for most/all destinations in 83 

the network, or in general it holds that 𝑈𝑖(𝑑1) > 𝑈𝑗(𝑑1) then 𝑈𝑖(𝑑) > 𝑈𝑗(𝑑) for most/all j, 84 

d. Instances of nodes which are better relays for all destinations would be those with many 85 

connections to others (e.g., hub nodes in scale-free networks), nodes with many acquaint-86 

ances (e.g., popular nodes in social networks), or nodes with high mobility (e.g., cars or 87 

buses in vehicular delay-tolerant networks). Nevertheless, destination-independent (DI) 88 

imposes a higher forwarding overhead on better relays, leading to poorer fairness in both 89 

traffic load distribution and utilization of the nodes’ resources. 90 

This paper proposes a framework called Traffic Load Distribution Aware (hereafter, 91 

TraLDA), aiming to improve fairness in forwarding of social-based routing algorithms. 92 

Here, we introduce a novel computation of node (global) popularity in the entire network. 93 

This utility metric is obviously independent of the message destination, and it may con-94 

tribute to a traffic load imbalance across nodes, as mentioned in [16]. In TraLDA, we con-95 

sider two different popularities in the calculation of node popularity, namely inherent pop-96 

ularity and social-relations popularity. Inherent popularity is based solely on the node’s so-97 
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ciability level, and in TraLDA is computed using the Kalman-prediction [17] which con-98 

siders the periodicity in human behaviour. The works in [18,19] confirmed that human 99 

activities typically exhibit some of periodicity. Consequently, the calculation of node pop-100 

ularity in mobile social networks should consider this property. Social-relations popular-101 

ity, on the other hand, reflects the social benefit of connections with popular nodes, and 102 

spreads the popularity of these nodes to their lower ranking acquaintances. Finally, we 103 

apply the TraLDA’s node popularity computation on the classical, yet prominent social-104 

based routing algorithms SimBet [20] and BubbleRap [21], and next investigate the per-105 

formance improvements of these routing schemes, particularly in the trade-off between 106 

forwarding fairness and efficiency. SimBet and BubbleRap basically combine two differ-107 

ent utility metrics to decide node fitness as relay to a given destination: the one which is 108 

dependent of the destination (i.e., similarity and social community in SimBet and Bub-109 

bleRap, respectively), and the other one which is independent of the destination (i.e., be-110 

tweeness centrality and global popularity in SimBet and BubbleRap, respectively). In this 111 

case, TraLDA focuses on improving the calculation of global popularity and betweeness 112 

centrality in BubbleRap and SimBet, respectively. 113 

The following are the main contributions we made in this paper: 114 

 To increase fairness in forwarding of social-based routing algorithms in mo-115 

bile social networks, we propose TraLDA, a framework of traffic load distri-116 

bution aware. We offer a new method for calculating node global popularity, 117 

a function of both node inherent and social-relations popularity. 118 

 The inherent popularity of a node is solely determined by the node’s own 119 

mobility pattern or sociability level in the network, and in TraLDA is com-120 

puted using the Kalman-prediction which accounts for the regularity (perio-121 

dicity) of human behaviour. 122 

 Node social-relation popularity, on the other hand, represents the advantages 123 

of connections with more popular or central nodes (individuals). It shares the 124 

popularity of more popular nodes to their less popular counterparts.  125 

 Finally, we apply TraLDA on the calculation of node global popularity and 126 

centrality in BubbleRap and SimBet, respectively, in order to improve the traf-127 

fic load balancing among network nodes. Using extensive simulations in the 128 

Opportunistic Network Environment (ONE) [22] driven by realistic human 129 

mobility scenarios, we show that TraLDA enhances fairness in forwarding of 130 

both schemes, without negatively affecting the overall delivery performances. 131 

 132 

We proceed in this paper as follows. Related literature is given in Section 2, research 133 

background is described in Section 3, detailed design strategy of TraLDA is discussed in 134 

Section 4, simulation and discussion is presented in Section 5, and lastly conclusion and 135 

future work is showed in Section 6. 136 

 137 

2. Related literature 138 

 139 

Fairness is important in many areas of human lives, e.g., sociology, economics and 140 

politics, and it is also true in technologies. In computer engineering, distinct computer 141 

resources should be shared equally amongst all processes and threads. In computer net-142 

working, all nodes require to attain the bandwidth and quality of service (QoS) equitably. 143 

In [23] fairness challenges and issues in wireless networks is thoroughly discussed, and 144 

some trade-offs between fairness and performance are reviewed. Mtibaa and Harras [10] 145 

studied the trade-offs between fairness and efficiency of social-based routing algorithms 146 

in MSNsmobile social networks. They found that excluding popular nodes on the message 147 

forwarding significantly degrades the delivery efficiency. We in [24] also showed that ab-148 

solute traffic load fairness leads to the deterrent of delivery efficiency; yet, high delivery 149 

efficiency results in unfairness of traffic load.  150 
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To overcome theis problem, fair routing algorithms have been proposed for MSNs 151 

mobile social networks [11,25–27]. Fan et. al. [11] introduced a fair routing strategy based 152 

on packet priority to improve fairness in success rate among nodes. Ying et. al. [25] pro-153 

posed FSMF, a fair social aware message forwarding to solve the issues of imbalanced 154 

traffic load distribution as well as unfair delivery rate. Pujol et .al. [26] proposed FairRoute 155 

that combines social strength and buffer queue length as the routing metrics to fairly dis-156 

tribute the traffic load among nodes. Milena and Grundy [27] presented CafRep, an adap-157 

tive congestion aware forwarding strategy that diverts the traffic from congested nodes 158 

(popular nodes) to less congested nodes (unpopular nodes). 159 

 160 

Indeed, fair routing algorithms in distributed, intermittently connected wireless net-161 

works like MSNs mobile social networks are more complex than those in conventional 162 

networks, such as the Internet, since: firstly(i), negotiation and compromise amongst au-163 

tonomous nodes is more complicated, for example non-cooperative nodes may be reluc-164 

tant to help other nodes in forwarding; and secondly(ii), due to the lack of knowledge 165 

about the global states, routing decisions are made solely based on nodes’ local infor-166 

mation. For the former first issue, the impact of selfish nodes on delivery performance and 167 

resource consumption fairness has been investigated in [28]. In addition, to increase fair-168 

ness in forwarding an incentive or a credit was applied on the routing decisions in [25]. 169 

Finally, In in [29] a game theoretic approach is used to support fair cooperation among 170 

nodes in opportunistic networks.  For the latter second issue, current works of fair rout-171 

ing schemes searcheded for proper nodes’s’ locally available information to ensure a bet-172 

ter fairness and efficiency trade-off. Furthermore, there are two sorts of node local 173 

knowledge which are commonly used to improve traffic fairness and reduce congestion: 174 

(i) buffer statistics and (ii) social measures. For the former case, some algorithms consider 175 

node burden, inferred from the node’s buffer queue length, as the forwarding metric to 176 

achieve a balanced traffic distribution. For example,  Some algorithms consider node bur-177 

den, inferred from the node’s buffer queue length, as the forwarding metric to achieve a 178 

balanced traffic load distribution; for example, FOG [10] and GreBurD [30] prioritize 179 

nodes with higher residual buffer space as suitable relays to distribute load away from 180 

the congested nodes;. CafRep [27] defines node retentiveness, calculated as an expected 181 

weighted moving average of the node’s remaining storage, as the congestion heuristic to 182 

detect storage congestion in popular nodes. For the latter case, on the other hand, re-183 

searchers search for better social network measures for improving fairness in forwarding 184 

of social-based routing schemes. For example, FairRoute [26] improves the calculation of 185 

pairwise tie strength based on the short-term and long-term relationships; SimBet [20] 186 

adds connection strength information to the routing metrics to offload traffic from popu-187 

lar nodes; Socially-Aware Prediction (SAP) [31] estimates future contacts based on the 188 

node (social) similarity, and forwards messages to nodes with a higher similarity with the 189 

destinations, thus reducing messages forwarded to globally popular nodes. 190 

As opposed to [26] [20] [31] which focus on improving the calculation of destination-191 

dependent (DD) utility metrics, our proposed scheme TraLDA chooses to improve the 192 

computation of node popularity in the network, since as noted in [16], this destination-193 

independent (DI) utility metric primarily contribute to the traffic imbalance among nodes 194 

in mobile social networks. In social network analysis, Freeman [32] [x] proposed three 195 

distinct centrality measures to identify the importance of nodes (individuals) in social net-196 

works, namely degree centrality, betweeness centrality, and closeness centrality. Degree 197 

centrality is the number of direct neighbours or friends a node has; betweeness centrality 198 

is the number of shortest paths connecting any two nodes that pass through a given node; 199 

and closeness centrality is the average distance (proximity) between a node and all other 200 

nodes in the network. Freeman’s centrality metrics have been widely used to detect nodes 201 

which are capable of disseminating information in mobile social networks; for example, 202 

