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Abstract—The recent rise of networks that rely on human 
mobility, such as opportunistic mobile social networks (OMSNs), 
has prompted the need for methods that detect the periodic 
patterns of node movements. Knowledge of the periodicity of node 
behaviour is essential to design effective and efficient network 
protocols in such networks. Node behaviour in OMSNs is typically 
characterized by the node contact patterns. In fact, node 
connections in these networks occur intermittently, resulting in 
sparse contact data. Consequently, the traditional periodicity 
detection methods, e.g. the FFT periodogram and autocorrelation, 
that favour complete, regularly-sampled time-series data are 
unsuitable in this setting. In this paper, we exploit the Lomb-
Scargle periodogram, initially designed to handle incomplete or 
irregular sampling data, to identify node behaviour periodicity in 
OMSNs. Using simulation driven by real human contact traces, we 
show that the technique is able to accurately detect the behaviour 
periodicity of majority nodes in the network, even for those with a 
high level of sparsity contact data. 

Keywords—periodicity detection, sparse contact data, the Lomb-
Scargle Periodogram 

I.  INTRODUCTION 

As a natural evolution of mobile ad-hoc networks 
(MANETs), opportunistic mobile networks (OMNs) [1] have 
gained popularity in research and industry in recent years. While 
MANETs require pre-existing paths to enable message transfers, 
OMNs are able to support communication between pairs of 
nodes in the absence of stable paths between them. Unlike 
MANETs that consider node mobility is a potential disruption, 
message delivery in OMNs relies on unpredictable node 
contacts, resulting in a higher delivery delay than that of 
MANETs. Message delivery in OMNs is therefore delay-
tolerant in nature. Although other realisations of OMNs exist, 
human-based opportunistic mobile networks (also referred to as 
pocket-switched networks [2] or opportunistic mobile social 
networks (OMSNs) [3]) are the most prolific. A key factor in the 
proliferation of these systems is the rapid adoption of mobile 
devices, such as smart phones, gadgets, and laptops. 

In general, the key challenge in OMSNs is choosing the best 
message carriers to enable message delivery in a high success 
rate within a short delivery time. By taking a user-centric 
approach to networking, knowledge of human behaviour and 
structure can be one of the key information sources for designing 
effective and efficient routing protocols in OMSNs. For 

instances, the social-aware forwarding algorithms proposed by 
Daly et al. [4] and Hui et al. [5] use two social structure 
information, namely social-rank (betweeness and degree 
centralities, respectively) and social-closeness (similarity and 
community, respectively), as the forwarding metrics to choose 
the most likely message carriers in the network. Furthermore, it 
has already been proven that the idea about people moving in a 
random manner is no longer valid nowadays [6]. Instead, it turns 
out that human tend to have repetitive behaviour, such as (social) 
activities that they perform periodically to fulfill their social 
needs, e.g. going to offices on weekdays or meeting friends in 
coffee shops on weekends. Hui et al. [5], when designing the 
BubbleRap routing algorithm, divided human daily life into 4 
main periods: morning, afternoon, evening, and night – each 
almost 6 hours. Moreover, Williamson et al. [7] argued that 
considering the periodic patterns of node mobility in making 
routing decisions can improve the network delivery 
performance. Indeed, accurately identify the periodic patterns of 
node behaviour is essential to design more efficient routing 
algorithms in OMSNs. 

There are several methods in the literature that can be 
utilized to identify the periodicity of time series data, such as the 
FFT periodogram [8] and autocorrelation [9]. These 
conventional methods typically favour complete, uniformly-
sampled data in time order. However, this requirement is no 
longer valid in the case of OMSNs. In these networks, node 
behaviour is commonly characterized by the node encounter 
patterns. Due to the intermittent contacts in OMSNs, it is 
difficult to obtain node connection information in each time bin 
of regularly-sampled time series data. Consequently, the 
majority of the time bins are filled up with value of ‘0’, resulting 
in sparse time-series contact data. Moreover, even though the 
traditional methods are able to detect node contact periodicity, 
these strategies consume a lot of memory space of OMSN nodes 
to save a large number of data of ‘0’. Clearly, this situation is 
critical in mobile communication networks, since the network 
nodes possess a very limited storage or buffer capacity. 
Detection on the periodicity behaviour of nodes in OMSNs is 
therefore a challenging task. 

