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Reviewer#1, Concern # 1: Could you please add some simple figures or flowcharts so that readers have a
general understanding of the proposed method before reading the specific method, and then go to see the
details of the method

Author response: We agree with the reviewer.

Author action: We updated the manuscript by adding a flowchart with explanations to illustrate and
summarize the basic steps of the Bi-face framework as indicated in the beginning of section III on Page 6.

Reviewer#1, Concern # 2: More networks will increase the credibility of the experiment.

Author response: We agree with the reviewer.

Author action: We updated the manuscript by validating the performance and the accuracy of our Bi-Face
centrality measure on a new (very dense) "Dirichlet" bipartite network, and discussing its results and
correlations with other tested centrality measures (see Section IV, pages 10-16).
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Reviewer#1, Concern # 3: Some expressions may not be suitable in academic writing, for example，some
abbreviated expressions. Please check the expression of the paper and modify it.

Author response: We agree with the reviewer.

Author action: We updated the manuscript by revising the entire paper, checking and modifying all
abbreviated expressions to be compliant with the academic writing rules and the expressions used in both
formal concept analysis and social network analysis fields.

Reviewer#1, Concern # 4: Some examples are given to illustrate the necessity of the proposed method is
needed.

Author response: We guess that the reviewer might want more details about the illustrative example.

Author action: We updated the manuscript by giving additional explanations about the illustrative example
used throughout the paper.

Reviewer#2, Concern # 1: The ABSTRACT is not a real summary  and it does not include the key findings.

Author response: We agree with the reviewer.

Author action: We updated the manuscript by rewording the abstract to include a more detailed summary
of the key findings.

Reviewer#2, Concern # 2: Regarding the INTRODUCTION section, the motivation to write the paper should
be highlighted, why is the paper written? what leads authors to write this paper? The contributions of the
paper are clear, but not the motivation.

Author response: We apologize if the motivation was not clearly and sufficiently stated in the paper. Simply
put, the main reason for writing this research paper is to confront and solve the problem of identifying key
actors/nodes in complex systems with two types of nodes (e.g., individuals and attributes) and binary
relations. In addition to the examples given in the paper, one may want to identify - from the wide range of
real-world applications - the most active agents who serve customers in call centres at various locations, the
most popular products in various hotspot regions, central consumers who make payments to specific
merchants, the most cited authors collaborating on scientific papers published in top-tier conferences, the
actors who have a major influence on audiences in different movies, the most-used words in certain country
languages, or proteins that have a large impact on various metabolic processes.

Author action: We updated the manuscript by adding more explanations to explicitly emphasize our
motivation (see the new paragraph starting with "Our main motivation ..." in the Introduction section, page
1).

Reviewer#2, Concern # 3: in section III (BI-FACE FRAMEWORK) must be a flowchart with the explanation on
the proposed framework.

Author response: We completely agree with the reviewer.
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Author action: We updated the manuscript by adding a flowchart and explanation at the beginning of
section III to illustrate and summarize the basic steps of the Bi-face framework (see page 6).

Reviewer#2, Concern # 4: I do not like sentences in which value judgments are made such as: “often
remains”, “produce poor results”, etc. I think they should be changed.

Author response: We agree with the reviewer.

Author action: We updated the manuscript by revising the entire paper, reworking and changing all of these
sentences.

Reviewer#3, Concern #1: In the Introduction, please give more examples and possibly some detail
explanations of the benefits of modelling the problems using bipartite graphs. We understand that for some
people the graphs are very well known, but “most of readers may be not”.

Author response: Bipartite graphs are commonly used to model binary relations between two different
classes of objects. That is why researchers in graph theory and social network analysis communities prefer
to simply represent any problem with such graphical structures. However, from the standpoint of graph
modelling, is the bipartite graph the best/optimal model for the problem? In other words, does the bipartite
graph model provide more advantages/benefits than other graphical models such as concept lattices,
probabilistic graphical models, or graph neural networks? We believe that its obvious advantages are
uncertain. That is to say, it is dependent on the task we aim to apply to the problem. One goal of this paper
is to showcase that the concept lattice model of such problems is more advantageous than bipartite graph
formulation for pattern mining tasks like accurately/efficiently computing two-mode node centrality. To
sum it up, our proposed Bi-Face solution is based primarily on the concept lattice representation rather
than its bipartite graph counterpart. The bipartite graph can simply be seen as one format of input to the
Bi-face framework, which can be replaced by, for example, its adjacency matrix format.

Author action: We updated the manuscript by adding more explanation to clarify this point (see the
highlighted text on Page 3 of the introduction section).

Reviewer#3, Concern #2: Could you please discuss in more detail the relation of the formulations in your
previous paper with the current one! Is this current paper an extension of the previous one of one-mode
networks?

Author response: Technically, the proposed Bi-face centrality in this manuscript is completely distinct (with
a larger size and a higher level of details and depth) from our previously published cross-face centrality
dedicated to one-mode networks. We can summarize some of these differences in the following points:

- The Bi-Face centrality metric focuses on two-mode networks, whereas the other cross-face

centrality measure deals with one-mode networks. It is well-known that the nature and properties

of two-mode networks have different characteristics with more complex substructures than the

one-mode ones, which leads to a different computation of node centrality and makes the

objectives/applications clearly distinct.  As a result, the proposed Bi-Face formulations (see Eqs.

22-23) are fundamentally different from the one-mode cross-face formulation presented in the

other published paper.

- In the preprocessing step, we use a different adjacency matrix to build the formal context. In

Bi-face, we use concepts to extract bicliques and bridges instead of symmetrical concepts (which do

not even exist in the constructed lattice here) as in cross-face.
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- In Bi-Face, we use a refinement step to obtain (what we refer to as) face bicliques by pruning the

non-influential nodes from the original bicliques (see Definition 3.2 and Eq. 19). This step does not

exist in the framework of cross-face centrality. In practice, this step significantly improves the

outcome.

- In the Bi-Face framework and hence the two-mode networks , we identify the face bridges in a

completely different way than in Cross-face for one-mode networks. Specifically, we leverage the

minimal generators of concepts (see Definitions 3.3-3.4 and Eqs. 20-21) instead of the interesting

faces and meet-irreducible concepts.

- We detect the terminal nodes in Bi-Face framework, which is not taken into account in cross-face in

our previous paper.

Author action: We updated the manuscript by adding a detailed explanation (See the paragraph starting
“One might contrast .....” at the end of Subsection III.D on page 10) to contrast the bipartite Bi-Face
centrality presented here with our Cross-Face centrality proposed for one-mode networks.