BubbleRap [21] and SimBet [20] consider degree centrality and betweeness centrality, re-203 

spectively, computed in a distributed, ad-hoc fashion to determine node popularity. In 204 
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BubbleRap, node degree is calculated as the cumulative average of total number of distinct 205 

peers encountered by the node in all previous time windows. In SimBet, node betweeness 206 

centrality is computed based on a binary model of a social relation, i.e., a value of “1” 207 

means two nodes know each other, and “0” otherwise. However, we argue that the node 208 

popularity or centrality calculations in BubbleRap and SimBet do not cope with the dy-209 

namics of a social network. Furthermore, as confirmed in [18,19] human activity typically 210 

exhibits a regularity (periodicity) pattern. Considering this matter, as our first contribu-211 

tion in this paper, we propose a novel method to calculate node inherent popularity at a 212 

given time interval based on the Kalman prediction [17] which takes into account the 213 

node’s periodicity behaviour. 214 

Nevertheless, Freeman’s centrality measures typically disregard the influence of the 215 

neighbours. The authors of [33] [xRusiNowska] argued that a node’s importance in the 216 

social network should also be determined by the importance of its neighbours. In [34] 217 

[xpage6Dom], the authors studied a strategy to find persons that are able to spread ad-218 

vertisements as far as possible in a social network. They showed that a person that receives 219 

highly respects from her friends, her advertisements will be highly probable to spread 220 

over the social network quickly. In addition, Ursino and Virgili [35]  [x] integrated the 221 

concept of social networks and IoT to determine the reputation of IoT objects. They pro-222 

posed a formula to calculate reputation of an object in a social Internet of Things based on 223 

the well-known Google PageRank. In that technique, the reputation of an object is deter-224 

mined by the level of trust it obtains from other IoT objects. Almost similar, Cauteruccio 225 

et al. [36]  [x] attempted to introduce concepts and behaviours of social networks into the 226 

IoT settings. In that work, to measure the reputation of an IoT object, the authors defined 227 

Impact Degree, calculated as the average trust degree that the object receives from the 228 

other objects in its scope (neighbourhood). Meanwhile, from the social network theory, 229 

there exist centrality measures that consider a richer range of direct and indirect influence 230 

of neighbours, such as the Katz’s prestige measure [37]. This centrality metric is developed 231 

based on the premise that a node’s importance in the network is influenced by its neigh-232 

bours' importance. Thus, this prestige measure considers a node's connectedness to other 233 

nodes as well as its proximity to other important nodes. In this regard, node popularity 234 

calculation in TraLDA should take into account the influence of more popular neighbours 235 

when determining the popularity of a node. Therefore, as our second contribution in this 236 

paper, we propose a method to calculate node social-relations popularity based on the 237 

Katz’s prestige measure [37]. We perform some modifications on the calculation of this 238 

centrality metric to make it appropriate for distributed, ad hoc environments, such as mo-239 

bile social networks. 240 

In addition to buffer state metrics, researchers also search for better connection 241 

measures to improve fairness in MSNs; for instance, the authors of SimBet [21] add con-242 

nection strength information to the routing metrics to offload traffic from popular nodes; 243 

FairRoute [16] uses two distinct temporal interaction strength metrics to accurately esti-244 

mate the pairwise connection strength; Socially-Aware Prediction (SAP) [22] estimates fu-245 

ture contacts based on the encounter history and social network information and forwards 246 

messages to nodes with a higher contact chance with the destination, thus reducing mes-247 

sages forwarded to globally popular nodes. 248 

Social-based routing algorithms are a class of utility-based routing algorithms. In 249 

such routing schemes, heuristic methods are used to determine the “quality” (utility) of a 250 

node as a relay. Each node i retains 𝑈𝑖(𝑗), a utility function that denotes the likelihood of 251 

i delivering a message to j. The utility function can be based on some different parameters, 252 

such as contact history, mobility model, social relations, etc. Furthermore, Spyropoulos et 253 

al. [23] categorized utility functions into two types: destination-dependent (DD) and destina-254 

tion-independent (DI). In DD, node utility is dependent of the destination; i.e., node i is an 255 

optimal relay for one destination 𝑑1, yet node j is the best one for another 𝑑2, or 𝑈𝑖(𝑑1) >256 

𝑈𝑗(𝑑1), but 𝑈𝑖(𝑑2) < 𝑈𝑗(𝑑2) for 𝑑1 ≠ 𝑑2. DD functions could be based on last-contact, so-257 

cial similarity, or correlated mobility pattern, with the given destination. However, DD 258 
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imposes a large overhead on nodes, since the nodes should keep a single entry for each 259 

peer in the network. As opposed to DD, node utility in DI is independent of any destina-260 

tion, for example, a single node may be the best carrier for most/all destinations in the 261 

network, or in general it holds that 𝑈𝑖(𝑑1) > 𝑈𝑗(𝑑1) then 𝑈𝑖(𝑑) > 𝑈𝑗(𝑑) for most/all j, d. 262 

Instances of nodes which are better relays for all destinations would be those with many 263 

connections to others (e.g., hub nodes in scale-free networks), nodes with many acquaint-264 

ances (e.g., popular nodes in social networks), or nodes with high mobility (e.g., cars or 265 

buses in VDTN). Nevertheless, DI imposes a higher forwarding overhead on better relays, 266 

leading to poorer fairness in both traffic load distribution and utilization of the node re-267 

sources. 268 

This paper proposes a framework called Traffic Load Distribution Aware (TraLDA), 269 

aiming to improve fairness in forwarding of social-based routing algorithms. Here, we 270 

introduce a novel computation of node popularity in the entire network. This utility met-271 

ric is obviously independent of the message destination, and as noted above it might con-272 

tribute to a traffic load imbalance across MSN nodes. In TraLDA, we consider two differ-273 

ent popularities in the calculation of node global popularity, namely inherent popularity 274 

and social-relations popularity. Inherent popularity is based solely on the node’s sociability 275 

level, and in TraLDA is computed using the Kalman-prediction [24] which considers the 276 

periodicity in human behaviour. Moreover, the works in [25,26] have confirmed that hu-277 

man activities typically exhibit some of periodicity. Consequently, the calculation of node 278 

popularity in MSNs should consider this characteristic. Social-relations popularity, on the 279 

other hand, reflects the social benefit of connections with popular nodes, and spreads the 280 

popularity of these nodes to their lower ranked acquaintances. Finally, we apply TraLDA 281 

on the classical, yet prominent social-based routing algorithms SimBet [21] and Bub-282 

bleRap [27], and next investigate the performance improvements of these schemes, par-283 

ticularly in the trade-off between forwarding fairness and efficiency. SimBet and Bub-284 

bleRap combine two different utility metrics to decide node fitness as relay to a given 285 

destination: the one which is dependent of the destination (i.e., similarity and community 286 

in SimBet and BubbleRap, respectively), and the other one which is independent of the 287 

destination (i.e., betweeness centrality and global popularity in SimBet and BubbleRap, 288 

respectively). TraLDA, in turn, focuses on improving the calculation of global popularity 289 

and centrality in BubbleRap and SimBet, respectively. 290 

The following are the main contributions we made in this paper: 291 

 To increase fairness in forwarding of social-based routing algorithms in 292 

MSNs, we propose a framework called Traffic Load Distribution Aware 293 

(TraLDA). In TraLDA, we offer a new method for calculating node global 294 

popularity, a function of both inherent and social-relations popularity. 295 

 The inherent popularity of a node is solely determined by the node’s own 296 

mobility pattern or sociability level in the network, and in TraLDA is com-297 

puted using the Kalman-prediction, which accounts for the regularity (perio-298 

dicity) of human behaviour. 299 

 Node social-relation popularity, on the other hand, represents the advantages 300 

of connections with the more popular or central nodes (individuals). It shares 301 

the popularity of more popular nodes to their less popular counterparts. 302 

 Finally, we apply TraLDA on the calculation of node popularity and central-303 

ity in BubbleRap and SimBet, respectively, in order to improve the traffic load 304 

balancing across network nodes. Using extensive simulations in the ONE [28] 305 

environment driven by realistic human mobility scenarios, we show that 306 

TraLDA enhances fairness in forwarding of both schemes, without decreas-307 

ing the overall delivery performances. 308 

We proceed in this paper as follows. Background is described in Section 2, detailed 309 

design strategy of TraLDA is discussed in Section 3, simulation and discussion is pre-310 

sented in Section 4, and lastly conclusion and future works is showed in Section 5. 311 
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23. Research Background 312 

