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REVIEW 1:

This paper proposes a novel method based on the Mark-Recapture technique to perform active node counting in opportunistic mobile
networks. The proposed method achieves lower cost than flooding-based forwarding algorithms, i.e. epidemic routing. The authors have
performed experiments with multiple scenarios including both random movement and real human mobility trace datasets and provided
performance results in terms of convergence time and ability to capture the true number of nodes. The paper makes an important
contribution to the literature on opportunistic networks, and the paper is quite well-written overall. However, some issues need to be
addressed to further improve the quality of the paper: 



- The authors could consider focusing more on the significance of the problem for different opportunistic network settings. How will the
model be utilizable for different conditions involving different types of nodes and different mobility scenarios (e.g. military opportunistic
networks etc)? 

- The current convergence time of the algorithm could be a bit slow for some scenarios. The authors should comment on the utility of the
algorithm for different settings. i.e. under what conditions would it make sense to use this algorithm. Also, it would be nice to include the
convergence time performance of existing algorithms from the literature, so the reader can have a reference for comparison. E.g. Epidemic
algorithms probably converge faster, but have higher cost. It would be nice to provide benefits/disadvantages of each. 

- The paper has some minor grammatical errors that should be fixed with thorough proofreading. 
- The term “popular” could mean different things in different settings. The authors should explain the term in more detail. 
- The references could be updated to include more recent work in the domain. 

================================================================================== 
REVIEW 2:

I think that the contribution is suitable for JoWUA. That is why research methodology is clear, and validation is detailed. 
However, it should give a more state of the art and discussion of the novelty of the work over state-of-the-art contributions. 
================================================================================== 



 

Response to the reviewer comments. 

We are very pleased that both Reviewer 1 and 2 have recommended that the article can be accepted, 
and we are very grateful to both the reviewers for their comments; they have allowed us to refine and 
clarify the paper. Our specific responses to their comments are below. 

Reviewer 1: 

-“The authors could consider focusing more on the significance of the problem for different 
opportunistic network settings. How will the model be utilizable for different conditions involving 
different types of nodes and different mobility scenarios (e.g. military opportunistic networks etc)?” 

Response: We have revised the manuscript to include some discussions about what conditions that the 
proposed algorithm can be utilized in various opportunistic network scenarios, namely: 

• In Introduction (on P. 2), we list the most important questions we answer on the paper. One of 
these is “how does node mobility impact the performance of the Mark-Recapture counting 
algorithm?”. We intend to emphasize the effect of node movement on the performance of our 
algorithm. From this, we can understand what kind of opportunistic network scenarios that are 
appropriate for our proposed algorithm. 

• In Related Work (on P. 4), we give a thorough discussion of node mobility considerations on the 
existing works (Section 2.2). We show that most of the state-of-the-arts algorithms are 
developed and evaluated based on the assumption of random mobility. 

• In Performance Evaluation (on P. 8-12), we realize that the proposed algorithm works ineffective 
in real human mobility cases, i.e. Haggle and Reality. Due to a non-random contact pattern, 
nodes with few contacts with others (we call them less popular nodes) suffer from a recapture 
issue, since they cannot recapture the (previously) marked nodes with the same probability. In 
addition, we also see that our benchmark algorithm, the gossip-based pairwise average, also has 
the same problem in these nodes. 

• However, in P. 11 we comment that in some specific cases of human mobility, for instance the 
work of UrbanCount [9], human mobility for some extent can be considered as random 
movement. UrbanCount uses a City-Square model, which is actually an improvement of 
Random-Waypoint. Consequently, we believe that in specific cases of human mobility (e.g. 
disaster, military, or crowd) our proposed algorithm can possibly be applied. 

• Finally, in P.12, we refer to mobile crowd sensing applications that use a client-server paradigm, 
where mobile devices sensing and reporting data to a central server (in a cloud) that process the 
data and distribute the result to nodes who need it. We suggest that the Mark-Recapture 
algorithm can also use this client-server paradigm, in that only a few (popular or most active) 
nodes perform a counting process and send the counting data to the server that will provide the 
final result to all the nodes.    

 

 

 



- “The current convergence time of the algorithm could be a bit slow for some scenarios. The authors 
should comment on the utility of the algorithm for different settings. i.e. under what conditions would it 
make sense to use this algorithm. Also, it would be nice to include the convergence time performance of 
existing algorithms from the literature, so the reader can have a reference for comparison. E.g. Epidemic 
algorithms probably converge faster, but have higher cost. It would be nice to provide 
benefits/disadvantages of each.” 

Response: We have included a gossip-based pairwise average as a benchmark to evaluate the 
performance of the proposed algorithm. We can list the findings as follows: 

• In Performance Evaluation (P. 8-9), we can see that Mark-Recapture can outperform the 
benchmark scheme, in terms of convergence time, in the random scenario (Fig. 3). 

• However, in the real human mobility scenario (Haggle and Reality) both the algorithms cannot 
work effectively, particularly in nodes having a few contacts with others (less popular nodes) 
(Fig. 5 and 7). 

• Nevertheless, as we described above, in some works (e.g. UrbanCount) human movement for 
some extend can be considered a random process. We believe Mark-Recapture can work 
appropriately in these specific cases. 

• On the other hand, referring to the case of mobile crowd sensing applications that use a client-
server paradigm, we therefore suggest that Mark-Recapture can be incorporated with these 
client-server model, where only a small number of nodes (i.e. popular or most active nodes) 
perform node counting and report data to the server that finally process and provide the final 
result to all nodes. Indeed, the use of a client-server architecture can solve the issue of node 
counting in real human mobility cases (e.g., in our case Haggle and Reality). 

• Lastly, our work in this paper as well as most of the existing works assume a closed system, 
where the number of nodes are constant during the experiment. An open system with churn, 
where nodes are allowed to enter and leave the area, is challenging and we take this as future 
work. 

 

-“The paper has some minor grammatical errors that should be fixed with thorough proofreading.” 

Response: We have checked and revised the grammatical errors in the paper. 

 
-“The term “popular” could mean different things in different settings. The authors should explain the 
term in more detail.” 

Response: We have clarified what “popular” mean in human-based opportunistic networks. In P. 9 we 
write: “Typically, individuals move to places or meet other people to fulfill their social needs, and social 
(contact) graphs are commonly used to describe their social relationships. The authors of [25] 
investigated several real human contact datasets and confirmed that human mobility typically possesses 
a non-random contact pattern, where a few nodes (individuals) have contacts (or relations) with many 
others, but majority of nodes only have few ones. The nodes having a large number of contacts with 
others are therefore socially very popular in the networks (these popular nodes also called hub nodes in 
social network analysis, SNA).”    