Reviewer#3, Concern #3: Additionally, you also claimed that the proposed Bi-face centrality also can be
used to multidimensional and multilayer networks. For us, this is very interesting. If it is possible, please add
a sub-section that particularly discusses it in more detail.

Author response:

We believe that the bi-face centrality measure proposed in this paper for two-mode networks can be
adapted and applied to more complex networks such as multidimensional and multilayer ones (references
[32,33]) in order to find relevant patterns, including social network communities. Our next steps will consist
of first analyzing triadic formal contexts (tridimensional datasets) to adapt our bi-face formulae to the new
notions of extent-based and feature-based faces as described in (reference [34]). Later on, we will analyze
multilayer networks as interlinked two-mode data networks discussed in (reference [33]), to first express
them as individual formal contexts, use the composition operator on contexts to form enriched ones with
their corresponding concept lattices for which the bi-face centrality measure will finally be used. Another
interesting solution for identifying relevant concepts in multilayer networks is to first apply relational
Concept Analysis (RCA) (reference [35]) on interlinked contexts to construct enriched ones and then apply
our bi-face centrality measure.

Author action: We updated the manuscript by adding a paragraph at the end of the conclusion section that
specifically discusses this point.

Reviewer#3, Concern #4: Could you discuss the limitations of using FCA in deriving the centrality measure in
bipartite graphs (if any)!

Author response: We thank the reviewer for raising this interesting point. Actually, to reach conclusive
answers on this point, we believe that conducting several sets of experiments are required, which are
clearly beyond the scope of this paper and can be presented in a separate paper per se. However, we
presume that in rare cases, when the bipartite graph network has a massive number of nodes and edges or
a very high density, the performance of some FCA-based centrality measures might be affected. It should be
noted, however, that this will also hold for all other state-of-the-art centrality measures that have been
compared, such as betweenness, closeness, vote-rank and percolation among others.

Author action: We updated the manuscript by conducting three additional experiments to validate the
performance and the accuracy of our Bi-Face centrality on a new (very dense) randomly generated
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“Dirichlet” bipartite network, and discussing its results and correlations with other tested centrality
measures in order to elaborate more on this point (see Section IV, pages 10-16).

Reviewer#3, Concern #5: Just pick one example, the explanation of the Hasse diagram is very short,
however this diagram actually plays important role in the concept of lattice in bipartite graphs. Thus, it is
required more discussion.

Author response: We agree with the reviewer.

Author action: We updated the manuscript by adding more explanations on the Hasse diagram and
providing examples to clarify other definitions (see the Background Section on pages 4-5) .
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Identifying Influential Nodes in
Two-mode Data Networks using Formal
Concept Analysis
MOHAMED HAMZA IBRAHIM1,3, ROKIA MISSAOUI1 AND JEAN VAILLANCOURT.2
1Département d’informatique et d’ingénierie, Université du Québec en Outaouais, Gatineau, Quebec, Canada
2Department of Decision Sciences, HEC Montreal, Montreal, Quebec, Canada
3Department of Mathematics, Faculty of Science, Zagazig University, Egypt

Corresponding author: Mohamed Hamza Ibrahim (e-mail: mohamed.ibrahim@polymtl.ca).

ABSTRACT Identifying important actors (or nodes) in a two-mode network is a crucial challenge in
mining, analyzing, and interpreting real-world networks. While traditional bipartite centrality indices are
often used to recognize key nodes that influence the network information flow, inaccurate results are fre-
quently obtained in intricate situations such as massive networks with complex local structures or a lack of
complete knowledge about the network topology and certain properties. In this paper, we introduce Bi-face
(BF), a new bipartite centrality measurement for identifying important nodes in two-mode networks. Using
the powerful mathematical formalism of Formal Concept Analysis, the BF measure exploits the faces of
concept intents to detect nodes that have influential bicliques connectivity and are not located in irrelevant
bridges. Unlike off-the shelf centrality indices, it quantifies how a node has a cohesive substructure influence
on its neighbour nodes via bicliques while not being in network core-peripheral ones through its absence
from non-influential bridges. In terms of identifying accurate node centrality, our experiments on a variety
of real-world and synthetic networks show that BF outperforms several state-of-the art bipartite centrality
measures, producing the most accurate Kendall coefficient. It provides unique node identification based on
network topology. The findings also demonstrate that the presence of terminal nodes, influential bridges,
and overlapping key bicliques impacts both the performance and behaviour of BF as well as its relationship
to other traditional centrality measures. On the datasets tested, BF is at least twenty-three times faster than
betweenness, eleven times faster than percolation, nine times faster than eigenvector, and ten times faster
than closeness in terms of computation.

INDEX TERMS Formal Concept Analysis, two-mode networks, influential node, cross-clique connectivity.

I. INTRODUCTION

In today’s world, complex real-life systems are ubiquitous.
For example, mobile phone as well as Facebook and Twitter
networks facilitate to us the way we interact with one an-
other. Airline and railway networks provide us with the most
efficient modes of transportation while also highly reducing
travel times. The energy and electric power networks play a
significant role in supplying our domestic and industrial lives.
Most of these systems frequently feature two types of data
with complex substructures and can thus be represented as
two-mode networks (also known as bipartite graphs or affil-
iation networks). Due to the complex structure of such net-
works, the spread of information across the network makes
some nodes more important than others in certain contexts.
Our main motivation here is to solve the problem of identify-
ing key actors in such networks. This is the case for a wide
range of real-world applications, such as the identification of
the most active agents who serve customers in call centres

at various locations, the most popular products in various
hot-spot regions, central consumers who make payments to
specific merchants, the most cited authors collaborating on
scientific papers published in top-tier conferences, the actors
who have a major influence on audiences in different movies,
the most-used words in certain country languages, or proteins
that have a large impact on various metabolic processes.
As such, the interesting question of how to measure the
relative importance of nodes in a two-mode network is often
increasingly challenging in the field of complex network
analysis (CNA). As it is frequently used to understand the
role of nodes within a network, node centrality analysis can
provide efficient answers to this question.