In this section, we discuss the topology structure of MSNs mobile social networks 313 

and the forwarding strategy of social-based routing algorithms. We initially consider an 314 

opportunistic network with N nodes as a graph G (V, E), where V and E are the sets of 315 

nodes and links, respectively. In this graph, a link between two nodes represents the phys-316 

ical contact between them, and the link weight is defined as the probability of their pair-317 

wise contact. We assume the graph G is connected, that is, between any pair of nodes at 318 

least a single path exists. Further, the message dissemination in the graph G under a util-319 

ity-based routing is formulated as a discrete-time Markov chain. Suppose that a message 320 

m is transferred hop-by-hop in this graph. Initially, a message m is in state i if it is carried 321 

by node i, and when a contact occurs between node i and j and suppose that i transfers 322 

the message m to j, then the state of m changes from i to j. Therefore, the forwarding pro-323 

cedure of a message in an opportunistic network can be modelled as a state transition 324 

process in a discrete-time Markov chain. Next, we develop a transition probability matrix 325 

P, with 𝑝𝑖𝑗  denotes the probability that the message m is transferred from node i to j, and 326 

is expressed as follows 327 

𝑝𝑖𝑗 = 𝑝𝑖𝑗
𝑐  . 𝑝𝑖𝑗

𝑓
 (1) 

where 𝑝𝑖𝑗
𝑐  is the probability of encounter between i and j, and 𝑝𝑖𝑗

𝑓
 is the likelihood that i 328 

transfers the message m to j during the contact. Node contact probability in MSNs mobile 329 

social networks is directly related with the human mobility pattern, and in some papers, 330 

such as [5,38], it was characterized based on the structural properties of node contacts. 331 

Yet, forwarding probability fully depends on the forwarding rules used in message rout-332 

ing. In the following, we analyze the topology characteristics of MSNs mobile social net-333 

works as well as the forwarding features of social-based routing schemes, and discuss 334 

how the combination of them may result in the unfairness in forwarding among network 335 

nodes. 336 

 337 

 338 

 339 

Figure 1. A MSN’s mobile social network’s structural topology. On the top layer, the social network 340 

drives human to move, and this human mobility creates opportunistic contacts in the physical net-341 

work. 342 

23.1. Topology structures of MSNsmobile social networks 343 

 When analyzing the delivery performance of a routing algorithm, information of net-344 

work topology is typically needed. The movement patterns of nodes in mobile networks, 345 

e.g. MANETs and OMNs, have a direct impact on the networks’ topologies. MSNsMobile 346 

social networks, in particular, are human-based networks, and node encounters in such 347 

networks represent the ways in which people interact. Yoneki et al. [38] and Hossmann et 348 

al. [5] studied the topology characteristic of mobile MSNs social networks using some re-349 

alistic human mobility scenarios. They firstly aggregated the contact data to establish 350 

Social N
etw

ork

Human M
obilit

y

Physical N
etw

ork

Low

High

To
po

lo
gy

 

V
ol

at
ili

ty
 

Formatted: Justified



Algorithms 2022, 15, x FOR PEER REVIEW 8 of 27 
 

weighted contact graphs, where the link weights express the duration of contact of pairs 351 

of nodes. These graphs in turn exhibit the characteristics of social networks. (A a social 352 

network is a graph of human relationships formed by one or more types of interdepend-353 

encies, such as mutual interests, kinship, or friendship). By applying a complex network 354 

analysis on the derived graphs, they concluded that the networks have a non-random 355 

(heterogeneous) connectivity structure, exhibiting a power-law degree distribution in 356 

which some nodes have a relatively large connectivity degree to other nodes, whereas the 357 

majority of nodes in the network have few. The large degree nodes (so-called hub nodes) 358 

are the most popular (central) nodes in the social graph, and therefore they can act as 359 

information brokers which are capable of disseminating messages to all nodes within a 360 

relatively short delay. In Fig. 1 we show the structural topology of an MSNmobile social 361 

network: a virtual social network exists on top of an MSNmobile social network, which is 362 

less volatile than the physical network, and this network guides humans to move. 363 

 Additionally, we conduct an online analysis in the ONE simulator [22] to investigate 364 

the node popularity distribution in real MSNsmobile social networks. A node in a self-365 

organizing networks like such as MSNs mobile social networks should be able to sense its 366 

own popularity throughout the network. Here, node popularity is defined as the number 367 

of different nodes contacted in a certain time window. In an aggregated contact graph, 368 

this corresponds to node degree (centrality) [21]. In this study, we consider the Reality 369 

contact traces [39] as the mobility scenario. In Fig. 2 (left) we show the node degree distri-370 

bution in Reality, where the degree of a node is computed in a 6-hour-time-window basis. 371 

It is evident that some nodes have a degree value that is significantly larger than the net-372 

work’s average degree (i.e., ≈2.2). Furthermore, in Fig. 2 (right) we show the node degree 373 

distribution in the Reality scenario on a log-log scale. The graphic shows that the node 374 

degree distribution follows a power-law distribution, with a low probability of finding 375 

nodes with a high degree because most network nodes have a low one. Moreover, The the 376 

authors of [40] established the potential of coupling between MSNs mobile social net-377 

works and scale-free networks, which have a power-law degree distribution as their main 378 

characteristic. ThusIn other words, the degree distribution in real human-based networks 379 

differs from the Gaussian (normal) degree distribution commonly assumed in random 380 

networks. 381 

23.2. Social-based routing algorithms 382 

 Social-based routing schemes typically define a utility metric for each node when 383 

making routing choices. Clearly, a higher utility reflects a higher chance of the node to 384 

deliver a message. The method forwards the message to the contacted node with a higher 385 

utility in each contact. This best next-hop heuristic forwarding 𝑝𝑖𝑗
𝑓

 can be described as 386 

 

Figure 2. (left) the node degree distribution in the Reality mobility scenario, and (right) when it is 

plotted in a log-log scale. The almost linear of the plot of the node degree in the log-log scale verifies 
that the node degree is power-law distributed.  
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𝑝𝑖𝑗
𝑓

= {
1,   𝑈𝑖 < 𝑈𝑗

0,   𝑈𝑖 > 𝑈𝑗
 (2) 

 387 

Nevertheless, the utility-based routing algorithms in MSNs mobile social networks 388 

have some drawbacks as follows: 389 

 Hill-climbing heuristic forwarding is a pure greedy approach that sends the 390 

message to the nodes with the highest utility at each contact (/hop). Fan et. al. 391 

[11] used a Markov model to show that under this forwarding technique, the 392 

probability of a message reaching the greatest utility node(s) is one, implying 393 

that messages will always find the highest utility nodes in MSNsmobile social 394 

networks. Furthermore, in the following we show mathematically that the for-395 

warding heuristic, which is biased towards higher value nodes, guides the 396 

routing algorithm to send the bulk of network traffic through the highest utility 397 

node(s) as follows. We first assume a routing strategy that determines the next-398 

hop nodes in a random manner. The message forwarding is therefore a random 399 

walk over the graph G(V, E) mentioned above, with the transition probability 400 

matrix P, where its element 𝑝𝑖𝑗  is defined in (1). Under this random forward-401 

ing, 𝑝𝑖𝑗  is equal to the inverse of node i’s degree 𝑑𝑖, or 𝑝𝑖𝑗 = 1 𝑑𝑖⁄ . In a steady 402 

state traffic flow, the chance to find a message m in node j, which also equals to 403 

j’s traffic load, can be computed as the first eigenvector of the distribution ma-404 

trix 𝛱𝑇 , with  𝜋𝑖𝑗 = 𝑝𝑖𝑗  .  (∑ 𝑝𝑖𝑗𝑗 )
−1

. Then, it is easy to see that the eigenvector 405 

for distribution matrices of networks with a non-random (heterogeneous) con-406 

nectivity distribution like MSNs mobile social networks will be skewed to-407 

wards the highly connected nodes (hub nodes) under this random scheme. 408 

ThereforeEventually, this confirms the natural traffic load imbalance in the 409 

MSNssocial networks. Further, if the forwarding strategy is not random, but 410 

biased towards connectivity (i.e., favouring nodes with a higher degree), the 411 

probability of hub nodes receiving relay traffic increases and the traffic load 412 

distribution becomes more unbalanced. MoreoverFurthermore, using simula-413 

tion in the Reality mobility scenario [39] we show illustrate in Fig. 3 (left) the 414 

node degree vs. node traffic load when the hill-climbing heuristic forwarding 415 

is used applied on the network (here, node traffic load is defined as the total 416 

relay messages carried by a node). The graphic depicts how a few the highest 417 

degree nodes handle a big portion of traffic, yet most of network nodes only 418 

process a small one. This quickly depletes the hub nodes’ constrained resources 419 

like power and storage. For instance, we show in Fig. 3 (right) the buffer occu-420 

pancy changes of illustrative hub node and non-hub node in Reality. Clearly, 421 

The the buffer occupancy in the hub node is regularly saturated, whereas the 422 

buffer queue on the non-hub node is normally low during the experiment. 423 
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 In MSNsmobile social networks, node utility can change over time, and a low 424 

utility node at the present time could become a good relay in the future. Most 425 

conventional utility-based forwarding algorithms, however, often ignores this. 426 