In a brief, we assert that “popular” in this social context meaning that popular nodes are very active in 
the area (or network) and have a large number of contacts with other nodes, therefore these nodes are 
very popular among others (in SNA, these nodes also called high degree nodes). 

 

-“The references could be updated to include more recent work in the domain.” 

Response: We have added more recent works in the area of node counting in the references, such as : 

• the work of UrbanCount, 2017 [9]  
• Estimation on a large network and its communities using random sample, 2016 [8] 
• The capture-recapture approach in computer networks, 2015 [15] 
• A survey of distributed data aggregation algorithms, 2015 [17] 
• Data collection and node counting by opportunistic communication, 2019 [19] 
• Mobile crowdsensing, 2011 [27] 
• Smartphone collaboration in data acquisition and distributed computing, 2014 [30] 

 

Reviewer 2: 

-“I think that the contribution is suitable for JoWUA. That is why research methodology is clear, and 
validation is detailed. 
However, it should give a more state of the art and discussion of the novelty of the work over state-of-
the-art contributions.” 
 
 Response: in Related work (P. 3-4), we gave more existing works and discussion to make our 
motivations and contributions clear. Subsequently, we revised the discussion in Related work, 
categorizing it into three categories: 

• Distributed algorithms for node counting: we divide the existing algorithms into two classes: 
aggregation and statistical sampling algorithms. We discuss the advantages and disadvantages 
of the schemes in each class. 

• Node mobility consideration: we discuss the assumptions and settings of node mobility in 
which the existing algorithms were developed and evaluated. 

• Applications of node counting: we describe the current applications of node counting in 
different scenarios, e.g. P2P networks, MANETs, urban settings, routing in OMNs.  
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  Abstract 

This article addresses the issues of counting the number of nodes in opportunistic mobile networks. The global 
knowledge of network size is commonly required to design optimal routing algorithms in OMNs. However, due to 
the inherent characteristic of long transfer delay, node counting in such intermittently-connected networks is a 
challenging task. In this paper, we propose the Mark-Recapture method to estimate the number of nodes in a 
network. In ecology, the statistical technique has been widely used to predict the population sizes of animals in 
open areas. The scheme initially samples nodes in the network, and an estimate of the network size is then calculated 
based on this partial knowledge of the network. Through extensive simulations driven by random movement and 
realistic mobility models, we show that the proposed method is able to produce a good estimate of network size 
within a relatively short duration of time. Finally, by tweaking Epidemic routing with the local estimate of network 
size, we can reduce the delivery cost of this flooding strategy without significantly degrading the overall network 
delivery performances. 
 
Keywords: network size, node counting, the Mark-Recapture method, opportunistic mobile networks 

 

1. Introduction 

Nowadays, opportunistic mobile networks (OMNs) [1] have received much attention by industry and research 
community. These networks are an extension of mobile ad-hoc networks (MANETs) and are an instance of 
delay tolerant networks (DTNs). While MANETs require end-to-end paths between sources and destinations to 
enable message transfer, OMNs are capable of performing communication despite the absence of stable paths 
between any pair of nodes. In MANETs node movement is considered as a potential disruption, but in OMNs 
data transfer is performed by opportunistic communication, leading to a higher delay than that of MANETs. 
Data dissemination in OMNs is thus delay-tolerant in nature. Some realizations of OMNs exist, including 
emergency scenarios and natural disasters [2], military operations [3], and social-based networks [4]. The widely 
use of mobile wireless devices, such as smart phones, gadgets, and laptops, is the main factor in the proliferation 
of these systems. 

In OMNs, searching for optimal paths between a pair of nodes is non-trivial task. Since the stable paths 
between any pair of nodes rarely exist at all the time, conventional routing algorithms proposed for MANETs 
would fail in this setting. This imposes a new model for routing in OMNs, the store-carry-forward paradigm 
[5]. This suggests that a message is stored and carried by relay nodes, and finally is forwarded when the 
destination is encountered. In this regard, choosing good relays for message transfers is indeed crucial in OMNs. 
A bulk of researches in OMNs have focused on developing effective routing protocols. To achieve this goal, the 
algorithms typically require complete information of the current network states. In practice, however, this global 
knowledge is commonly unavailable to all the network nodes. To improve the delivery performance, several 
algorithms opt to increase message redundancy in the network. Naïve approaches (e.g., Epidemic routing [6]) 
forward a message replica to each contacted node, so that the copies are quickly dispersed over the network. 
This oblivious forwarding assumes unlimited node resources, but this is hard to achieve in practice. On the other 
hand, some algorithms (e.g., adaptive Spray-Wait [7]) attempt to reduce the number of message replicas by 
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capping the message replication at a maximum value. To this aim, the protocol at each node needs to know the 
number of nodes in the network. However, estimating this global parameter in a decentralized manner is a non-
trivial task in OMNs, due to the highly dynamic topology changes and long transfer delays. 

In this work, we focus on the particular case of node counting in OMNs (the global statistic of the total number 
of nodes in a network is also referred to as network size). To date, distributed node counting has attracted interest 
from researchers, since a local estimate of network size is often very useful for building applications that are 
adaptive and robust. For example, the population algorithm in [8] uses a random sample to estimate the size of 
a large network and its communities; a crowd counting system in [9] estimates crowd sizes and densities for city 
administration and disaster management; a data dissemination protocol in [10] predicts the network size for 
limiting message redundancy. In the literatures, several distributed computing algorithms have been proposed 
in the area of global information collection and estimation in opportunistic networks. In addition, majority of 
them are modifications of data aggregation schemes proposed for well-connected networks (e.g., [11]). Even 
though Aggregation provides accurate estimates in the conventional networks, but it suffers from a number of 
difficulties in the context of OMNs as follows [12]: first, the delay time to converge to the actual network size 
is very long in such delay-tolerant networks; second, node failures will significantly degrade the performance 
of Aggregation. As an alternative to Aggregation, several distributed estimation algorithms for OMNs (e.g., 
[10,13,15]) are developed based on statistical sampling techniques. 