The centrality measure ranks nodes based on how they
influence or are effected by other nodes via their connection
topology. Since no consensus holds on a unique definition
of centrality for two-mode networks in the CNA literature,
while opening the door for the invention of new ones, differ-

1
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ent centrality scores have been presented (cf. [1], [2] for a
detailed survey), each of which takes into account a distinct
aspect of a central node. In the mainstream CNA research
area, the bipartite centrality is frequently classified as local
or global. The local centrality metrics focus on the relative
importance of the node in its neighbourhood within local
cohesive communities. For example, the degree centrality [3]
is a basic local metric that counts the number of links that
each node has. However, it frequently captures irrelevant
local information about a node in practice. Intuitively, it is
assumed that only the node with the highest degree should
be in the centre (because it is the most densely linked node
i.e., a hub), but it does not account for the cascade effects
of its neighbour nodes. Hence, it is sometimes necessary to
remove nodes with high degree values because they provide
no information. For example, Angelina Jolie has a high
degree centrality in Facebook’s network because so many
people follow her; however, if you explore your friends’
Facebook pages to find out what they are interested in or who
among them enjoy soccer the most, Angelina Jolie becomes
completely irrelevant in that network.

The k-shell centrality [4] is a community-based local cen-
trality that enhances the degree of a node in terms of its neigh-
bourhood connections using the k-core1. Thus, the higher the
portions of k-cores contain a node, the more likely it is a hub
in the cores of a network, and thus the more important it is in
a network. However, k-shell frequently produces inaccurate
results when the network structure has a small number of
k-cores, which is prevalent in two-mode networks. This is
due to the fact that in this case, many nodes are assigned an
approximately equal number of k-cores. From the perspective
of the topological graph of a two-mode network, k-bicliques
may be more accurate graphical components than k-cores.
That is, the number of k-bicliques among a node neighbours
is counted in order to estimate its importance using the Cross
k-bicliques connectivity measure, which quantifies how the
node affects information propagation through the network.
However, in general, its calculation requires an exponential
time and space complexity and is often sensitive to the k
parameter. To compute Cross k-bicliques connectivity for
a given node, we must first extract all k-bicliques from the
network containing this node, which is an NP-hard problem.
Furthermore, the determination of the optimal value of k
may be problematic in many applications. Strictly speaking,
picking a large k value may result in the overstepping of
all k-bicliques with k less than the chosen one, leading to
an underestimation of the influence of other nodes in local
cohesive communities within the network. A small k value
may stimulate overestimation of the importance of other
neighbour nodes, generating a behaviour similar to degree
centrality.

Bipartite closeness [3], [5] is a common type of local
centrality that is based on the geodesics. It computes the

1A k-core of a graph G is a maximal connected sub-graph of G such that
all nodes have at least k neighbours.

reciprocal of the sum of the distances between the node and
all of the other nodes in the network. Its basic form intuitively
assumes that information can efficiently flow from one node
to every other node via the shortest distances. The important
node is therefore the independent one that is close to other
nodes in the network in terms of shortest paths. Thus, at
a high level, it can address the degree centrality limitation
in a few cases. However, on non-spatial networks, bipartite
closeness frequently produces inaccurate results [6], and
its values on spatial networks tend to span a rather small
dynamic range from smallest to largest. This is because most
complex real-world networks may have a high average length
of the shortest path as their largest distance increases expo-
nentially in terms of the number of nodes. That is, assuming
that the minimum distance is equal to one, the asymptotic
ratio between the minimum and the largest distances is
O( 1

logn ). This frequently implies that numerous nodes, with
diverse roles in the network information flow, may have
comparable closeness scores. On the contrary, most non-
spatial networks feature low geodesic distances among nodes
given that high geodesic distances increase logarithmically
with their network size. As a result, the dynamic range of
variations, as well as the network diameter, will be too small,
and even slight changes in the network structure can have a
significant impact on nodal closeness values.

The bipartite betweenness [3], [5], [7] is another common
geodesic-based measure. To evaluate the importance of a
node, it computes the number of times it exists in the bridge
along the geodesic paths among the other nodes in the net-
work. Thus, it considers other nodes’ dependence on a given
node, and measures its optimal flow control on information
passing among nodes, whether Closeness perceives the con-
nection efficiency or independence from potential flow con-
trol through the use of intermediary nodes (cf. [8], a detailed
study differentiating between closeness and betweenness).
In general, bipartite betweenness does not consider node
connectivity and its calculation is frequently time-consuming.
The fundamental assumption of betweenness is that every
pair of nodes exchanges information through shortest-paths
with equal probability. However, this is, in many situations,
not a realistic assumption since information does not neces-
sarily take the shortest path [9] (e.g., news related to a friend
might not be directly known from another close friend but
from other mutual friends). As a result, it does not provide
a precise representation of the most influential nodes within
these groups, but rather a fair approximation (see [10] for a
more detailed explanation). Furthermore, its exact centrality
computation on large or dense two-mode networks requires
a time complexity of O(n31 + n32), where n1 and n2 are the
number of the two types of nodes, respectively.

Looking at local centrality from a different angle, bipartite
percolation centrality [11] estimates a node’s relative impor-
tance by counting the number of percolated paths that pass
through it. The percolated path is the shortest path between
two nodes in which the source node is percolated (e.g.,
infected) but the target node may be not. The percolation cen-
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trality fully captures the essential mechanics of contagion-
mediated network spreading by associating percolation paths
with weight terms that determines how much importance is
given to potential percolation paths originating from given
nodes. This is indeed helps percolation centrality to avoid
the limitation of both betweenness and closeness, which
rely solely on topological and random diffusion processes
via random shortest-paths. It may, however, produce inaccu-
rate results when the spread of contagion has no effect on
changing the node state, and it is frequently computationally
expensive to calculate. Because the percolation through a
network is affected by both the level of contagion and the
network structure [12], the spread of contagion in a complex
network (CN) may not change node states in a few scenarios.
From a theoretical standpoint, there is a possibility that
there is no transmissibility, and in this case, the percolated
contagion spreads over the edges of a complex network
without changing the state of a node to either recoverable or
infected, leaving it in the default state. Moreover, computing
the percolation centrality in worst-case scenarios with large
bipartite networks having complex local structures requires a
cubic time complexity in the two types node numbers.

Global measures, on the other hand, consider a node
prominence in the context of the entire network. Its principle
emphasizes the hypothesis that a few important neighbours
can weight more than a large number of unimportant ones.
That is, a node is important if it is connected to other im-
portant nodes. For example, Bipartite Eigenvector centrality
[3], [5] quantifies whether a node is central based on its
connections to other high-score nodes. It utilizes indefinite-
length random walks to estimate the number of node traver-
sals. From a conceptual standpoint, a node’s eigenvector can
be thought of as the global extension of its local degree
centrality, in which both count walks that begin and termi-
nate at that node. Eigenvector may include a localization
transition, which frequently results in inaccurate centrality
scores. As demonstrated in [13], eigenvector centrality has
a localization transition under the common conditions of a
network regime, causing the majority of the weight of the
centrality to concentrate on a small number of nodes in the
network. This implies that when a network structure contains
many hubs, the eigenvector weights are skewed toward some
few nodes: The eigenvector values of the hub node and
its neighbours are the highest, while the other nodes have
identical centrality values (likely close to zero).