Furthermore, the studies in [18,19] showed that node degree popularity in hu-427 

man-based networks, such as MSNs, varies over time and has a periodic pat-428 

tern. Considering this, when TraLDA calculates node popularity, these features 429 

will be taken into account. 430 

34. TraLDA Design 431 

In TraLDA, we improve the computation of node (global) popularity in MSNsmobile 432 

social networks. To determine a node’s popularity, two popularity metrics are calculated: 433 

inherent popularity and social-relations popularity. We hypothesize that inherent popularity 434 

is purely determined by the node’s own mobility pattern or sociability level, whereas so-435 

cial-relation popularity is derived as an advantage from relationships with more popular 436 

nodes. Finally, TraLDA uses both popularity indicators to choose optimal relays during 437 

contacts. In the following, the computations for both measures are described in detailed. 438 

34.1. Inherent popularity calculation 439 

The inherent popularity of a node is determined by its own sociability degree or net-440 

work movement pattern. In practice, this metric is defined based on a particular metric, 441 

such as the total contacts with different nodes in a time interval [21] or the neighbour 442 

change rate [38,41]. In the literature, the former is denoted as the node degree in an aggre-443 

gated encounter graph. In TraLDA, we use node degree to quantity a node’s inherent 444 

popularity. Moreover, our investigation below shows that node degree in realistic 445 

MSNmobile social networks fluctuates significantly over time and exhibits some of peri-446 

odicity. ThereforeThus, it is important to take into account these features when computing 447 

calculating node degree at a given time. Finally, we introduce a novel calculation of node 448 

degree using the Kalman-prediction [17] which consider the periodicity of human behav-449 

iour. 450 

We begin by looking into the node degree change characteristics in MSNs mobile 451 

social networks using real-world human movement cases. The Reality trace dataset [39] 452 

is used in this study because it consists a large number of nodes and spans a lengthy pe-453 

riod of time. Furthermore, an instantaneous node degree is estimated by the number of 454 

distinct nodes contacted in a given time window. In the case of Reality, we chose a time 455 

 

Figure 3. (left) node degree vs. node traffic load, and (right) the buffer queue growths of illustra-

tive hub node and non-hub node, when the hill-climbing heuristic forwarding is appliedused in 
the mobile social network on the Reality mobility scenario. This describes an imbalanced traffic 
load among nodes, with the highest degree nodes handling the bulk of network traffic, resulting 
in significant buffer occupancy throughout the simulation. 
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window of 6 hours as the basis for node degree calculation based on a study in [21] that 456 

found that individuals’ daily life is typically separated into four main periods of 6 hours 457 

each: morning, afternoon, evening, and night (however, for a detailed discussion of the 458 

impact of time window scale choices on the node degree calculation, see [42]). 459 

We now depict changes in node degree in the Reality scenario; for instance, in Fig. 4 460 

(left), we present the node degree variations of an illustrative hub node in Reality. We 461 

notice that the node’s degree changes dramatically and rapidly over time. Subsequently, 462 

we use a periodogram analysis [43] to find the main periods (frequencies) within the 463 

node’s degree data series. We display the discovered periodicities of the hub node’s de-464 

gree in Fig. 4 (right). The figure clearly shows that the degree of the hub node firmly 465 

demonstrates a 7-days (weekly) period (moreover, our investigation on all the nodes in 466 

Reality finds that majority of the nodes possess a weekly cycle of their popularities as 467 

well). Indeed, the Reality dataset logged MIT staff and student activities on campus, 468 

which are higher during the weekdays but lower on weekends due to less interactions. 469 

Nevertheless, depending on the experimental setting, distinct human encounter datasets 470 

may have different periodicities. 471 
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The structural component of the node degree data series in Fig. 4 (left) is then ob-472 

served using a discrete time series analysis. A discrete time series is a set of observations 473 

𝑦𝑡 logged regularly at a specific time interval. In the traditional decomposition model [44], 474 

𝑦𝑡 can be broken down into a trend component, a seasonal (periodic) component with 475 

period d, and a random noise component. We apply a seasonal filter [45] to the supplied 476 

given data series to get estimated periodic data: in Fig. 5 (upper), we present the long-477 

term seasonal data of the data series;. Finallyfinally, by removing the periodic data from 478 

the original data, deseasonalized data is obtained (shown in Fig. 5 (lower)),  deseasonal-479 

ized data (shown in Fig. 5 (lower)) is obtained by removing this periodic data from the 480 

original data, consisting consisting of a random noise element and a less obvious trend 481 

element. 482 

Based on the previous analysis, we now use the Kalman-filter theory [17] to develop 483 

an estimation model of the time series data to compute a node’s inherent popularity in a 484 

time interval. The Kalman filter is widely used in control system design to estimate un-485 

measured process conditions. It can calculate the best estimates of the current states of a 486 

dynamic system defined in a state vector. The state is updated based on periodic observa-487 

tions of the system. We use a typical state space model [46] to express the problem in our 488 

 

Figure 4. (left) the changes of node degree of an illustrative hub node in Reality (measured by node 

degree in a 6-hour time window), and (right) the detected periodicities of the node’s degree. This 
describes that the node popularity in the mobile social network fluctuates over time and has a weekly 

period. 
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Figure 5. (upper) long-term seasonal data, and (lower) deseasonalized data of the hub node’ 

degree in Fig. 4. These figures show that node popularity in mobile social networks typically 
comprises a periodic (seasonal) component along with a random noise component. 
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model. Furthermore, we only investigate the case when a seasonal component dominates 489 

the time series (see [47] for the discussion of Kalman-prediction for a complete model). 490 

The state space model is constituted by two scalar equations, namely the observation equa-491 

tion and the state equation. For our model with (only) a seasonal component, the observa-492 

tion equation is given as follows 493 

𝑦𝑡 = 𝑆𝑡 + 𝑊𝑡  ,       𝑡 = 1,2,… (3) 

where 𝑆𝑡  is a state variable and 𝑊𝑡  is an additive white noise with zero mean and vari-494 

ance 𝜎𝑤
2  (𝑊𝑡 = 𝑊𝑁(0,𝜎𝑤

2)). Furthermore, when we consider 𝑆𝑡  representing a seasonal 495 

component with a period d such that 𝑆𝑡+𝑑 = 𝑆𝑡 and ∑ 𝑆𝑡 = 0𝑑
𝑡=1 , it is therefore possible to 496 

determine 𝑆𝑡+1 as 497 

𝑆𝑡+1 = −𝑆𝑡 − 𝑆𝑡−1 …− 𝑆𝑡−𝑑+2 (4) 

For a more general expression of 𝑆𝑡  allowing random deviations to exist in the periodic-498 

ity, a white noise term 𝑉𝑡  (𝑉𝑡 = 𝑊𝑁(0,𝜎𝑤
2)) is added in the right hand side of (4). After-499 

wards, regarding only the seasonal effect on the series, in order to obtain the state equation 500 

for our model, we introduce (𝑑 − 1) dimensional state vector 𝐗t defined as 501 

𝑿𝑡 = [ 𝑆𝑡    𝑆𝑡−1   …  𝑆𝑡−𝑑+2]
𝑇 (5) 

and the series 𝑆𝑡  is determined as 502 

𝑆𝑡 = [1  0  0  0  …    0] 𝑿𝑡  (6) 

For the purpose of the derivation of Kalman-prediction, the observation equation in (3) is 503 

now rewritten in a general form as follows 504 

𝑌𝑡 =  𝐺𝑡𝑿𝑡 + 𝑊𝑡  (7) 

with  𝐺𝑡 = [1  0  0  0 …  0], and 𝐗t satisfies the state equation 505 

𝑿𝑡+1 =    𝐹𝑡𝑿𝑡 + 𝑽𝑡  (8) 

with  𝐕𝑡 = [𝜎𝑣
2 0  0 …  0]𝑇, and 𝐹𝑡 =

[
 
 
 
 
  −1    − 1    …    − 1    − 1
   1      0    …       0      0
   0      1    …       0      0
   ⋮       ⋮     …       ⋮       ⋮
   0      0    …       1      0 ]

 
 
 
 

 506 

 507 

Given the observation equation in (7) and the state equation in (8), the recursive equations 508 

of Kalman-filter for the estimation of the values of the series are defined as follows. Con-509 

sidering the initial settings as 510 

�̂�1 =  𝑃((𝑿1|𝒀0) (9) 