In this paper, we propose the Mark-Recapture method [14], a statistical technique used to estimate the number 
of nodes in an OMN. This technique has been widely used in ecology to predict the population sizes of animals 
or fishes in forests or seas, respectively. In the area of communication networks, the method has been utilized 
to estimate the network size in peer-to-peer (P2P) networks as well as multicast networks [15]. To the best of 
our knowledge, however, this paper is the first work that applies Mark-Recapture to perform node counting in 
OMNs. In addition, most of the existing works in distributed node counting in OMNs only consider a simple 
random i.i.d model when designing and evaluating the algorithms. In fact, such model may not be realistic to 
describe real human mobility cases [16]. In this paper, we investigate the proposed algorithm under both random 
movement and realistic mobility scenarios. The underlying node mobility contributes to node mixing, and in 
turn to the spreading of data. Consequently, the most important questions we answer in this paper are: 

• How does node mobility impact the performance of the Mark-Recapture counting algorithm in OMNs? 

• Can Mark-Recapture outperform Aggregation in OMNs in terms of estimation accuracy and 
convergence time? 

• Can a local estimate of network size improve the delivery performance of Epidemic routing [6] in 
OMNs? 

 

The main contributions of this paper are: 

• We present a distributed counting algorithm based on Mark-Recapture [14] to estimate the number of 
nodes in an OMN. 

• We evaluate the proposed algorithm via extensive simulations driven by random movement and real-
life mobility models. 

• We identify the performance improvement of Mark-Recapture compared to Aggregation in terms of 
estimation accuracy and convergence time. 

• Using local estimates of network size, we improve the delivery cost performance of Epidemic routing 
without significantly degrading the overall network delivery performances. 

 
The remainder of the paper is organized as follows. In Section 2, we introduce the related works and position 

our work concerning the state-of-the-arts in the area of node counting in OMNs. The problem description and 
the proposed distributed counting algorithm based on Mark-Recapture are presented in Section 3. In Section 4, 
we evaluate the estimation accuracy and convergence time of the scheme in OMNs through simulations under 
random movement and realistic mobility scenarios. Subsequently, we compare the performance of Mark-
Recapture with that of Aggregation in terms of estimation accuracy and convergence time. Finally, we 
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investigate the delivery performance improvement of Epidemic routing with local estimates of network size. 
We conclude the paper and present directions for future work in the last section. 

2. Related Work 

In this section, we review some state-of-the-art node counting algorithms for OMNs to indicate our 
motivations and contributions. We discuss the existing works that are related to our work in the following three 
categories. 

2.1. Distributed algorithms for node counting 

We can broadly distinguish two classes of methods for node counting in OMNs. Techniques of the first type 
are based on data aggregation algorithms, while those of the second type are based on statistical sampling 
algorithms. 

 
A. Aggregation algorithms 

To date, Aggregation has played an important role in modern distributed systems [17]. It can perform the 
evaluation of global properties of the systems in a decentralized way. Moreover, network size is a typical system-
wide property required by algorithms in many contexts. Jelasity et al. [11] proposed a distributed gossip-based 
aggregation algorithm for large dynamic networks. In this algorithm, each node periodically chooses one node 
among the neighbours, and afterwards the pair of nodes exchange and update their local estimates to assure 
quick convergence to the desired aggregate value. Since the scheme was developed under the assumption of 
stable links, it will not work properly in the context of opportunistic communication. In OMNs, links between 
nodes are created by sporadic contacts, occurring when they come in direct radio range. Consequently, the list 
neighbours is often not known in advance, and there is no neighbour sampling before links are established 
between the node and its neighbours. 

Guerrieri et al. [12] introduce a set of node counting strategies based on Aggregation for OMNs, namely 
pairwise average and population protocols. The former is a class of gossip protocols. At the beginning, one node 
(called an initiator) stores a value equals to “1” and all the remaining nodes stores “0”. At every contact, the 
nodes exchange their current values and update the stored value as the average of its value and the peer’s. 
Eventually, the algorithm converges to 1/N and the number of the network nodes is achieved as the inverse of 
the estimate. In contrast, the population protocols use tokens to calculate network size. At the initial run, each 
node is allocated a single token. At each contact, two nodes toss a fair coin and the one winning the ballot 
collects the whole peer’s tokens. At the end, tokens gather on a node that has the accurate estimation of the 
network’s size. However, randomly choosing nodes to collect tokens during node contacts may result in 
suboptimal performance: it leads to long convergence time and low estimation accuracy. To cope with these 
issues, Ning et al. [18] therefore propose a new technique that incorporates effective contact probability into 
counting process. On the other hand, the works in [9,19] apply a different strategy based on Aggregation of node 
states. When two nodes come into contact, they exchange the state sets and each node then establishes a union 
set containing the elements of both its own set and the peer’s. In the end, all nodes converge to have a set 
including the ids of all nodes in the network, and the network size is determined by the cardinality of the set. 

However, all the abovementioned Aggregation schemes suffer from common problems in OMNs, namely 
long convergence time and estimation accuracy sensitive to node failures. To deal with these issues, we propose 
a node counting algorithm based on a statistical sampling technique, i.e., Mark-Recapture [14]. In the following, 
we discuss the existing works that are developed based on statistical sampling techniques. 

 
B. Statistical sampling algorithms 

Statistical sampling methods produce a prediction of the system’s global properties based on the statistics 
attained from uniformly random samples. Sample-Collide [13] is proposed to calculate peer counting in overlay 
networks. The work in [10] applies a sampling technique based on Taxi-Problem (also known as Racing-Car 
Problem) to predict the number of active nodes in an OMN. In general, Taxi-Problem works as follows: one 
(also called initiator) wishes to estimate the number of taxis currently operating on the streets of a city. The taxis 
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are numbered consecutively from one to some unknown number N. The initiator observes and records the ids 
(=serial numbers) of all taxis that have passed in a given time interval. In addition, this scheme assumes that 
each taxi is equally likely to pass the initiator at any given time. Using the sampling data, an unbiased minimum 
variance estimator (UMVE) is finally computed as the best estimate of the total taxis in the given city. As shown 
in [10], the counting algorithm based on Taxi-Problem can work properly in OMNs to give a good estimate of 
network size. Despite the elegance of this technique, however, the effectiveness of Taxi-Problem in OMNs 
strictly depends on two conditions as follows: first, all nodes are consecutively numbered from 1 to N; second, 
the probability of encounter between any pair of nodes is uniformly distributed in the network. As opposed to 
Taxi-Problem, our proposed algorithm is relaxed from these constraints: it does not require the nodes either to 
be successively numbered or to have a homogeneous contact pattern. 