In this paper, we present Bi-face (BF), a new bipartite
centrality that can be used to identify key nodes in complex
networks. Due to its simplicity, the bipartite graph is com-
monly used to model binary relations between two different
classes of nodes. However, from the standpoint of graph
modelling, the superiority of the bipartite graph formulation
of two-mode networks over other graphical models such as
concept lattices, factor graphs, or graph neural networks is
still uncertain. That is, it is dependent on the task we aim to
apply to the problem. One of our goals here is to show that the
concept lattice model of such problems is more advantageous

than bipartite graph formulation for efficiently computing
two-mode node centrality. Thus, the guiding idea of BF is to
use a formal concept analysis framework to bring together the
centrality aspects of cohesiveness via bicliques, network flow
via bridges, and influence of important neighbour nodes for
the benefit of actionable node identification. Its conceptual
hypothesis is based on the fact that important nodes should be
found in influential bridges and overlapping bicliques with a
large number of important nodes. That is, it quantifies how a
node affects, and is affected by, its important neighbours via
bicliques while also connecting the densely substructures of
a network through its presence in influential bridges. Thus, it
differs from betweenness in that it deems influential bridges
rather than all bridges. Unlike closeness and eigenvector, it
can efficiently deal with the diverse topological structures
of a network, without potentially having localization transi-
tion, due to this hybridization of the influential bridges and
overlapping bicliques aspects. Furthermore, it leverages the
powerful mathematical formulation of Formal Concept Anal-
ysis (FCA) to overcome the limitation of Cross k-bicliques
connectivity. That is to say, it utilizes the concept lattice
related to the network to efficiently extract concepts that
capture bridges and k-bicliques from the network while being
insensitive to the k parameter. Technically, CF2 computation
is based solely on the set of these extracted concepts, which
is often quite small in comparison with polynomial functions
in terms of nodes and edges. As a result, in contrast to
percolation, it is relatively quick to compute in practice.

The paper is organized as follows. In Section II, we review
some basic definitions and concepts including: FCA and
traditional bipartite centrality measures in social networks. In
Section III, we demonstrate our proposed Bi-face centrality
for detecting influential nodes of two-mode networks in fur-
ther more detail. In Section IV we conduct a thorough exper-
imental study and a discussion. Finally, Section V presents
our conclusions.

II. BACKGROUND
This section will briefly review the main concepts that sup-
port the comprehension of our proposed centrality measure
by using an illustrative example, which is a two-mode net-
work of airline alliances and their flying destinations in the
year 2000. As shown in Figure 1, the network is modeled
as an undirected bipartite graph Υ = (G,M, I), where G
is a set of 13 objects (also called type-I nodes) representing
airline companies,M is a set of 9 attributes (type-II nodes)
representing flying destinations, and I is a set of edges where
an edge (ui, vj) ∈ I links two nodes ui ∈ G and vj ∈ M, if
a flight from airline company ui landed at the destination vj .

A. FORMAL CONCEPT ANALYSIS
In the following we recall notions of FCA [14] that will be
used in this paper.
Definition 2.1 (Formal context): It is a triple K = (G,M, I),
where G is a set of objects, M a set of attributes, and I a
binary relation between G and M with I ⊆ G × M. For
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FIGURE 1: A two-mode graph network representing flights from 13 airline companies (in red) landing at 9 destinations (in
green) in Year 2000.

g ∈ G and m ∈ M, (g,m) ∈ I holds (i.e., (g,m) = 1)) iff
the object g has the attribute m, and otherwise (g,m) /∈ I
(i.e., (g,m) = 0).

Table 1 is the formal context equivalent to the adjacency
matrix that expresses the two-mode network exhibited in
Figure 1.

Given arbitrary subsets A ⊆ G and B ⊆M, the following
derivation operators are defined:

A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}, A ⊆ G

B′ = {g ∈ G | ∀m ∈ B, (g,m) ∈ I}, B ⊆M

where A′ is the set of attributes common to all objects of A
and B′ is the set of objects sharing all attributes from B. The
closure operator (.)′′ implies the double application of (.)′,
which is extensive, idempotent and monotone. The subsetsA
and B are closed when A = A′′, and B = B′′.
Definition 2.2 (Formal concept): The pair c = (A,B) is
called a formal concept of K with extent A and intent B if
both A and B are closed and A′ = B, and B′ = A.

The object concept g ∈ G is expressed by γg := (g′′, g′)
and the attribute concept of m ∈ M is defined by µm :=
(m′,m′′).
Definition 2.3 (Partial order relation �): A concept c1 =
(A1, B1) � c2 = (A2, B2) if:

A1 ⊆ A2 ⇐⇒ B1 ⊇ B2. (1)

In this case, c2 is called a superconcept (or successor) of c1,
and c1 is called a subconcept (or predecessor) of c2. The set
of all concepts of the formal context K is expressed by C(K)
or simply C.
Definition 2.4 (Concept Lattice): The concept lattice of a
formal context K, denoted by B(K) = (C,�), is a Hasse
diagram that represents all formal concepts C together with

the partial order that holds between them. In B(K), each
node represents a concept with its extent and intent while the
edges represent the partial order between concepts.

Figure 3 is the Hasse diagram of the concept lattice that
corresponds to the context of Table 1. More precisely, it is
a diagram with reduced labeling. This means that the label
g is written below γg and m above µm. The extent of a
concept represented by a node a is given by all labels in G
from the node a downwards, and the intent by all labels inM
from a upwards. For example, the node indicated by the red
arrow represents the formal concept whose extent contains
Mexicana, ThaiAirways, UnitedAirlines, and AirCanada by
collecting the object labels in white boxes from the cur-
rent node downward to the lattice infimum, while its intent
contains the attribute labels in grey boxes LatinAmerica,
Caribbean, and USA collected from the current node upward
to the lattice supremum. Here the current node whose label
is Caribbean is one of the direct predecessor (lower cover)
of the node named UnitedAirlines, and the direct succes-
sor (upper cover) of the nodes labeled by Mexicana and
ThaiAirways.