𝛺1 =  𝐸((𝑿1 − �̂�1)(𝑿1 − �̂�1)
𝑇 (10) 

the Kalman recursive equations are then given as 511 

�̂�𝑡+1 = 𝐹𝑡�̂�𝑡 + 𝛩𝑡𝛥𝑡
−1(𝑌𝑡 − 𝐺𝑡�̂�𝑡) (11) 

𝛺𝑡+1 = 𝐹𝑡𝛺𝑡𝐹𝑡
𝑇 + 𝑄𝑡 − 𝛩𝑡𝛥𝑡

−1𝛩𝑡
𝑇  (12) 

where Δ𝑡 = 𝐺𝑡Ω𝑡𝐺𝑡
𝑇 + 𝑅𝑡  ,  Θ𝑡 = 𝐹𝑡Ω𝑡𝐺𝑡

𝑇  ,  𝑄𝑡 =

[
 
 
 
𝜎𝑣

2 0 … 0

0   𝜎𝑣
2 … 0

⋮
0

 ⋮
0

 
 ⋱
 0

⋮
𝜎𝑣

2]
 
 
 
,  and 𝑅𝑡 = σw

2 . 512 

. 513 
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 514 

As an example of node popularity estimation using the Kalman-prediction, we show in 515 

Fig. 7 the Kalman estimates of the hub node’s degree compared with the actual values of 516 

the node degree in the Reality mobility scenario (for the detail implementation of the Kal-517 

man-prediction on the node degree calculation in the ONE simulator, please refer to 518 

https://github.com/soelistijanto/TraLDA/routing/community/KalmanDegree.java). 519 

34.2. Social-relations popularity calculation 520 

An individual can gain (social) benefits from relationships with his/her more central 521 

or popular acquaintances in a social network. Depending on the substance of the relations, 522 

measures of node centrality can be classified as undirected (symmetric) relations, such as 523 

friendship and kinship, or directed (asymmetric) relations, such as choice and influence. 524 

Moreover, in directed graphs centrality is known as “prestige” [48], where the direction of 525 

the interaction is a key attribute for this metric. For instance, individuals who are picked 526 

as friends by many others have a special status – prestige in the group. In the literature, 527 

there exist metrics of prestige which consider both direct and indirect social influences. 528 

For instance, the centrality measures in [37,49] are based on the assumption that the im-529 

portance of a node in the network is determined by the importance of its neighbours. 530 

Thus, these metrics take into account both a node's connectivity to other nodes and its 531 

proximity to other important nodes. 532 

We now mention one of the widely used centrality measures, the Katz’s prestige 533 

measure [37]. This defines the prestige of node i in the graph G, denoted by 𝐶𝐾𝑎𝑡𝑧(𝑖), as 534 

the sum of the prestige of all i’s neighbours divided by their degrees. Node i therefore 535 

gains its prestige from having a neighbour j with higher prestige. This i’s prestige is how-536 

ever corrected by the number of neighbours of j, so if j has more relations, then i gains less 537 

prestige from friendship with j. This adjustment might be thought of correcting for i’s time 538 

spent with or relative access to j. As a result, node i’s Katz centrality in the graph G is 539 

determined as follows: 540 

𝐶𝐾𝑎𝑡𝑧(𝑖) = ∑ 𝑔𝑖𝑗  
𝐶𝐾𝑎𝑡𝑧(𝑗)

𝑑𝑗

 
𝑗≠𝑖

 (13) 

where 𝑔𝑖𝑗 = 1 if there is a relation between i and j, or “0” otherwise, and 𝑑𝑗  is the degree 541 

of j representing the number of j’s neighbours. 542 

Inspired by the Katz’s centrality measure, we introduce social-relations popularity, 543 

the node’s popularity derived from relationships with more popular nodes. This distrib-544 

utes the popularity of more (socially) important nodes to their less important neighbours, 545 

and thus takes neighbours’ popularity into account when calculating a node’s popularity. 546 

We employ (13) to compute a node’s social-relations popularity in a given time interval 547 

window as follows. To begin, we suppose that social influence occurs in only one direc-548 

tion, with nodes with lower popularity can only receive social benefits from their more 549 

popular neighbours; for instance, from (13) we can deduce influence from j towards i, 550 

denoted by 𝑔𝑗𝑖⃗⃗⃗⃗  ⃗ = 1 , exists when 𝐶𝐾𝑎𝑡𝑧(𝑗) >  𝐶𝐾𝑎𝑡𝑧(𝑖)  or “0” otherwise, and therefore 551 

𝑔𝑗𝑖⃗⃗⃗⃗  ⃗ ≠ 𝑔𝑖𝑗⃗⃗⃗⃗  ⃗ . Second, we assume that the popularity of a more important node is shared by 552 

its less important neighbours and is weighted by the strength of their interactions with 553 

the given node. As a result, the higher (social) level node gives more effect on the closer 554 

neighbours. Finally, the social-relations popularity of node i in time window t is defined 555 

as follows 556 

𝑃𝑠𝑜𝑐
𝑡 (𝑖) = ∑   

𝑔𝑗𝑖⃗⃗⃗⃗  ⃗ .  𝑤𝑗𝑖

∑    𝑔𝑗𝑘⃗⃗⃗⃗⃗⃗  .  𝑤𝑗𝑘𝑘∈𝐹(𝑗)
  .  �̅�𝑔𝑙𝑜𝑏𝑎𝑙

𝑡  (𝑗) 
𝑗∈𝐹(𝑖)

 (14) 

where 𝑔𝑗𝑖⃗⃗⃗⃗  ⃗   denotes the presence of a (social) influence of j towards i : 𝑔𝑗𝑖⃗⃗⃗⃗  ⃗  =1 for 557 

�̅�𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝑗) > �̅�𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 (𝑖), or =0 otherwise, 𝐹(𝑖) represents the set of i’s friends,  𝑤𝑗𝑖 is the 558 
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connection strength of i and j, and �̅�𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝑗) is the cumulative mean of global popularity 559 

in time window t calculated as follows 560 

�̅�𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝑗) = ∑ 𝑃𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 (𝑗)
𝑡−1

𝑡=1
/(𝑡 − 1) (15) 

where 𝑃𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝑗) is the instantaneous global popularity of j in time window t computed 561 

using (16) below. 562 

To give an example of the calculation of node social-relations popularity, we con-563 

sider a simple neighbourhood of node A in Fig. 6, comprising 4 neighbours with different 564 

levels of global popularity at a time t. Between a pair of nodes A and B, a black line indi-565 

cates the social connection between them, with 𝑤𝐴𝐵  represents their connection strength 566 

(e.g., measured in total contact duration (seconds)). A red dotted vector, on the other hand, 567 

denotes the influence of node B to A: 𝑔𝐵𝐴⃗⃗⃗⃗⃗⃗  ⃗ =1 if �̅�𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝐵) > �̅�𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 (𝐴), and =0 otherwise. 568 

Finally, the social-relations popularity of node A at time t is calculated as: 569 

 570 

𝑃𝑠𝑜𝑐
𝑡 (𝐴) =

𝑔𝐵𝐴⃗⃗⃗⃗⃗⃗  ⃗ .  𝑤𝐵𝐴 . �̅�𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  (𝐵) 

𝑔𝐵𝐴⃗⃗⃗⃗⃗⃗  ⃗ .  𝑤𝐵𝐴 + 𝑔𝐵𝐶⃗⃗⃗⃗⃗⃗  ⃗ .  𝑤𝐵𝐶

+
𝑔𝐶𝐴⃗⃗ ⃗⃗ ⃗⃗   .  𝑤𝐶𝐴 . �̅�𝑔𝑙𝑜𝑏𝑎𝑙

𝑡  (𝐶) 

𝑔𝐶𝐴⃗⃗ ⃗⃗ ⃗⃗   .  𝑤𝐶𝐴 + 𝑔𝐶𝐵⃗⃗ ⃗⃗ ⃗⃗   .  𝑤𝐶𝐵

+
𝑔𝐷𝐴⃗⃗⃗⃗ ⃗⃗  ⃗ .  𝑤𝐷𝐴  . �̅�𝑔𝑙𝑜𝑏𝑎𝑙

𝑡  (𝐷) 

𝑔𝐷𝐴⃗⃗⃗⃗ ⃗⃗  ⃗ .  𝑤𝐷𝐴 + 𝑔𝐷𝐸⃗⃗⃗⃗ ⃗⃗  ⃗ .  𝑤𝐷𝐸

571 

+
𝑔𝐸𝐴⃗⃗ ⃗⃗ ⃗⃗   .  𝑤𝐸𝐴 . �̅�𝑔𝑙𝑜𝑏𝑎𝑙

𝑡  (𝐸) 