2.2. Node mobility considerations 

In the literatures, majority of the node counting algorithms proposed for OMNs are developed under the 
assumption of a simple random i.i.d model. In the class of Aggregation, for example, the gossip-based pair-wise 
average method [12] suggests that in each pair-wise contact nodes exchange their current values and store the 
new value as the average of their present values. Given that all nodes have an equal opportunity to meet any 
other node in the network, the algorithms of all the nodes eventually converge to a single values of actual 
network size. Moreover, the work of crowd counting in [9] proposes a fully decentralized Aggregation to 
calculate an accurate estimate of the crowd size. During a node contact, two nodes exchange their state sets 
containing the identities of the nodes already seen before. By assuming that all nodes (individuals) in the crowd 
follow a random walk (RW) mobility, they finally converge to have a set that includes the ids of all nodes in the 
crowd and the crowd size is then determined by the cardinality of the set. 

As similar to Aggregation, most of the existing works of node counting based on statistical sampling methods 
also rely on the assumption of random mobility. For instance, the work based on Taxi-Problem [10] strictly 
requires that the node contact pattern should be homogenous, so that the probability of any node encountering 
the initiator will be equal. In fact, however, real-life mobility deviates from the assumption of random i.i.d. 
mobility [16]. In [19], Li et al. study the effect of node mobility on data collection and node counting in OMNs. 
However, their investigation is still based on a homogeneous mobility pattern, where each node randomly selects 
the destination and speed: the destination follows a uniform distribution, but the speed follows a Gaussian 
distribution with the mean is constant, but the standard deviation varies during the experiment. Our proposed 
algorithm, however, is investigated under both random movement and realistic mobility scenarios. For the latter 
case, we use real human mobility models, which intrinsically possess a heterogeneous contact pattern [20], 
where a few nodes (called hub nodes) have many contacts with others, but majority of nodes only have few 
ones.  

2.3. Applications of node counting 

With the more powerful mobile wireless devices nowadays, it is not required to offload the processing to an 
edge server or a cloud computing service. In mobile computing, a computational task is executed independently 
in each node (mobile device), and by using communication all nodes share their individual outcomes and 
ultimately arrive at a convergence result. One of the typical tasks in distributed computing is calculating network 
size (i.e., the number of nodes in the network). This information can then be used as input by other applications 
or protocols. Some applications of node counting are as follows: network size is used for building and 
maintaining the distributed hash table in P2P networks [15]; in [21] the statistic is exploited in wireless mobile 
ad hoc networks (MANETs) to set up a quorum of a membership service; UrbanCount [9] applies a fully 
distributed crowd counting protocol to estimate crowd size during open-air events or rush hours for city 
administration; in [10] the knowledge of network size is required to optimize the performance of a routing 
algorithm in OMNs by minimizing the delivery cost. In this paper, we use local estimates of network size to 
improve the delivery cost performance of a flooding-based algorithm, i.e., Epidemic routing [6], by capping the 
message replicas to be a half of the network size. 
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3. The Mark-Recapture Distributed Estimation Scheme 

In this section, we propose a novel strategy of distributed estimation based on the Mark-Recapture technique 
to predict the number of nodes in an OMN. We initially introduce the basic scheme of Mark-Recapture widely 
used in ecology. We then discuss the system model and problem description and finally propose the Mark-
Recapture distributed estimation algorithm for OMNs. 

3.1. The Basic Mark-Recapture Method 

Wildlife managers commonly use the Mark-Recapture technique [14] (also called the Lincoln-Petersen 
method) to estimate the population size of animals or fishes in forests or seas before hunting or fishing seasons, 
respectively. The scheme comprises a single marking episode (also called a capture episode) and a single 
recapture episode. It initially starts with taking a sample of individuals in a natural population, marking and then 
sending them back to the original population and finally recapturing some of them as a basis for predicting the 
population size at the time of initial marking. The basic principle of the algorithm is that if a sample of the 
population is marked in some way, returned them to the original population, and after fully dispersed in the 
population a second sample (also called a recapture sample) is taken, the ratio of total marked individuals (m) 
to sample size (C) in the recapture sample will be equal to the ratio of total marked individuals in the initial 
sample (M) to the population size (N). That is, 

 

)_(
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)_(

)___(

sizepopulationN

initiallymarkedtotalM

sizerecaptureC

recaptureinmarkedtotalm =  (1) 

By rearrangement (1), we can calculate the estimate of the population’s size at the time of initial marking, as 

m

MC
N =ˆ   (2) 

However, the accuracy of Mark-Recapture relies on several assumptions as follows: 

• The population size should be constant during the period between the initial marking episode and the 
recapture episode. 

• The probability of all individuals being captured should be the same during both the episodes. 

• There must be sufficient time between the capture and recapture periods to allow all the marked 
individuals to be randomly mixed all over the population. 

• The marked individuals should not lose their marks between the two periods. 

3.2. System Model and Problem Description 

We consider an opportunistic mobile network, where the nodes move independently in a given area and 
communicate to the peers wirelessly. Communication occurs when nodes come into contact within their radio 
ranges. Our study is based on several assumptions as follows: 

• There are N mobile nodes in the network. 

• Nodes participate equally in the counting process. 

• Nodes do not provide fake information to others. 

• Nodes do not stop operations or abruptly leave the network all the time. 

• Any node can initiate a counting process whenever it needs to know the network size. 
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The purpose of this study is to make a prediction on the number of nodes in an OMN with high accuracy and 
a low delay. This particularly becomes a complex task in OMNs, since the node contacts are unpredictable and 
are limited in terms of time and bandwidth. Furthermore, this paper considers node counting in a closed system. 
In this setting, the number of nodes is fixed but unknown and needs to be predicted. Different scenarios may 
allow nodes to enter and leave the area (called an open system with node churn). However, as previously 
demonstrated in [9], node counting in an open system is more challenging, and providing an accurate count is 
not trivial. Therefore, we restrict the discussion in this paper to the case of closed systems, and all kinds of 

initiator-id total marks seq. number TTL
 

 

Fig. 1. The marking message structure 

Algorithm 1. The Mark-Recapture Distributed Algorithm 
 
/*initial marking phase: */ 
initiator-id ← initiator’s serial number 
total-marks ← M 
seq.number ← 0 
TTL ← ttl 
round ← 0 
 
//initiator starts a new counting round by creating a new marking message s 
if initiator then  
 createMarkingMessage(s.initiator-id, s.total-marks, s.seq.number++, s.TTL); 
 round++; 
end if 
 