Definition 2.5 (formal context): It is a formal context K̃ =
(G,M, I) in which G is set of objects and G is the set of
attributes, and I is a set of relations defined on G and M
with I ⊆ G ×M. For gi ∈ G and gj ∈ G, (gi, gj) ∈ I holds
iff object gi is linked to gj .

There are several methods (cf. [14]–[16]) that build the
lattice, i.e., compute all the concepts together with the partial
order.

Definition 2.6 (Lower and Upper covers): For any two formal
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concepts c1 = (A1, B1) � c2 = (A2, B2) if:

(A1, B1) � (A2, B2),@ c3 = (A3, B3) such that
(A1, B1) � (A3, B3) � (A2, B2), (2)

or
A1 ⊆ A3 ⊆ A2 ⇐⇒ B1 ⊇ B3 ⊇ B2, (3)

then c1 = (A1, B1) is a lower cover of c2 = (A2, B2),
and c2 = (A2, B2) is an upper cover of c1 = (A1, B1);
represented as c1 ≺ c2 and c2 � c1 respectively.
We will use U(c) and L(c) to denote the sets of upper and
lower covers of the formal concept c respectively.
Definition 2.7 (Concept Intentional Face [17]): The inten-
tional face fin(c, cd) of a concept c = (A,B) w.r.t. its d-th
upper cover concept, cd = (Ad, Bd) ∈ U(c), is the difference
between their intent sets as: fin(c, cd) = B \Bd.
Definition 2.8 (Concept Extensional Face): The extensional
face fex(c, cl) of a concept c = (A,B) w.r.t. its l-th lower
cover concept, cl = (Al, Bl) ∈ L(c), is the difference
between their extent sets as: fex(c, cl) = A \Al.
Definition 2.9 (Blocker [17]): Given the family of faces Λc,
the setZ is said to be a blocker of Λc if ∀fi ∈ Λc, fi∩Z 6= ∅,
and the blocker Z is said to be minimal if @Zj ⊂ Z, ∀fi ∈
Λc, fi ∩ Zj 6= ∅.
Definition 2.10 (Generator [18]): Given a concept c =
(A,B) in a formal context K = (G,M, I), a subset H ⊆ B
is called a generator of c iff H ′′ = B, and it is a minimal
generator when @H1 ⊆ H such that H ′′1 = B. We use Hex

c

andHin
c to denote the sets of minimal generators of a concept

c w.r.t. its extent and intent respectively.
For example, {Canada} is a generator associated with the

intent {Canada,USA}, and allows us to infer that whenever
an airline has a Canada destination, then it necessarily has an
USA destination.

B. SOCIAL NETWORK ANALYSIS
Definition 2.11 (Biclique): Let Υ = (G,M, I) be an
undirected bipartite graph defined over the objects G and
attributesM. A biclique Q̃ = (G̃,M̃) is a complete subgraph
of Υ induced by a pair of two disjoint subsets G̃ ⊆ G,M̃ ⊆
M, such that G̃ 6= ∅, M̃ 6= ∅, ∀u ∈ G̃, ∀v ∈ M̃, (u, v) ∈ I.
The disjoint subsets Q̃ = ({AirCanada,Mexicana,ThaiAirways,
UnitedAirlines}, {LatinAmerica,Caribbean,USA}) is an
example of a biclique. Henceforth, we use Q̃ as our illus-
trative biclique (see the lattice node indicated by a red arrow
in Figure 3) to support the understanding of definitions and
principles related to the Bi-face centrality.
Definition 2.12 (Bridge): An edge (u, v) ∈ I of a two-
mode data network Υ is a bridge iff it is not contained in
any cycle and its removal increases the number of connected
components in the graph Υ.
For instance, the edge (AnsettAustralia,AsiaPacific) repre-
sents a bridge in Υ.
Definition 2.13 (Bipartite centrality measure): The centrality
measure of a type-I node u ∈ G is a function that assigns a
positive real number to u quantifying its centrality w.r.t. to

all other type-II nodes v ∈ M in the network Υ (and vice
versa).

In two-mode networks, bipartite (also known as two-
mode) centrality measures are commonly utilized to de-
tect important nodes. Although numerous centrality metrics
have been proposed, the degree, closeness, betweenness, and
eigenvector have been demonstrated to be the most outstand-
ing in a variety of applications, and they are thus widely used.
Definition 2.14 (Degree centrality Dc [3], [19]): The degree
centrality of a node in a two-mode graph network Υ is
defined as:

Dc(ui) =
∑

vj∈M
Iij ,∀ui ∈ G, (4)

Dc(vj) =
∑
ui∈G

Iij ,∀vj ∈M (5)

where Iij is equal to 1 when a link exists between ui and vj ,
and 0 otherwise. Thus, the summation in Eq. (4) represents
the number of edges (or ties with other type neighbour nodes)
involving the node.
Definition 2.15 (Closeness centrality Cc [3], [5]): The nor-
malized closeness centrality of a node gi, in a two-mode
graph network Υ, is defined as:

Cc(ui) =
|M|+ 2(|G| − 1)∑

vj∈M d(ui, vj)
,∀ui ∈ G, (6)

Cc(vj) =
|G|+ 2(|M| − 1)∑

ui∈G d(ui, vj)
,∀vj ∈M (7)

where d(ui, vj) is the geodesic distance (shortest path) be-
tween the nodes ui and vj .
Definition 2.16 (Betweenness centrality Bc [7]): In bipartite
networks Υ, the normalized betweenness centrality of a node
is defined as in [5]:

Bc(ui) =
∑

uj 6=uk 6=ui, uj ,uk,ui∈G

σujuk
(ui)

σujuk

,∀ui ∈ G, (8)

Bc(vj) =
∑

vj 6=vk 6=vi, vj ,vk,vi∈M

σvigk(vj)

σvivk

,∀vj ∈M, (9)

where σxjxk
denotes the total number of shortest paths

between nodes xj and xk, and σxjxk
(xi) is the number of

those paths that traverse gi. To normalize the betweenness,
we simply divide Bc(ui) and Bc(vj) by the corresponding
term to its node set [5]:

Bc(G) =
1

2

[
|M|2(s+ 1)2+

|M|(s+ 1)(2t− s− 1)− t(2s− t+ 3)
]
,∀ui ∈ G,

(10)

where s = (|G − 1| div |M|) and t = (|G − 1| mod |M|),

Bc(M) =
1

2

[
|G|2(p+ 1)2+

|G|(p+ 1)(2r − p− 1)− r(2p− p+ 3)
]
,∀vj ∈M,

(11)

where p = (|M− 1| div |G|) and r = (|M− 1| mod |G|)
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Definition 2.17 (Eigenvector centrality EVc [3], [5]): The
eigenvector centrality of a node gi, in a graph network Υ,
can be iteratively computed as:

EVc(ui) =
1

λ

∑
vj∈M

auivj
EVc(vj),∀ui ∈ G, (12)

EVc(vj) =
1

λ

∑
ui∈G

auivj EVc(ui),∀vj ∈M, (13)

where the eigenvalue λ 6= 0 is a constant, and auivj
is the

adjacency element which is equal to 1 if node ui is linked to
node vj , and 0 otherwise.