𝑔𝐸𝐴⃗⃗ ⃗⃗ ⃗⃗   .  𝑤𝐸𝐴 + 𝑔𝐸𝐷⃗⃗⃗⃗⃗⃗  ⃗ .  𝑤𝐸𝐷

 572 

 573 

𝑃𝑠𝑜𝑐
𝑡 (𝐴) =

1 . 2000 . 7 

1 . 2000 + 0 . 1200
+

1 . 800 . 10 

1 . 800 + 1 .1200
+

0 . 3000 . 3 

0 .3000 + 0 .700
+

1 . 2500 . 8 

1 .2500 + 1 . 700
 574 

 575 

𝑃𝑠𝑜𝑐
𝑡 (𝐴) = 7 + 4 + 0 + 6.25 = 17.25 576 

 577 

 578 

34.3. TraLDA distributed algorithm 579 

In TraLDA, we combine a node’s inherent popularity and social-relations popularity 580 

to assess its global popularity. The instantaneous global popularity of node i in time win-581 

dow t, denoted by 𝑃𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝑖), is represented by  582 

𝑃𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝑖) =  𝑃𝑖𝑛ℎ𝑟

𝑡 (𝑖) +  𝜉 . 𝑃𝑠𝑜𝑐
𝑡 (𝑖) (16) 

 

Figure 6. A neighbourhood of node A, comprising 4 neighbour nodes which can gives social 

influences to node A. Social influences (red dotted vectors) to node A (red dotted vectors) exist 
when the global popularity of the neighbours is higher than A’s. 
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where 𝑃𝑖𝑛ℎ𝑟
𝑡 (𝑖) and 𝑃𝑠𝑜𝑐

𝑡 (𝑖) are node i’s inherent and social-relations popularity, respec-583 

tively, in time window t, and 𝜉 is a social influence factor which controls the impact of 584 

neighbours’ influences on the overall i’s popularity and is defined between 0 ≤ 𝜉 ≤ 1. 585 

When 𝜉 = 0, neighbours’ influences disappear and the node’s global popularity is solely 586 

dependent of the node’its own behaviour. The metric 𝑃𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝑖)  is further used by 587 

TraLDA to select optimal relays during node contacts. 588 

We now discuss how TraLDA is implemented in a distributed environment. In self-589 

organizing networks like MSNsmobile social networks, a node should be able to perceive 590 

its immediate neighbours autonomously. In TraLDA, we use the terminology “familiar 591 

set” in [50] to refer to a node’s group of friends (direct neighbours) (hereafter, called a 592 

friendship set F). Every node stores a map of the contacted nodes together with their total 593 

encounter times. When the pairwise total contact time surpasses a given friendship thresh-594 

old 𝐹𝑡ℎ, the contacted node is added in the given node’s friendship set. This implies that 595 

the two nodes now have a link, and in turn, we apply a direction and a weight on this 596 

connection to indicate the direction of social impact and the strength of the tie between 597 

them, respectively. Finally, in Algorithm 1 we describe how to calculate node popularity 598 

in MSNs mobile social networks using the TraLDA distributed algorithm. When a contact 599 

occurs in time window t and the contacted node is in the current node’s friendship set, 600 

the two nodes exchange two items of data to compute their social-relations popularities: 601 

�̅�𝑔𝑙𝑜𝑏𝑎𝑙
𝑡−1 (. ) the mean of global popularity in time window 𝑡 − 1, and 𝑡𝑠𝑙𝑜𝑤𝑒𝑟(. ) the total 602 

strength of connections to the less popular neighbours. The latter is computed as 603 

∑  𝑔𝑗𝑘⃗⃗⃗⃗⃗⃗  .  𝑤𝑗𝑘𝑘∈𝐹(𝑗) , where k is the direct neighbours of j, 𝑤𝑗𝑘  is the connection strength of 604 

j and k, and 𝑔𝑗𝑘⃗⃗⃗⃗⃗⃗  is the existence of influence of j towards k. The current node modifies its 605 

social-relation popularity and then recalculates both its instantaneous global popularity 606 

and cumulative average global popularity based on this peer’s data. When the contact 607 

ends, if the contacted node is not in the friendship set yet, then the current node updates 608 

a map (𝑝𝑒𝑒𝑟, 𝑡𝑠(𝑝𝑒𝑒𝑟)) . Finally, the peer will be added to the friendship set when 609 

𝑡𝑠(𝑝𝑒𝑒𝑟) exceeds the threshold 𝐹𝑡ℎ. (The implementation of the TraLDA distributed algo-610 

rithm in the ONE simulator is available online at 611 

https://github.com/soelistijanto/TraLDA). 612 

 613 
 614 

Algorithm 1. TraLDA node global popularity calculation (i) 

 

require:  𝑃𝑠𝑜𝑐
0 (𝑖) ← 0 ,  �̅�𝑔𝑙𝑜𝑏𝑎𝑙

0 (𝑖) ← 0 

while i encounters j in time window t do 

  /*update current node’s global popularity based on the peer’s information*/ 

    if 𝑗 ∈ 𝐹(𝑖) then 

         send      (�̅�𝑔𝑙𝑜𝑏𝑎𝑙
𝑡−1 (𝑖), 𝑡𝑠𝑙𝑜𝑤𝑒𝑟(𝑖)) 

         receive    (�̅�𝑔𝑙𝑜𝑏𝑎𝑙
𝑡−1 (𝑗), 𝑡𝑠𝑙𝑜𝑤𝑒𝑟(𝑗)) 

         calculate 𝑃𝑠𝑜𝑐
𝑡 (𝑖)                 (14) 

         calculate 𝑃𝑖𝑛ℎ𝑟
𝑡 (𝑖)                 (9) – (12) 

         calculate 𝑃𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝑖)               (16) 

         calculate �̅�𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝑖)               (15) 

    end if    

 

  /* exchange instantaneous node global popularity */ 

    send     𝑃𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝑖) 

    receive   𝑃𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (𝑗) 

 

 /*when the contact ends*/ 

    if  𝑗 ∉ 𝐹(𝑖) then 
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          update map (𝑗, 𝑡𝑠(𝑗)) 

         if ts(j) > 𝐹𝑡ℎ  then  𝐹(𝑖) ← 𝑗 

         end if 

    end if 

end while 

 

 

45. Simulation and Discussion 615 

45.1. Simulation setup 616 

The scenarios of simulations and evaluation metrics considered in the TraLDA’s in-617 

vestigation are now discussed. We implement TraLDA and the algorithm benchmarks on 618 

in the Opportunistic Network Environment (ONE) simulator [22]. For the simulations, we 619 

vary the total number of nodes and simulation time dependent of the mobility scenarios. 620 

A warm-up phase of 30% of the simulation duration is used to enable nodes to gather 621 

information about the network’s states. We set the node buffer to 20 MB, while the mes-622 

sage size and its TTL are set to 10kB and 7 days, respectively. A new message is generated 623 

at a rate of 12 messages per hour at a random node, and is directed to a randomly selected 624 

destination. For each algorithm, the simulations are run five times with distinct random 625 

number seeds. 626 

For mobility scenarios, we use two realistic, long period of human encounter da-627 

tasets, Reality [39] and Sassy [51]. In Reality, 100 mobile phones were carried by MIT staffs 628 

and students during nine months. The phones were running software that performed 629 

Bluetooth device discovery every 5 minutes, logging contacts with nearby Bluetooth-ena-630 

bled devices. The dataset gathered device contacts in the campus over the given period. 631 

The traces were acquired in Sassy, however, utilizing TMote invent devices carried by 632 

academics of University of St. Andrews. The invent devices were designed to broadcast 633 

beacons every 6.67 seconds to detect other devices within a 10-meter radius. The experi-634 

ment was conducted for 74 days, where they were asked to bring the devices at all times, 635 

whether in or out the town. 636 

For performance evaluation, we utilize the following evaluation metrics: 637 

1. Delivery ratio: the ratio of the number of messages delivered to the number of new 638 

messages created. 639 

2. Delivery latency: the time it takes for a message to be created and forwarded to the 640 

intended recipient. 641 

3. Message overhead ratio: the fraction between total overhead messages and total de-642 

livered messages. The total overhead messages is computed as the number of for-643 

warded messages minus the number of messages successfully delivered 644 

4. GINI index: this statistical dispersion measure [52] computes the disparity between 645 

values of a frequency distribution. Here, the GINI index is used to quantify the fair-646 

ness level of traffic load distribution in the network: a value of “0” indicates that traf-647 

fic is divided equally among network nodes, while a value of “1” indicates that all 648 

network traffic is processed by a single node. 649 

4.  650 

45.2. Simulation results and discussions 651 
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We now present the simulation results and discussions of the delivery performances 652 

of conventional BubbleRap [21] (hereafter, called BubbleRap) and conventional SimBet [20] 653 