//marking the encountered nodes with binary-marking until total-marks=1 
if contacted_node.marked = false and s.total-marks>1 then 
 sendMarkingMessage(s.total-marks=ܯہ 2⁄  ;(ۂ
 updateMarkingMessage(s.total-marks=ܯڿ 2⁄  ;(ۀ
end if  
 
/*recapture phase: */ 
recapture ← {} 
marked-nodes ← 0 
estimates ← {} 
 
//when contact occurs with node B 
if initiator and s.TTL>0 then 

if  !(recapture.contains(B)) then recapture.add(B); 
  if B.marked = true then marked-nodes++; 
  end if 
 end if  
end if   
 
/*the counting round terminates */ 
if initiator and s.TTL=0 then 
 estimate=calculateEstimate();     // using (2) 
 estimates(round).add(estimate); 
end if 
 
//calculate final estimate 
final_estimate=avg(estimates()) 
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opportunistic network applications that meet the requirements of Mark-Recapture mentioned above can use our 
proposed algorithm for estimating network size. 

3.3. The Proposed Algorithm 

We now discuss the proposed distributed estimation algorithm based on Mark-Recapture for OMNs. We 
divide the algorithm into two phases: initial marking and recapture. For node marking, we firstly define a 
marking message (Fig. 1) as a small (control) message containing a number of variables: initiator-id, total-
marks, sequence-number, and TTL. Initiator-id represents the identity of a node that initiates counting; total-
marks is the maximum number of nodes that can be marked during the marking session; sequence-number is 
the unique identity of a marking message, incrementing by one for each new counting initiation; finally, TTL is 
the time-to-life of a marking message which directly represents the duration of a single counting round. 

The marking episode starts when a node (called an initiator) initiates a counting process by creating a new 
marking message. When the initiator encounters another node, it marks the contacted node by sending a copy 
of the message to the peer. Moreover, we assume that the marked nodes do not drop the marking message before 
the message TTL expires. For the marking process, we have two possible strategies: first, only the initiator itself 
can mark the encountered nodes; indeed, this strategy is simple but takes a long time to completely perform 
node marking in an OMN. To speed up the process, the second strategy, we call it binary-marking, allows the 
already marked nodes to help the initiator to perform node marking: the initiator initially starts with a marking 
message with total-marks is set to M marks; when any node A (either the initiator or the marked node) that has 
total-marks m >1 encounters another node B that has not yet been marked, A then forwards the copy of the 
marking message to B with total-marks ݉ہ 2⁄ ݉ڿ and keeps ۂ 2⁄  for itself; if the total-marks is left with only ۀ
one mark, the node terminates marking other contacted nodes; particularly, when this case happens in the 
initiator, the algorithm subsequently switches the marking phase to a recapture phase (in this algorithm, we 
assume that only the initiator itself is able to perform the recapture process). 

Before commencing a recapture episode, the initiator must wait for some time to allow all the marked nodes 
to be randomly dispersed over the network. During the recapture period, at each contact the initiator records the 
id of the encountered node and then categorizes it into a marked or unmarked node: if the contacted node has 
the marking message with the id-initiator matches with the id of the initiator, the initiator then increments the 
marked-node counter. When the message TTL expires, the recapture episode finishes, and in turn the current 
counting round completely ends. In future, the initiator can launch another counting round by initially creating 
a new marking message with a unique sequence number (that is, the algorithm increments the sequence number 
by one for each new marking message creation). At the end of each counting round, the initiator computes the 
total number of nodes in the network using (2). The algorithm eventually returns the final estimate of network 
size as an average of the estimates obtained from the all previous counting rounds. We depict the pseudo-code 
of the Mark-Recapture distributed algorithm in Alg. 1. 

 

 
 

Fig. 2. Node counting in the random mobility scenario (N=50) 
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4. Performance Evaluation of the Proposed Algorithm 

In this section, we evaluate the performance of the Mark-Recapture distributed algorithm in OMNs. Initially, 
we conduct extensive simulations to investigate the estimation accuracy and convergence time of the proposed 
algorithm. Subsequently, we examine the performance improvement of Epidemic routing with local estimates 
of network size. In this study, we use the ONE simulator [22], a discrete-event simulator for delay-tolerant 
networks. For simulation’s mobility scenarios, we consider both random movement and real human mobility 
models. For the former case, we use the Random-Walk (RW) model packaged along with the ONE simulator. 
For the latter one, we consider two real human contact data traces, namely Haggle [23] and Reality [24], which 
represent the short-term and long-term human mobility traces, respectively. The Haggle trace captured the 
activities of 41 participants during the 2005 Infocomm conference lasted for 3 days in Miami, USA. However, 
Reality logged the activities of 97 students and staffs at the MIT campus during one academic year. The study 
was actually performed around 10 months. 

4.1. The Estimation Accuracy and Convergence Time of the Mark-Recapture Distributed Algorithm 

In this section, we discuss the accuracy and convergence time of Mark-Recapture in estimating the network 
size of an OMN. We initially consider the random movement scenario. In Fig. 2, we show the simulation results 
of Mark-Recapture that estimates the number of nodes in an OMN in the random case. In this setting, the total 
nodes in the network (N) is 50 nodes, the node mobility speed (v) is 1.5-2.5 m/s, and the simulation area is 5000 
X 5000 m2. We randomly choose nodes in the network as initiators (e.g., node ids 7, 35 and 41) and subsequently 
depict the counting results of these nodes with respect to simulation time in Fig. 2 (left) for total-marks=20. We 
see that the average estimates of all the given nodes eventually converge to the actual network size (N=50 nodes) 
at nearly the same time (≈ 18,000 sec or 5 hours). In Random-Walk, the probability of node contact is identically, 
independently distributed (i.i.d) in the network. All nodes therefore have the same probability of being captured 
in both the initial marking and recapture periods. As a result, as shown in Fig. 2 (left) the counting algorithms 
of all the nodes show similar counting performances, in terms of accuracy and convergence time. Afterwards, 
in Fig. 2 (right) we describe the effect of total-mark values on the algorithm’s performance when all the network 
nodes simultaneously perform node counting. We notice that for network with N=50, total-marks=20 gives the 
best performance among the others in terms of both accuracy and convergence time. Nevertheless, the 
performance differences among the given total-marks are insignificant in this random scenario, and all of them 
are eventually able to converge to the actual network size at a slightly different time. Finally, in Fig. 3 we 
compare the performance of Mark-Recapture with that of an Aggregation scheme, i.e. the Pair-Wise Average 
method [12] (hereafter, we call it PW-Avg for short), in the random scenario (the brief discussion of how PW-
Avg works is given in Section 2.1.A). We again randomly select nodes in the network as initiators and then run 