In this paper, we propose the Lomb-Scargle periodogram 
[10] to calculate node behaviour periodicity in OMSNs. This 
technique is a well-known algorithm for detecting and 
characterizing periodic signals in incomplete or unevenly-
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sampled time series data. In our case, however, the Lomb-
Scargle periodogram identifies the periodic patterns of sparse, 
uniformly-sampled time series contact data in OMSNs. 
Moreover, the time bins with value of 0 can be considered as 
none (NaN) in this algorithm. As a result, these values do not 
need to be stored in nodes’ storage, leading to the significant 
reduce of the memory usage. In this study, we use two real 
human contact datasets, namely Reality [11] and Haggle [12]. 
We consider the former dataset as the long-term mobility case, 
while the latter as the short-term case. 

The rest of the paper is structured as follows. In Section II, 
we discuss the characteristics of node contact data in real-life 
OMSNs. Periodogram techniques for detecting the periodicity 
of time-series contact data is presented in Section III. 
Subsequently, Section IV describes the performance evaluation 
of the Lomb-Scargle periodogram compared to the FFT 
periodogram in detecting node behaviour periodicity in the 
OMSNs. Finally, Section V concludes the paper. 

II. CHARACTERISTICS OF NODE CONTACTS IN OMSNS 

In this section, we discuss the characteristics of node contact 
patterns in real-life OMSNs. We consider two real human 
contact datasets, namely Reality and Haggle. In each dataset, we 
choose 3 nodes with different level of activeness in the network, 
e.g. the most active node, moderately active node, and the least- 
active one. 

 

 

A. Reality Mining Dataset 
The Reality Mining contact dataset [11] captured the 

activities of students and staffs of MIT during one academic 
year. There were 97 participants, comprising both undergraduate 
and postgraduate students and laboratory staffs. The experiment 
was performed around 10 months at the MIT campus. Using the 
ONE simulator [13], for each network node we regularly record 
the number node connections in every a 30-minute time interval. 
Eventually, this creates uniformly-sampled time-series contact 
data. 

From the dataset, we found that the most active node, node 
95, completed 3486 contacts with other nodes throughout the 
simulation time. However, when the contact data are sampled 
uniformly in every 30 minutes on the node’s connections to the 
peers, there are more than 85% of the time bins with no 
connection data. In other words, only 15% of the time-series 
contact data are available to be used to detect the node’s 
behaviour periodicity. Specifically, we depict in Fig. 1 the 
records of encounters of node 95, 75 and 12, which represent the 
most active, quite active, and the least active nodes, respectively, 
in Reality. The figure shows that the most-active node has the 
lowest level of data sparsity, roughly 75%. In contrast, the least-
active node possesses the highest level of sparsity, namely 97%. 
In between the two nodes, the quite active node, node 75, has 
83% level of data sparsity. 

 
Fig. 1. Reality scenario: Node-contact time bins equally-sampled every 30 minutes 

 
Fig. 2. Haggle scenario: Node-contact time bins equally-sampled every 10 minutes 
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B. Haggle Infocomm Dataset 
The second dataset we consider in this study is Haggle [12], 

which represents the short-term real human mobility case. This 
contact trace was taken during IEEE Infocomm 2005 conference 
in Grand Hyatt Miami participated by 41 persons and lasted for 
3 days. For each node in the dataset, using simulation we 
repeatedly capture the number of node contacts in every a 10-
minute time interval throughout the simulation time. 

In Fig. 2, we show the records of the number of contacts of 
illustrative nodes in the dataset, namely node 26, 17 and 28. 
Node 26 is considered as the most active node in the network. In 
this node, the missing data of the node contacts in the time bins 
reach more than 53%. On the other hand, node 17 and 28 have 
roughly, respectively, 61% and 69% time bins with no 
connection data, i.e. values of “0”. 