(hereafter, called SimBet) compared with their improved versions within the TraLDA 654 

framework (hereafter, called Bubble-TLDA and SimBet-TLDA, respectively) in the given 655 

mobility scenarios, Reality and Sassy. 656 

45.2.1. BubbleRap vs. Bubble-TLDA 657 

BubbleRap bases its routing on both node global popularity and the community to 658 

which the destination belongs to. When either the current node or the encountered node 659 

is in the destination’s community, routing choices decisions are performed based on local 660 

popularity, which is the popularity of a the node within a giventhe given community; 661 

otherwise, global popularity is considered. In BubbleRap, the C-Window method is used 662 

to compute node global popularity. This method calculates a node’s degree value in the 663 

current time window by simply taking the average of all the node’s degree values in prior 664 

time windows. , which is a cumulative mean of all node degree values in prior time win-665 

dows. TraLDA, on the other hand, estimates node inherent popularity in a time window 666 

(also measured in node degree) based on the Kalman-prediction, which considers the reg-667 

ularity periodicity of human activityactivities. For a performance comparison between 668 

two schemes, As an illustration, in Fig. 6 7 we show the time series of an illustrative hub 669 

node’s degree values in Reality. In every each single time window, the node’s degree 670 

value is determined based on real measurement (𝑦𝑡), C-Window (�̅�𝑡), and Kalman-predic-671 

tion (�̂�𝑡) (we show these values in a daily basis to make them easily observed). For Kal-672 

man-prediction, we assume (from Section 3.1) that the seasonality 𝑆𝑡  is known with the 673 

period of 7 days. Fig. 6 7 shows that Kalman-prediction captures fluctuations in the node 674 

degree values, and thus delivers more accurate estimations of the instantaneous node’s 675 

popularity compared to BubbleRap’s C-Window. C-Window reacts slowly to variations 676 

in node popularity and ignores the regularity of human activity. 677 

We next discuss the delivery performance of BubbleRap compared with that of Bub-678 

ble-TLDA in the Reality and Sassy scenarios based on the given evaluation metrics. As we 679 

noted above, BubbleRap considers node global popularity and the community of the des-680 

tination belongs to when making forwarding decisions. To determine the community of a 681 

node, For the latter case, we exploit the k-clique community detection in [50] to determine 682 

the community of a given node.. For the parameters of the k-clique scheme used by both 683 

BubbleRap and Bubble-TLDA, for Reality we choose k=5 and familiar threshold 𝑇𝑡ℎ=250k 684 

seconds for Reality, and for Sassy k=3 and 𝑇𝑡ℎ =3k seconds. Moreover, For for the 685 

 

Figure 67. Node degree values of an illustrative Reality hub node in a certain time window, com-

paring the actual value, the Kalman prediction, and the C-Window estimate. Kalman-prediction 
clearly outperforms C-Window when estimating the actual node’s degree level in each time win-

dow, and it captures the periodic pattern of the node degree quite well. 

 

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Time window (24-hour-based)

N
o

d
e
 d

e
g

re
e

 

 

Actual

C-Window

Kalman-Prediction



Algorithms 2022, 15, x FOR PEER REVIEW 19 of 27 
 

TraLDA’s parameters in Bubble-TLDA, we use two different distinct values of friendship 686 

thresholds for each mobility scenario: 𝐹𝑡ℎ=150k seconds and 300k seconds for Reality, and 687 

𝐹𝑡ℎ=2k seconds and 3k seconds for Sassy. In addition, for both mobility scenarios, we use 688 

a social impact factor (𝜉) of 0.8, which determines the weight of neighbours’ influences on 689 

the overall node’s popularity. 690 

As previously mentioned in the node social-relations popularity (Section 4.2), stated, 691 

the neighbourhood of a node is defined in terms of a friendship set, with the peeranother 692 

node being involved in the node’s friendship set if their pairwise total encounter time 693 

surpasses a given friendship threshold (𝐹𝑡ℎ). Indeed, this threshold is critical for TraLDA’s 694 

performance as it dictates the size of a friendship set of a givena node’s friendship set, 695 

which in turn impacts the the node’s network-wide social influence in its neighbourhood. 696 

For instance, we show in Table-1 we show the comparison of  the friendship sets of hub 697 

node and non-hub node in the Reality scenario of Reality hub node and non-hub node for 698 

different various values of friendship threshold (𝐹𝑡ℎ) (in seconds). In the case of hub node, 699 

we notice that increasing the friendship threshold 𝐹𝑡ℎ makes decreases the node’s friend-700 

ship set shrinking (Table-1(a)). This also implies that as 𝐹𝑡ℎ increases, the spread of social 701 

influences of the hub node to its neighbours diminishes. Since a hub node, in general, is 702 

more the most active node in the network, it consequently has weaker ties with its neigh-703 

bours. Furthermore, Granovetter [53] underlined the relevance of weak relationships in 704 

information dissemination in social networks. A non-hub node, on the other hand, has 705 

stronger relationships to its friends (direct neighbours), and as indicated in Table-1(b) the 706 

friendship threshold (𝐹𝑡ℎ) in this case has a small influence on the node’s friendship set 707 

size. 708 

Table 1. The friendship sets of Reality’s hub node and non-hub node in Reality for different values 709 

of 𝐹𝑡ℎ. 710 

(a) Node 80 (hub node) (b) Node 3 (non-hub node) 

𝑭𝒕𝒉 (s) Friendship Set (node ID) 𝑭𝒕𝒉 (s) Friendship Set (node ID) 

150k [5, 7, 13, 15, 17, 20, 22, 32, 82, 84, 85, 95] 150k [45, 63, 82, 95, 96] 

200k [5, 7, 13, 17, 20, 22, 32, 82, 84, 95] 200k [45, 63, 82, 95, 96] 

250k [5, 7, 13, 17, 20, 22, 82, 84, 95] 250k [45, 63, 82, 95, 96] 

300k [5, 13, 17, 22, 82, 84, 95] 300k [45, 63, 82, 95, 96] 
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  711 

Finally, we depict the delivery performances of BubbleRap and Bubble-TLDA in Re-712 

ality and Sassy in Figs. 7 8 and 89, respectively, based on the four performance metrics 713 

mentioned before. For Bubble-TLDA, we consider two distinct friendship thresholds for 714 

each scenario: for Reality 𝐹𝑡ℎ=150ks and 300ks, but and for Sassy 𝐹𝑡ℎ=2ks and 3ks. Since 715 

the primary purpose of TraLDA is to enhance fairness in forwarding across network 716 

nodes, we notice in these figures that this is achieved: Bubble-TLDA can improve the traf-717 

fic distribution fairness in both scenarios, indicated by the reduced of GINI index. The 718 

improved traffic fairness of Bubble-TLDA has a little impact on the delivery rate, i.e. Bub-719 

  

  

Figure 78. Performance evaluation of BubbleRap and Bubble-TLDA (𝜉=0.8) for the Reality mobility 

scenario, comparing the delivery performances of BubbleRap and its improved version, Bubble-
TLDA. Bubble-TLDA significantly decreases of the GINI index of BubbleRap in this case, without 
negatively impacting other delivery performances.  

 

 

  

Figure 910. (left ) the traffic load distribution among nodes in Reality for BubbleRap, and (right) for 

Bubble-TLDA (𝜉=0.8, 𝐹𝑡ℎ=150ks). Clearly, the improved node popularity calculation of TraLDA 

on BubbleRap significantly reduces the traffic load in the hub nodes, while increasing the relay 

traffic in majority of non-hub nodes. 

 

 

0

2

4

6

8

10

12

14

16

18

20

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

To
ta

l r
ec

ei
ve

d
 m

es
sa

ge
s 

(%
)

Node ID

0

2

4

6

8

10

12

14

16

18

20

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

To
ta

l r
ec

ei
ve

d
 m

es
sa

ge
s 

(%
)

Node ID

  

  

Figure 89. Performance evaluation of BubbleRap and Bubble-TLDA (𝜉=0.8) for the Sassy 

mobility scenario. In this case, Bubble-TLDA slightly improves the traffic distribution (in-
dicated by a reduced GINI index), while keeping other delivery performances as high as 
those of BubbleRap  
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ble-TLDA keeps the delivery success rate as high as that of BubbleRap. In addition, Bub-720 

ble-TLDA with a lower friendship threshold (𝐹𝑡ℎ) can give a more significant impact on 721 

reducing the GINI index. As mentioned in Table-1, the lower friendship threshold (𝐹𝑡ℎ) 722 

means the wider influences of hub nodes on their neighbourhoods, resulting in more non-723 

hub nodes can increases their popularity and, in turn, may become better relays. For ex-724 

ample,  can decrease the GINI index of BubbleRap, while maintaining the delivery suc-725 

cess rate as high as BubbleRap in both mobility scenarios. Additionally, in Fig. 9 10 we 726 

show the distribution of traffic load among nodes in Reality for BubbleRap and Bubble-727 