 
 

Fig. 3. Mark-Recapture (MR) vs. Pair-Wise Average (PW-AVG) in the random mobility scenario 
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the simulations by successively applying both the algorithms on the nodes. In Fig. 3 (left), we depict the counting 
performance of Mark-Recapture (total-marks=20) compared with that of PW-Avg in the random scenario for 
N=50. Even though the estimates of both the algorithms in the given nodes can eventually reach the actual 
network size, the estimates of Mark-Recapture nodes converge at a shorter delay time. The use of sampling 
strategy in Mark-Recapture effectively produces a good estimate of network size within a relatively short 
duration of time, while PW-Avg requires more time to enable the initiator to meet more nodes before having a 
proper result. Subsequently, in Fig. 3 (right) we show the effect of node density (e.g., N=50 and 100) on both 
the algorithms’ performances when all the network nodes perform node counting simultaneously. It is obvious 
that the increase of node density can reduce the convergence times of both the algorithms. Moreover, within the 
same node density, Mark-Recapture again outperforms PW-Avg in terms of convergence time. 

We now discuss the performance evaluation of the Mark-Recapture algorithm in real human mobility 
scenarios. Typically, individuals move to places or meet other people to fulfill their social needs, and social 
(contact) graphs are commonly used to describe their social relationships. The authors of [25] investigated 
several real human contact datasets and confirmed that human mobility typically possesses a non-random 
contact pattern, where a few nodes (individuals) have contacts (or relations) with many others, but majority of 
nodes only have few ones. The nodes having a large number of contacts with others are therefore socially very 
popular in the networks (these popular nodes also called hub nodes in social network analysis, SNA). Firstly, 
we consider the short-term contact traces, the Haggle dataset [23]. In this scenario, we deliberately choose 3 
nodes as counting initiators, namely node ids 21, 28, and 34, which represent the most-popular node, moderate-
popular node, and the least-popular node, respectively, in Haggle. We then depict the Mark-Recapture 
performances on these nodes in Fig. 4 (left) for total-marks=10. We notice that node 21 (the most popular node) 
can accurately estimate the network size in a relatively short time. In contrast, the less popular nodes (node 28 
and 34) fail to predict the network size (i.e., the estimates of these nodes never converge to the real network size 
throughout the simulation time). As opposed to random movement, human mobility possesses a heterogeneous 
contact pattern. Consequently, the most popular node can perform the recapture process properly (i.e., it can 
meet the marked nodes with same probability), leading to accurately estimate the network size. In the less 
popular nodes, however, when the marking process can be assisted by other nodes (since our scheme uses the 
binary marking scheme), the nodes cannot (re)capture the marked nodes with the same probability; in turn, this 
results in inaccurate estimates of network size. Furthermore, in Fig. 4 (right) we depict the average estimates of 
network size for several total-marks when all the network nodes simultaneously initiate counting processes. We 
notice that the average estimates of all the network nodes are significantly below the actual network size. Due 
to the inherent characteristic of non-random contact, only a few popular nodes (as initiators) can produce a good 
estimate of network size, while most of the network nodes (i.e., less popular nodes) fail to do this. Consequently, 
as shown in Fig. 4 (right), the whole counting processes initiated by all the Haggle nodes result in the average 

 
 

Fig. 4. Node counting in the Haggle mobility scenario (N=41) 
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estimates below the actual network size. Lastly, we compare the performance of Mark-Recapture with that of 
PW-Avg in the Haggle scenario. We again choose two nodes in Haggle as before, namely node 21 and 34, that 
represent the most popular node and the least popular node, respectively, and then apply both the algorithms on 
the nodes successively. In Fig. 5 (left), we show the counting performance of Mark-Recapture (total-marks=20) 
compared with that of PW-Avg in the two nodes in Haggle (N=41). It is obvious that both the algorithms in the 
most popular node (node 21) can work properly (i.e. the estimates of the node eventually converge to the actual 
network size). Moreover, Mark-Recapture can converge in a shorter time compared to PW-Avg in this popular 
node. In contrast, both the algorithms in the least popular node fail to produce a good estimate of network size. 
As described above, in Mark-Recapture the least popular node suffers from a recapture issue, as it cannot 
recapture the marked nodes with the same probability. Similarly, in PW-Avg the least popular node has only 
few contacts with others, therefore it cannot update the counting value properly, resulting in an incorrect estimate 
of network size. Furthermore, in Fig. 5 (right) we describe the counting performance of Mark-Recapture (total-
marks=20) compared with that of PW-Avg when all the network nodes initiate counting processes 
simultaneously. Since majority of nodes in Haggle are less popular nodes (due to the inherent characteristic of 
heterogeneous contact in real human mobility), we then see in Fig. 5 (right) that both Mark-Recapture and PW-
Avg are unsuccessful to predict the network size. Indeed, only a few nodes (i.e. popular nodes) in Haggle are 
able to effectively estimate the network size. 

 

 

 
 

Fig. 5. Mark-Recapture (MR) vs. Pair-Wise Average (PW-AVG) in the Haggle mobility scenario (N=41) 

 
 