 

III. PERIODICITY DETECTION TECHNIQUES IN OMSNS 

To identify the periodic patterns of node behaviour in 
OMSNs, in each node total contacts are recorded into time series 
data sampled in equally spaced time intervals. Based on the 
signal processing theory, it is needed to calculate power spectral 
density (PSD) of any time series data for periodicity detection. 
To enable this computation, signals from time domain must be 
converted into frequency domain. The calculated PSD 
represents the power of its possible frequency. Since the period 
of a signal is the inverse of its frequency, the dominant 
periodicity of the signal would be the frequency with the 
strongest PSD. This spectral analysis method estimation is also 
known as periodogram. 

The widely used periodogram is based on FFT, such as 
Discrete Fourier Transform (DFT) [14]. The normalized DFT of 
a sequence ݔ(݊), ݊ = 0,1, … , ܰ − 1	can be defined as follows: 

ݔ ൬݂௞ே൰ = 	 1√݊	෍ ௝ଶగ௞௡ேேିଵ	ି݁(݊)ݔ
௡ୀ଴  

(1)

ܺ is the DFT of a sequence ݔ(݊), where the subscript ݇ ܰൗ  
denotes the frequency captured by each coefficient. To find the 
dominant frequency, the power of each frequency must be 
calculated. Finally, the periodogram P can then be calculated as: ܲ ൬݂௞ே൰ = ฯܺ	 ൬݂௞ே൰ฯଶ 							݇ = 0,1, … , ඄ܰ − 12 ඈ (2)

In the case of OMSNs, uniformly sampling on intermittently 
node contacts in real-life OMSNs produces sparse time series 
contact data as previously described in Section II. Since the 
storage capacity of mobile devices is very limited, it is important 
to sensibly use the nodes’ memory space. We consequently 
propose to remove all the time bins containing zero contact, 
resulting in incomplete time series data. As a result, the FFT 
periodogram is no longer able to identify the periodic patterns of 
the node’s time-series contact data. For such scenario, we 
instead use the Lomb-Scargle periodogram [10] to detect the 
periodicity behaviour of OMSN nodes. Lomb-Scargle 
periodogram is formally defined as follows: 

௑ܲ(߱) = 12 ቊሾ∑ ௡ݐ)߱)	cos(௡ݐ)ݕ − ߬))ே௡ୀଵ ሿଶ∑ ௡ݐ)߱)ଶݏ݋ܿ − ߬))ே௡ୀଵ+ ሾ∑ ௡ݐ)߱)sin(௡ݐ)ݕ − ߬))ே௡ୀଵ ሿଶ∑ ௡ݐ)߱)ଶ݊݅ݏ − ߬))ே௡ୀଵ ቋ 

 

(3)

where ߬ is defined as: tan(2߱߬) = ∑ sin(2߱ݐ௡)ே௡ୀଵ∑ ே௡ୀଵ(௡ݐ2߱)ݏ݋ܿ  

 

IV. PERFORMANCE ANALYSIS OF THE PERIODOGRAM 

TECHNIQUES IN OMSNS 

In this section, we discuss the performance evaluation of the 
periodogram methods mentioned in Section III in OMSNs. 
Initially, we investigate the accuracy of the Lomb-Scargle 
periodogram with incomplete time series contact data compared 
to the FFT periodogram with complete data in identifying the 
periodic patterns of node behaviour in real-life OMSNs, namely 
the Reality and Haggle human mobility scenarios. Subsequently, 
we examine the extend of data sparsity level to which the Lomb-
Scargle periodogram is still able to work properly. 