TLDA (𝜉=0.8, 𝐹𝑡ℎ=150ks). Bubble-TLDA is clearly capable of significantly reducing the re-728 

lay traffic managed by the most popular nodes (hub nodes), while, on the other hand,  729 

simultaneously increasing the total relay traffic handled byon most a large number of non-730 

hub nodes, and thereby improving traffic load balancing across network nodes in the net-731 

work (a lower GINI index compared to BubbleRap as shown in Fig. 7 (lower-left)).  732 

 733 

The large reduction in load in the most popular nodes in the case of Bubble-TLDA, 734 

on the other hand, has a negativenegatively influence impacts on the delivery latency. In 735 

both scenariosReality and Sassy, as illustrated in Fig. 7 8 and 8 9 (upper-right), Bubble-736 

TLDA increases delivery time beyond that of BubbleRap. Reducing traffic on the hub 737 

nodes implies that most of the network traffic is diverted away from the shortest-paths 738 

through these nodes, and now traverses on the suboptimal-paths via non-hub nodes 739 

which typically longer than the shortest-paths, resulting in a longer delivery time.  740 

Subsequently, we describe investigate the effect of a social impact factor (𝜉) on Bub-741 

ble-TLDA’ performance, particularly delivery latency and GINI index. In TraLDA, a social 742 

impact factor (𝜉) determines the weight of neighbours’ influences on the node’s global 743 

popularity. From (16), when the social impact factor (𝜉) decreases, the effect of neighbours’ 744 

importance on the node’s popularity weakens, and thus the node’s popularity merely re-745 

lies on its own mobility pattern or sociability level in the social network.  In Fig 1011, we 746 

depict the impact of varying social impact factor (𝜉) on the GINI index and average deliv-747 

ery latency in Reality and Sassy.  From (16), when 𝜉 decreases, the effect of social-rela-748 

tions popularity in the node’s popularity weakens, and thus the node’s inherent popular-749 

ity is more considered. As illustrated in Fig. 10 11 (left), when the social impact factor (𝜉) 750 

increases, the GINI index in both scenarios decreases, with the reduction is more obvious 751 

in Reality. This demonstrated that considering neighbours’ popularity influences on the 752 

node’s global popularity computation indeed improves fairness in forwarding of Bub-753 

bleRap. However, increasing the social impact factor (𝜉) lengthens This demonstrates that 754 

  

Figure 1011. (left) social impact factor (𝜉) vs. GINI index, and (right) social impact factor (𝜉) vs. 

delivery latency of Bubble-TLDA for Reality (𝐹𝑡ℎ=150ks) and Sassy (𝐹𝑡ℎ=2ks). A social impact factor 

represents the contribution of neigbours’ influence on the node popularity. A higher 𝜉 leads to a 

lower GINI index, but somewhat increases the delivery delay.  
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integrating social-relations popularity in the node global popularity computation im-755 

proves fairness in forwarding across network nodes. On the other hand, the growth of 𝜉 756 

improves the delivery delay time in both scenarios. The greater the value of the social 757 

impact factor (𝜉), the more traffic is redirected from optimal paths (via hub nodes) to sub-758 

optimal paths (through non-hub nodes), which are often longer than the shortest routes 759 

(via hub nodes) to the destination. Finally, for the case of message overhead ratio, Bubble-760 

TLDA marginally rises BubbleRap’s delivery cost in both mobility scenarios (Fig. 7 and 8 761 

(lower-right)). This implies that reducing traffic in hub nodes, while increasing traffic in 762 

non-hub nodes gives a less impact on the delivery overhead, i.e., Bubble-TLDA is able to 763 

maintains the total message copies as high as BubbleRap. 764 

 765 

 766 

45.2.2. SimBet vs. SimBet-TLDA 767 

For the last TraLDA’s analysis, we now consider SimBet routing [20]. SimBet uses 768 

two distinct social properties, namely betweeness centrality and social similarity, to cal-769 

culate node utility to a given destination. Both the SimBet’s utility metrics are calculated 770 

based on a binary model of a social connection, where a value of “1” denotes that a pair 771 

of nodes have known each other, and “0” otherwise. The binary social relationships may 772 

create a substantial issue in forwarding fairness, since a node having large contacts with 773 

other nodes will always be considered as the popular nodes regardless of time. Using the 774 

graph with binary links,  To quantify node centrality, SimBet computes node betweeness 775 

centrality based  on an ego-centric network approach, since the global network topology 776 

information is commonly unavailable for nodes in MSNs. Node social similarity, on the 777 

other hand, is calculated as the number of common encountered nodes between a pair of 778 

  

  

Figure 1112. Performance evaluation of SimBet and SimBet-TLDA (𝜉=0.8) for the Reality 

mobility scenario. As in the case of BubbleRap, in this case TraLDA is also able to substantially 

reduce the SimBet’s GINI index, without much affecting other delivery performances. 
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nodes. In the end, A thenode’s SimBet utility of a node is computed as the weighted com-779 

bination of betweeness centrality and similarity, with a parameter α that which balances 780 

the two metrics’ respective relevance. FurthermoreHowever, for SimBet-TLDA, the Sim-781 

Bet routing within the TraLDA framework, we modify the calculation of node betweeness 782 

of SimBet with the calculation of node global popularity of TraLDA using (16). Fi-783 

nallyEventually, in Figs. 11 and 12 we depict the delivery performances of SimBet and 784 

SimBet-TLDA for Reality and Sassy, respectively. For TraLDA’s social-relations parame-785 

ters, namely friendship threshold (𝐹𝑡ℎ) and social impact factor (𝜉), we again consider the 786 

similar settings used in the previous investigation of Bubble-TLDA. Moreover, for both 787 

SimBet and SimBet-TLDA we choose a SimBet’s weighting parameter α =0.5, assigning an 788 

equal importance to the global popularity and social similarity utilities in both Reality and 789 

Sassy. 790 

The major purpose of SimBet-TLDA is to enhance traffic load balancing across net-791 

work nodes, and as seen in Figs. 11 12 and 12 13 (lower-left) the GINI index performance 792 

of SimBet-TLDA can outperform that of SimBet. As previously stated, using binary rela-793 

tionships to calculate node centrality makes a node’s utility relatively constant over time, 794 

ignoring the dynamics of human behaviour. As a result, majority of network traffic is di-795 

rected to the most central nodes (hub nodes), creating a traffic imbalance in the network. 796 

A node’s centrality in SimBet-TLDA, however, is determined by considering both the pe-797 

riodicity of human activities as well as the centrality of the neighbours of the nodes. This 798 

can reduce the traffic in the most central nodes and distributes the traffic more equitably 799 

across the network nodes, indicated by the reduce of GINI index in both mobility scenar-800 

ios. Furthermore, The GINI index reduction in SimBet-TLDA is more obvious in the case 801 

of a lower friendship thresholds (𝐹𝑡ℎ). As described in Table. 1, a lower friendship thresh-802 

old results in This is because with a lower 𝐹𝑡ℎ , the influence of more popular central nodes 803 

are wider in their neighbourhood, and consequently hence, many more less -popularcen-804 

tral neighbour neighbours nodes can increase their popularity and may afterwards can 805 

become a good candidate relays now. Moreover, the reduce of GINI index This GINI index 806 

reduction, moreover, slightly impacts on the delivery ratio, and SimBet-TLDA delivers 807 

the messages to the destinations with a success rate as high as that of SimBet. However, 808 

as in Bubble-TLDA, the GINI index decrease reduction in SimBet-TLDA also increases the 809 

delivery time in both mobility cases. The explanation of this is similar to that given in the 810 

Bubble-TLDA before, as follows: when SimBet-TLDA successfully reduces the GINI in-811 

dex, some of traffic is diverted away from the shortest-paths (through hub nodes) on to 812 

the sub-optimal paths (via non-hub nodes); in turn, increasing the average delivery time.  813 

Finally, in terms of message delivery costoverhead ratio performance, SimBet-TLDA per-814 

forms as well as SimBet in both scenarios, i.e., SimBet-TLDA creates (redundant) message 815 

copies as many as SimBet in the network. 816 
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 818 

56. Conclusion 819 

We presented TraLDA, a distributed framework aimed primarily at improving fair-820 

ness in forwarding among MSN nodes in mobile social networks. In TraLDA, we intro-821 

duce a novel calculation of node popularity, a function of inherent and social-relations 822 

popularity. We have demonstrated that TraLDA achieves this fairness, reducing the GINI 823 

index of BubbleRap and SimBet, but at the expense of an slightly increase of delivery delay 824 

of these routing schemes. Given that MSNs mobile social networks are assumed to be de-825 

lay-tolerant, the increased delivery latency is a reasonable trade-off given the enhanced 826 

network traffic fairness and lower resource use in the most popular nodes. 827 

For future work, we believe that TraLDA can be incorporated with buffer congestion 828 

control to further improve traffic load balancing across network nodes and simultane-829 

ously avoid congestion mainly in the most popular nodes.  830 
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