III. BI-FACE FRAMEWORK
From a conceptual standpoint, and as depicted by the
flowchart in Figure 2, the Bi-face centrality approach consists
of the following basic steps.

FIGURE 2: A flowchart illustrating the basic steps of the Bi-
face framework.

1) We construct the formal context associated with the net-
work and then its corresponding concept lattice. We then
extract the set of bicliques that coincide with the set of
formal concepts whose extent or intent is not empty.

2) We detect what we call face-bridges, which are the non-
influential bridges in the network that contain terminal
nodes.

3) We refine the bicliques by removing non-influential
nodes in order to obtain face-bicliques (see Definition
3.2).

4) We compute the Bi-face centrality measures of nodes
using face-bridges and face-bicliques.

5) Eventually, we use the Bi-face centrality measures to
rank the two types of nodes in a descending order of
importance before identifying the key ones.

A. BUILDING THE FORMAL CONTEXT OF A TWO-MODE
NETWORK
We first construct the formal context of the two-mode net-
work Υ = (G,M, I) by calculating the adjacency matrix as
follows:

K̃ = (G,M, I) =

{
(ui, vj) = 1, ∃ (ui, vj) ∈ I
(ui, vj) = 0, Otherwise.

(14)

In Eq. (14), If the object ui (node type-I) is linked to the
attribute vj (node type-II) in the network Υ, we set 1 to K̃
element in the row i and column j. Otherwise, we assign 0 to
it. For instance, Table 1 shows the constructed formal context
K̃ of our toy graph in Figure 1.

We then construct the concept lattice B(K̃) from the
formal context, as it is shown in Figure 3. Note that Figure
3 shows the Hasse diagram of B(K̃) with reduced labelling,
where the label g is written below γg and m above µm. The
extent of a concept represented by a node a is given by all
labels in G from the node a downwards, and the intent by all
labels inM from a upwards.

B. OVERLAPPING BICLIQUE EXTRACTION AND
REFINEMENT
Using the constructed lattice B(K̃), it is now possible to
extract concepts that capture the corresponding bicliques of
the two-mode network as follows:
Proposition 3.1: Given a network Υ and its corresponding
concept lattice B(K̃), a concept c = (A,B) ∈ B with |A| ≥
1 and |B| ≥ 1, represents a biclique Q = ({u : u ∈ A}, {v :
v ∈ B}) in Υ.

Proof: Given a concept c = (A,B) ∈ B(K̃), then we
have from Definition 2.2 that ∀u ∈ A,∀v ∈ B, ∃(u, v) ∈ I.
This entails that the concept c represents a sub-matrix Q̂ ⊆
K̃ of size |A| × |B| that contains all 1’s. Now, given that
the concept lattice B, which is constructed from the formal
context K̃, is equivalent to the network Υ – where the sets of
objects G, attributesM and relations I in K̃ correspond to the
two disjoint sets of nodes and set of edges in Υ respectively
– we can then deduce that the sub-matrix Q̂ of the concept c
coincides with a complete sub-graph Q = (A,B) in Υ such
that ∀u ∈ A,∀v ∈ B there is an edge (u, v) that connects the
two nodes u and v. Pursuant to Definition 2.11, this complete
sub-graph Q represents a biclique ({u : u ∈ A}, {v : v ∈
B}) ∈ Υ. This implies that the concept c = (A,B) ∈ B is
equivalent to a biclique Q ∈ Υ in which both extent A and
intent B involve only the objects {u : u ∈ A} and attribute
{v : v ∈ B} nodes of Q respectively.

An interesting question that could be raised now is how
to determine the non-influential nodes in a given concept
(or biclique). To answer this question, let us define a non-
influential node from the viewpoint of FCA.
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TABLE 1: The formal context K̃ for the two-mode network of Figure 1.

G LatinAmerica Europe Canada AsiaPacific MiddleEast Africa Mexico Caribbean USA
AirCanada 1 1 1 1 1 0 1 1 1
AirNewZealand 0 1 0 1 0 0 0 0 1
AllNippnA 0 1 0 1 0 0 0 0 1
AnsettAustralia 0 0 0 1 0 0 0 0 0
TheAustrianAG 0 1 1 1 1 1 0 0 1
BritishMidland 0 1 0 0 0 0 0 0 0
Lufthansa 1 1 1 1 1 1 1 0 1
Mexicana 1 0 1 0 0 0 1 1 1
ScandinavianA 1 1 0 1 0 1 0 0 1
SingaporeA 0 1 1 1 1 1 0 0 1
ThaiAirways 1 1 0 1 0 0 0 1 1
UnitedAirlines 1 1 1 1 0 0 1 1 1
Varig 1 1 0 1 0 1 1 0 1

FIGURE 3: The Hasse diagram of the concept lattice B(K̃) that corresponds to the context of the two-mode network in
Figure 1. More precisely, it is a diagram with reduced labeling. This means that the label g is written below γg := (g′′, g′)
and m above µm := (m′,m′′). The extent of a concept represented by a node a is given by all labels in G from the node a
downwards, and the intent by all labels inM from a upwards. The red downward arrow indicates the illustrative biclique cited
after Definition 2.11.