In Fig. 3, we depict the periodicity detection results of nodes 
in Reality when the two periodogram techniques are applied. We 
again consider the three nodes in Reality mentioned in Section 
II, namely node 95, 75 and 12, which represent the most active, 
moderately active, and the least active nodes, respectively. We 
see from the figure that the FFT periodogram is surely able to 
detect almost the same values of periodicity of all the nodes’ 
behaviour roughly ≈ 7 days, even though they have a different 
level of activeness in the network. Moreover, this weekly 
periodicity in the long-term scenario is in line with the findings 
from some studies in social network analysis [15,16] that human 
tend to have a weekly pattern in their mobility or social 
activities. Despite its benefit, however, the FFT periodogram 
requires complete time series contact data to be able to work 
accurately. This means that a single node should keep all its 
encounter data throughout the simulation time, leading to 
quickly deplete the node’s memory space. To address this issue, 
we then remove the (unnecessary) time series contact data 
containing values of ‘0’ from the node’s memory and next apply 
the Lomb-Scargle periodogram to identify the node’s periodic 
patterns. From Fig. 3, we notice that the method successfully 
identifies the behaviour periodicity of node 95 and 75 as high as 
that of the FFT periodogram, which is a weekly cycle. However, 
the Lomb-Scargle periodogram is ineffective to detect the 
periodic pattern of node 12, which is the least-active node in 
Reality that has the highest data sparsity level at nearly 97%. 

We next consider the short-term node mobility scenario in 
this investigation. Fig. 4 illustrates the detected periodicities of 
nodes in the Haggle dataset. From the figure, we observe that the 
Lomb-Scargle periodogram is able to detect node periodicities 
as nearly accurate as the FFT calculation in node 26 and 17, 
namely an hour cycle. Obviously, the Haggle dataset captured 
the human movement during a conference that typically has 
hourly-scheduled activities. However, as in the Reality dataset, 
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the Lomb-Scargle periodogram is again unsuccessful in 
correctly detecting the behaviour periodicity of the least-active 
node in Haggle, node 28, that possesses the data sparsity level at 
69%. 

Finally, we discuss the performance of the Lomb-Scargle 
periodogram in real-life OMSNs in terms of the length of contact 
data traces. As shown above, the length of time series contact 
data directly affects the upper-bound of data sparsity level where 
the Lomb-Scargle periodogram is able to work properly. The 
technique tends to have a better performance if it is applied to 
long contact data datasets; for example, in Reality the Lomb-
Scargle periodogram successfully identifies the nodes’ periodic 
patterns in a higher level of contact data sparsity, around 80% - 
85%. On the other hand, in the case of short contact datasets, the 
algorithm is unsuccessful to accurately detect nodes’ behaviour 
periodicities at a lower data sparsity level: in the Haggle dataset, 
it fails after the contact data sparsity level exceeds 64%. 

In mobile communication networks, such as OMSNs, the 
memory capacity of mobile devices has become one of the 
crucial issues. In regard to this, we believe that the Lomb-
Scargle periodogram is preferable to be used for detecting node 
behaviour periodicity in such networks, despite its limitation. 
Furthermore, to overcome the method’s drawback, we argue that 
the Gossip protocols [17] can be exploited to broadcast a node’s 
periodicity value to all other nodes in the network until they have 

the same knowledge of the nodes’ behaviour periodic patterns. 
Nevertheless, it needs further study to confirm our idea. 

V. CONCLUSIONS 

In this paper, we have investigated the Lomb-Scargle 
periodogram for identifying node behaviour periodicity in 
OMSNs. We consider two distinct real human mobility 
scenarios, both the long-term and short-term contact data traces. 
We identify that the Lomb-Scargle periodogram is suitable for 
calculating node behaviour periodicity in OMSNs, since its 
accuracy reaches as high as that of the FFT periodogram. In 
addition, the method is more efficient as it requires less time-
series data, leading to save more memory space of OMSN nodes. 
Furthermore, the Lomb-Scargle periodogram gives more 
tolerance to the data sparsity level in the long-term mobility 
scenario. In this case, the method is able to accurately detect the 
periodicity behaviour of the nodes having a relatively high data 
sparsity rate.  

For future work, we will improve the performance of the 
Lomb-Scargle periodogram in detecting node behaviour 
periodicity, particularly in the least active nodes. We also need 
to investigate the use of the Gossip protocol to distribute node 
periodicity information to all nodes so that they eventually share 
the common knowledge of the periodicity behaviour of the 
nodes in the given network. 

 

 
Fig. 3. Reality scenario: node periodicity detection using the FFT and Lomb-Scargle periodograms  

 
Fig. 4. Haggle scenario: node periodicity detection using the FFT and Lomb-Scargle periodograms 
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