Fig. 6. Node counting in the Reality mobility scenario (N=97) 
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The final mobility scenario we consider is the Reality dataset [24], which is captured the long-term human 
mobility traces. We purposely select 3 nodes as initiators, namely node ids 95, 84, and 87, representing the most-
popular node, moderate-popular node, and the least-popular node, respectively, and next apply Mark-Recapture 
on these nodes. In Fig. 6 (left), we illustrate the counting performances of Mark-Recapture in these nodes for 
total-marks=30. As similar to Haggle, we again see that the counting algorithm in the most popular node (node 
95) outperforms those of the less popular nodes (node 84 and 87). The estimate of the most popular node is able 
to nearly approach the actual network size in a relatively short time. In contrast, the algorithms in the less popular 
nodes are ineffective to estimate the network size (i.e. the average estimates of these nodes never converge to 
the actual network size throughout the simulation time). As in Haggle, less popular nodes in Reality suffer from 
the recapture issue, since they cannot (re)capture the marked nodes with the same probability. Furthermore, in 
Fig. 6 (right) we depict the average estimates of network size when all nodes in Reality simultaneously initiate 
counting processes for several total-mark values. Since majority of the Reality nodes are less popular nodes (due 
to the heterogeneous contact pattern) and the less popular nodes are typically not able to perform node counting 
properly (due to the recapture issue), as shown in Fig. 6 (right) the average estimates produced by all the Reality 
nodes therefore are far below the actual network size for all the given total-mark values. Finally, we compare 
the performance of Mark-Recapture with that of PW-Avg in Reality. We again choose node 95 and 87 
representing the most popular and the least popular nodes, respectively, and then apply both the algorithms on 
these nodes consecutively. In Fig. 7 (left), we illustrate the counting performances of Mark-Recapture (total-
marks=45) and PW-Avg on both the nodes. It is clear that both the algorithms can provide a good estimate when 
they are applied on the most popular node (node 95). In the least popular node, however, both the algorithms 
fail to accurately predict the network size and their estimates never converge to the real network size during all 
the simulation time. Furthermore, in Fig. 7 (right) we show the counting performance of Mark-Recapture (total-
marks=45) compared with that of PW-Average when all the network nodes initiate counting processes 
concurrently. As similar to Haggle, we again see that majority of the Reality nodes (i.e., less popular nodes) fail 
to produce an accurate estimate of network size in both the algorithms, resulting in the average estimates of all 
the nodes are far from the actual network size. Actually, only a small number of (popular) nodes can contribute 
a correct result in the average estimates in Fig.7 (right). 

To sum up, the counting performance of the Mark-Recapture distributed algorithm in OMNs is optimal, in 
terms of accuracy and convergence time, when all nodes move in a random manner in the area. In this case, all 
nodes are able to perform node counting properly, leading to accurately estimate the network size. Furthermore, 
Mark-Recapture can outperform an Aggregation scheme, i.e. PW-Avg, in terms of convergence time in the 
random scenario. However, both the algorithms suffer from a common problem in the real human mobility case, 
where only a few (popular) nodes are able to carry out node counting appropriately, while majority of nodes 
work ineffectively. Meanwhile, in some specific cases of real human mobility, such as in disaster, military and 
crowd scenarios, human movement is typically modelled as a random process. For instance, the work of 
UrbanCount [9] used a City-Square model [26] to describe the movement of people in a city square. This 

 
 

Fig. 7. Mark-Recapture (MR) vs. Pair-Wise Average (PW-AVG) in the Reality mobility scenario (N=97) 
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movement model is actually an improvement of Random-Waypoint. Based on this study, we therefore believe 
that Mark-Recapture still can be utilized in these specific cases of human mobility. On the other hand, mobile 
crowd sensing applications [27] use a client-server paradigm, where mobile devices sensing and sending data to 
a server (in the cloud) that further processes the data and distributes the result to users who need the result. Using 
this client-server architecture, we suggest that Mark-Recapture can be utilized for counting the number of nodes 
in human-based opportunistic networks, where only a small number of (popular or most active) nodes sampling 
and reporting data to a central server, and the server eventually provide the final result to nodes requesting the 
information. 

4.2. The Performance Improvement of Epidemic Routing with Local Estimate of Network Size 

In this section, we discuss the application of node counting in data dissemination in OMNs. We exploit a 
local estimate of network size obtained from the Mark-Recapture algorithm to improve the delivery cost 
performance of Epidemic routing [6]. In Epidemic routing, a node forwards message copies to all the neighbours 
within the radio range so that the copies are quickly disseminated all over the network. This oblivious forwarding 
achieves near-optimal in terms of delivery latency when the node resources are assumed to be unlimited. In 
practice, however, Epidemic routing tends to quickly deplete the node resources, such as power and resources, 
and eventually greatly reduces the network delivery performance. We therefore improve Epidemic routing by 
tweaking it based on the observation in [28] as follows: only the estimate of the number of nodes in the network 
(ܰ) is required to tune the number of copies (L), and Epidemic routing with ܮ = ܰ 2⁄  can achieve an optimal 
delivery delay with minimum resource overhead. In order to incorporate the estimate of network size discussed 
so far in Epidemic routing, we associate a variable with each message, namely total-copies (L) denoting the total 
number of message copies that can be forwarded by the source node and other nodes receiving a copy to L 
distinct relay nodes. When L copies have been spread, Epidemic routing stops to forward and lets each relay 
carrying a copy to perform direct transmission to the destination. Furthermore, in this experiment we set L to be 
a half of the local estimate of network size ( ܰ). We eventually compare Epidemic routing with a local estimate 
of network size (hereafter, we call it Epidemic-LE) to conventional Epidemic routing (hereafter, we just call it 
Epidemic) for three performance evaluations, namely delivery latency, overhead ratio, and total message 
dropped. We do not show the delivery ratio results since Epidemic-LE is able to achieve the delivery ratio as 
high as that of Epidemic in all scenarios. 

We firstly discuss the performance of Epidemic-LE compared with that of Epidemic in the random scenario. 
In Fig. 8 we show the performance comparison of these routing schemes in terms of the given evaluation 
measures for different network sizes. In this random case, all nodes independently initiate a counting process to 
attain a local estimate of network size ( ܰ), and subsequently create a new message with total copies ܮ = ܰ 2⁄  
and it is sent to a randomly chosen destination. In the simulation, we set the message generation interval to be 
5-10 minutes with the simulation time is 12 hours. For other simulation settings, we use the same settings used 
in the earlier experiment for the random case. As shown in Fig. 8, Epidemic-LE outperforms Epidemic in terms 
of overhead ratio and total message dropped for all the given network sizes. With the delivery ratio performance 

 
 

Fig. 8. Performance comparison of Epidemic and Epidemic-LE in the random scenario 
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is almost the same between the two routing schemes, Epidemic-LE is able to reduce the copy redundancy in the 
network (indicated by the lower overhead ratio), leading to efficiently use the node resources, e.g. buffer or 
storage (showed by the significant decrease of total message dropped of Epidemic-LE compared to Epidemic’s). 
Nevertheless, this reduced resource overhead of Epidemic-LE comes at a price, as the delivery latency slightly 
increases beyond that of Epidemic for all the given total number nodes in the network. 