Definition 3.1 (Non-influential node): For a formal concept
(biclique) ci = (Ai, Bi) ∈ C, a type-I node u ∈ Ai is
non-influential if its removal from ci (and accordingly from
the graph G) does not violate the closure conditions of other
biclique concepts C \ {ci} that involve it:

∀cj ∈ C \ {ci} and u ∈ Aj , (Aj \ {u})
′′

= Aj . (15)

In a dual manner, a type-II node v ∈ Bi is non-influential if :

∀cj ∈ C \ {ci} and v ∈ Bj , (Bj \ {v})
′′

= Bj . (16)

That is, the subset of concepts (or bicliques) that contain
either node u or node v nevertheless preserve their conceptual
substructures even after eliminating u from their extents

or v from their intents. In fact, this implies that the node
u or v is non-influential (e.g., has no essential conceptual
information) since removing it from the bicliques does not
influence the network’s intrinsic connectivity (e.g., which
may clearly appear through the non-expansion of the con-
cepts’ extents or intents). In fact, Definition 3.1 raises another
interesting question of how to identify the non-influential
nodes in bicliques. Fortunately, the faces of corresponding
concepts, w.r.t. their upper and lower covers, can reveal
information about their non-influential nodes. As a result,
one efficient way to answer this question is to juxtapose the
corresponding concept (biclique) with its lower and upper
covers through extensional and intentional faces to determine
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its non-influence type-I and type-II nodes respectively. That
is, the set of faces of its concept ci = (Ai, Bi), w.r.t. its
lower and upper covers, have in common the same non-
influential (type-I and type-II) nodes in its (extent and intent)
respectively:

∀u ∈ {∩cl∈B(ci)fex(ci, cl)} =⇒ (Aj \ {u})
′′

= Aj ,

∀cj ∈ C \ {ci} and u ∈ Aj .
(17)

∀v ∈ {∩cd∈U(ci)fin(ci, cd)} =⇒ (Bj \ {v})
′′

= Bj ,

∀cj ∈ C \ {ci} and v ∈ Bj .
(18)

For example, the corresponding concept of Q̃ has two
extensional faces f1ex = {ThaiAirways} and f2ex =
{Mexicana}. Since the intersection of the faces f1ex and f2ex
is empty, Q̃ contains no non-influential type-I nodes. It also
has only one intensional face f1in = {Caribbean}. Thus, the
intersection is also f1in, which entails that Caribbean is a
non-influential type-II node in the Q̃.

On the basis of Equations (17) and (18), we can leverage
the faces of concepts to define a key biclique2 as follows:
Definition 3.2 (Face Biclique): Given a two-mode network
Υ and its corresponding concept lattice B(K̃), a concept
(representing a biclique) c = (A,B) ∈ B, is called a face
biclique if all of its (type-I and II) nodes are influential, i.e.,
no one of them satisfies the conditions in Equations (17)
and (18).

Based on Definition 3.2, we can obtain the face biclique
ĉ = (Â, B̂) by refining the original biclique c = (A,B) as
follows:

Â =

{
A \ {∩cl∈L(ci)fex(ci, cl)}, |A| > 1

A, otherwise,

B̂ =

{
B \ {∩cd∈U(ci)fin(ci, cd)}, |B| > 1

B, otherwise.

(19)

In Equation (19), we remove non-influential type-I nodes
from its extent and non-influential type-II nodes from its
intent. It is worth noting that when the extent or intent
contains only one node, no refinement is applied because
this node is influential by default. This is due to the fact that
removing this node clearly violates the closure conditions in
Equations (17) and (18).

C. FACE-BRIDGE DETECTION
Definition 3.3 (Face-I Bridge and Terminal type-I node):
Given a 2-mode network Υ and its corresponding concept
lattice B(K̃), an edge (u,B) represents a non-influential
(face-I) bridge containing a terminal (type-I) node u ∈ G
when there is an attribute concept c = (A,B) ∈ B(K̃) with
|B| = 1 that satisfies the following:

u ∈ A and ∃hi ∈ Hex
c S.t. hi = u and |hi| = 1 (20)

2Note that a biclique is key when all of its nodes are influential.

For instance, the attribute concept c = ({AirCanada,
AirNewZealand,AllNippnA,TheAustrianAG,BritishMidland,
Lufthansa,ScandinavianA,SingaporeA,ThaiAirways,
UnitedAirlines,Varig}, {Europe}) that appears in blue/black
in Figure 3 has an extensional minimal generator set
Hex

c = {BritishMidland}. This implies that BritishMidland
(framed in yellow in Figure 3) is a terminal (type-I) node
and the edge (BritishMidland,Europe) represents a non-
influential (face-I) bridge. Similarly, we have:
Definition 3.4 (Face-II Bridge and Terminal type-II node):
Given a 2-mode network Υ and its corresponding concept
lattice B(K̃), an edge (A, v) represents a non-influential
(face-II) bridge containing a terminal type-II node v ∈ M
when there is an object concept c = (A,B) ∈ B(K̃) with
|A| = 1 that satisfies the following:

v ∈ B and ∃hj ∈ Hin
c S.t. hj = v and |hj | = 1 (21)

Algorithm 1 Minigen() procedure for computing the inten-
tional minimal generators of a concept intent.
Input: Concept intent B, Set of upper covers U(c).
Output: Set of minimal generatorsHin

c .
1: Hin

c ← ∅;
2: for each cu = (Au, Bu) in U(c) do
3: fu ← B \Bu;
4: ifHin

c == ∅ then
5: Hin

c ← {a|∀a ∈ fu};
6: else
7: Gen← ∅;
8: for each hi inHin

c do
9: if hi ∩ fu == ∅ then

10: Gen← (Gen ∪ {hi ∪ a|∀a ∈ fu});
11: else
12: Gen← (Gen ∪ {hi});
13: end if
14: end for
15: Hin

c ← minimal(Gen);
16: end if
17: end for
18: Return Hin

c ;

The question now is, how can we obtain the minimal gen-
erators of object and attribute concepts? We can efficiently
compute the set of minimal generators Hin

c of a concept c
intent by applying Minigen() procedure, which is given in
Algorithm 1. It iteratively calculates the face of c w.r.t. each
upper cover in U(c) (Line 3). If the set of intentional minimal
generators is empty, it then assigns the individual attributes
in the first face toHc (Lines 4-5). Otherwise, it progressively
checks the intersection between the calculated face fu and
each generator hi inHin

c (Line 8). If the intersection with the
current generator hi is empty, then hi is not in the family
blocker formed by the face (Line 9). This entails that the
generator hi must then be modified so that it belongs to the
minimal blocker family of faces. Thus, the new minimal gen-
erators will be obtained by adding each element of the current
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face fu to hi (Line 10). If the intersection is not empty,
then the current generator hi, which exists in the family of
minimal blockers of previous faces, is also a minimal blocker
of the family formed of the the current face fu. So, we add
the generator hi, without performing any modification to the
minimal generator setHin

c (Line 12). It ultimately verifies the
minimality of the obtained set (Line 15) and returns the final
set of minimal generators Hin

c (Line 18). Note that, in a dual
way and using the set of concept’s lower-covers L(c), we can
apply Minigen() procedure to compute the set of extensional
minimal generatorsHex

c of a concept w.r.t. its extent A.