We next discuss the performance improvement of Epidemic-LE in the real human mobility scenarios, namely 
Haggle and Reality. In contrast to the random case, in these real-life cases only popular nodes can initiate a 
counting process (as we have described previously, the counting algorithms of less popular nodes fail to produce 
a good estimate of network size). In consequence, we assume that less popular nodes have ways to learn about 
the network size from the popular nodes (for example, using a simple flooding data dissemination algorithm or 
using a client-server architecture as in [27]). Subsequently, all the network nodes randomly create a new message 
with total copies L is set to a half of local estimate of network size, and the message is then sent to a randomly 
chosen destination. In Fig. 9 and 10, we show the simulation results of Epidemic and Epidemic-LE in Haggle 
and Reality, respectively, for the given performance metrics. In the simulations, we set the message generation 
interval to be 5-10 minutes with the simulation time is 3 days for Haggle, and the message generation interval 
to be 20-30 minutes with the simulation time is 3 months for Reality. From both the figures, we notice that by 
capping the total message copies distributed in the network at maximum ܮ = ܰ 2⁄  replicas, Epidemic-LE can 
significantly reduce both the overhead ratio and total message dropped below those of Epidemic, while keeping 
the delivery ratio as high as Epidemic in both Haggle and Reality. However, as in the random case, we again 
see a trade-off between resource efficiency and delivery latency performance: the efficient use of node resources 
of Epidemic-LE increases the delivery delay beyond that of Epidemic in both the real human mobility scenarios. 
In addition, the increase of delivery delay is more obvious in Reality. Given that OMNs are a class of delay-
tolerant networks (DTNs), this increase in delivery latency is not regarded substantial; instead, the reduction of 
node resource consumption, reflected in the improved overhead ratio and total message dropped, represents a 
significant improvement in the network’s performance. 

 

 
 

Fig. 10. Performance comparison of Epidemic and Epidemic-LE in the Reality scenario 

 
 

Fig. 9. Performance comparison of Epidemic and Epidemic-LE in the Haggle scenario 
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5. Conclusions 

We have presented the Mark-Recapture distributed algorithm, a novel node counting technique targeted at 
accurately estimate the total number of active nodes in an OMN with a low delay. We have demonstrated that 
the algorithm achieves high accuracy and a low convergence time in estimating network size in the random i.i.d. 
movement case. In addition, Mark-Recapture can outperform a gossip-based Pair-Wise Average scheme in terms 
of convergence time in this random scenario. However, in the real human mobility scenarios, only the algorithm 
in popular nodes (both Mark-Recapture and PW-Avg) can produce an accurate estimate of network size in a 
relatively short delay time, while majority of nodes (i.e. less popular nodes) are ineffective to perform node 
counting. 

After this, we improved Epidemic routing by incorporating a local estimate of network size to the routing 
scheme to reduce message redundancy in the network. We showed that Epidemic with LE (local estimates) can 
achieve delivery ratio as high as conventional Epidemic routing, but at a lower overhead ratio and total message 
dropped in both the random and real-life scenarios. Nevertheless, this efficient delivery of Epidemic-LE slightly 
increases the delivery latency beyond that of (conventional) Epidemic routing. 

Finally, for future works we can identify two points. First, we have shown that Mark-Recapture cannot work 
appropriately in less popular nodes in the real human mobility scenarios. Consequently, these nodes should rely 
on popular nodes to learn an accurate information of network size. In future, we therefore need to study a method 
to efficiently distribute the counting results of the popular nodes to all nodes in the network, such as a publish-
subscribe scheme [29] or a client-server model [30]. Second, even though this paper only considers a closed 
system, we also need to take into account a more realistic scenario, i.e. an open system with churn, where nodes 
are allowed to enter and leave the area during the experiment. We believe that our proposed algorithm should 
be improved to accommodate this complex system. 
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In our plan, your paper will be published in Vol. 12, No. 3 or Vol. 12, No. 4. 
To prepare for the camera ready version, please carefully read the file "edition-guideline-jisis.txt" included in "jowua-guideline.zip". 
Please send us the easychair latex source files and the authors' short bios. (txt file) with photos (jpg). 
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Especially, please follow the below reference guideline when making bib file: 

(1) in the case of the IEEE conference 

// IEEE conference 
@inproceedings{Janakiraman03, 
author = "Chenfeng Vincent Zhou and Christopher Leckie and Shanika Karunasekera", 
title = "Indra: a Peer-to-peer Approach to Network Intrusion Detection and Prevention", 
booktitle= "Proc. of the 12th IEEE International Workshops on Enabling Technologies (WETICE'03), Linz, Austria", 
<- Format = "Proc. of the ##th conference full name (conference short name), conference venue" 
month= "June", <- please put month, year, pages exactly 
year= "2003", 
pages=" 226--231", 
publisher = {IEEE} 
} 

(2) in the case of the ACM conference 

// ACM conference 
@inproceedings{Huang_2003, 
author = {Chenfeng Vincent Zhou and Christopher Leckie and Shanika Karunasekera}, 
title = {A Cooperative Intrusion Detection System for Ad hoc Networks}, 
booktitle = {Proc. of the 1st ACM workshop on Security of Ad hoc and Sensor Networks (SASN'03), Fairfax, Virginia, USA}, 
<- Format = "Proc. of the ##th conference full name (conference short name), conference venue" 

year = {2003}, <- please put month, year, pages exactly 
month = {October}, 
pages = {135--147}, 
publisher = {ACM}, 
} 

(3) in the case of the LNCS proceedings 

// LNCS 
@INPROCEEDINGS{dagon2004honeystat, 
title={Honeystat: Local Worm Detection Using Honeypots}, 



author={Chenfeng Vincent Zhou and Christopher Leckie and Shanika Karunasekera}, 
booktitle={Proc. of the 7th International Symposium on Recent Advances in Intrusion Detection (RAID'04), French Riviera, France}, 
<- Format = "Proc. of the ##th conference full name (conference short name), conference venue, LNCS" 
volume={2782}, <- please put volume number 
series = {Lecture Notes in Computer Science} 
pages={39--58}, <- please put month, year, pages exactly 
year={2004}, 
month={September-October}, 
publisher={Springer-Verlag} 
} 

// Journal 
@article{CVZHOU:JNW09, 
author = {Chenfeng Vincent Zhou and Christopher Leckie and Shanika Karunasekera}, 
title = {Collaborative Detection of Fast Flux Phishing Domains}, 
journal = {Journal of Networks}, <- journal full name 
pages = {75--84}, <- please put pages, volume, number, month, and year exactly. 
volume = {4}, 
number = {1}, 
month = {February}, 
year = {2009} 
}