D. BI-FACE CENTRALITY
Definition 3.5 (Bi-face Centrality BFc): The Bi-face central-
ity of nodes u ∈ G and of v ∈ M, in a given graph network
Υ, can be computed as:

BFI(u) =

Face-bicliques containing u︷ ︸︸ ︷
|{ĉ ∈ Ĉ | u ∈ Â|}

|Ĉ|
+
[
1−

Face-I bridges containing u︷ ︸︸ ︷
|{g ∈ ΓI | g == u|}

|ΓI |
]
,

(22)

BFII(v) =

Face-bicliques containing v︷ ︸︸ ︷
|{ĉ ∈ Ĉ | v ∈ B̂|}

|Ĉ|
+
[
1−

Face-II bridges containing v︷ ︸︸ ︷
|{m ∈ ΓII | m == v|}

|ΓII |
]
.

(23)

Ĉ stands for the set of face bicliques while ΓI and ΓII

represent the two sets of non-influential (face-I) and (face-
II) bridges, respectively. In Eq. 22, the Bi-face centrality
calculates the sum of face-biclique3 and face-bridge terms.
The numerator of the face-biclique term simply counts the
number of refined concepts, with extent and intent sizes
greater than 1, that involve a type-I node u. That is, it mea-
sures the amount of face bicliques to which node u belongs
in the graph network Υ. From a conceptual viewpoint, this
term effectively approximates the cross connectivity [20],
[21] of the node u using refined overlapped bicliques that
only contain influential nodes. In the face-bridge term, we
first quantify the ratio of the face bridges that involve the
node u. This ratio is then subtracted from 1 to approximate
the portion of influential bridges in the graph that contain the
node u. It is worth noting that the numerators of two Bi-Face
terms in Eq. (22) are unnormalized quantities. As a result,
the denominators in Eq. 22 act as normalization factors to
scale the two terms between 0 and 1. In a similar manner, the
Bi-face centrality in Eq. (23) can be interpreted and used to
compute the centrality of type-II nodes in the graph.

The pseudo-code for calculating the Bi-face centrality of
all type-I nodes in the two-mode network Υ is given in
Algorithm 2. The algorithm takes as input the set of all
extracted concepts C =

{
cj = (Aj , Bj)

}|C|
j=1

. For each type-
I node ui ∈ G, it first iteratively refines the extents of the

3Note that the face-clique of a node is the number of overlapping face
bicliques to which it belongs to.

bicliques to obtain the face ones by removing all their non-
influential type-I nodes (lines 4-5). It then counts the number
of those refined face bicliques in the graph that involve ui
(lines 7-9). Hereafter, it iteratively computes the minimal
generators of the the attribute concepts w.r.t. their extents to
identify the face-bridges that involve the node ui (lines 11-
12). Subsequently, it counts how many face-bridges contain-
ing the node ui as a terminal (type-I) one (lines 13-15). It
then calculates the Bi-face centrality BFI of a node ui (lines
19-21). Eventually, it returns a list with the Bi-face centrality
measures BFI of all type-I nodes in the graph respectively
(line 22). Without loss of generality, and in a dual manner,
algorithm 2 can be applied to compute the Bi-face centrality
for each type-II node vj ∈ M as follows. It iteratively
obtains the face bicliques by refining the non-influential type-
II nodes from the intents of their corresponding concepts. It
then identifies the face bicliques in the graph that involve
vj . It then uses the minimal generators of object concepts to
count the number of the face-bridges that involve the node
vj as a terminal (type-II) one. Eventually, it returns a list
containing the Bi-face centrality measures BFII of all type-
II nodes in the graph.

Consequently, we can now use the resulting Bi-face cen-
trality lists to rank the two types of nodes in descending
order based on their importance. Table 2 summarizes the
ranked lists of the most important airlines and destinations, in
Figure 1, based on five bipartite centrality measures: Bi-face,
betweenness, eigenvector, closeness and degree. For exam-
ple, because the node Lufthansa has slightly fewer geodesics
than AirCanada , Betweenness considers AirCanada to be
the most important type-I node. In contrast, the Bi-face cen-
trality ranks the node Lufthansa as the most important type-I
node because Lufthansa exists in considerably more over-
lapped bicliques than AirCanada . Closeness, degree, and
eigenvectors are unable to distinguish which node Lufthansa
or AirCanada is more important than another. Furthermore,
neither degree nor closeness centrality can determine which
type-I node from {TheAustrianAG ,SingaporeA,Varig}
is more influential than the others. The eigenvector
centrality cannot distinguish between type-II nodes in
{MiddleEast, Africa, Caribbean}.

a: Complexity Analysis
The calculation of the face biclique term has time and space
complexity equal to O(|C|) since we store and proceed
through the extent of all the bicliques to count the face
bicliques that contain the node. The Face-bridge term of type-
I node needs iterating through the attribute concepts C̃ and
calculates their minimal generators w.r.t. their corresponding
lower covers. Thus, the Bi-face centrality BFI of all type-I
nodes requires

(
|G|×|C|+|C̃|×|L̃|×|H̃ex|), where C̃ is the set

of attribute concepts, |H̃ex| is the largest size of an obtained
set of minimal generators for attribute concepts, and L̃ is
the largest number of lower covers for an attribute concept.
Now, since we often have |C̃| � |C| and also |L̃| � |G|,
then the first term frequently dominates the second one. This
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Algorithm 2 Calculating Bi-face centrality (BFc) for all type-
I nodes in a two-mode network.

Input: Set of bicliques (C =
{

(Aj , Bj)
}|C|
j=1

).
Output: Bi-face centrality (BFI) of all type-I nodes.

1: BFI ← ΓI ← ∅;
2: for each ui ∈ G do
3: countI ← γI ← [0]

|G|
i=1;

4: for each Aj ∈ C do
5: Âj ← Refine(Aj); //usingEq .19
6: // Counting face bicliques that contain the node ui
7: if |Âj | > 0 and ui ∈ Âj then
8: countI [i]← countI [i] + 1;
9: end if

// Counting face-bridges that contain the node ui
10: if |Bj | == 1 then

// using the extensional version of Algorithm 1.
11: Hex

Aj
←Minigen(Aj);

12: if ∃h ∈ Hex
cj , h == ui then

13: γI [i]← γI [i] + 1; ΓI .append(ui);
14: end if
15: end if
16: end for
17: end for
18: for each i = 1 to |G| do
19: BFI[i]←

(
countI [i]/|C|

)
+
(
1− (γI [i]/|ΓI |)

)
;

20: end for
21: Return BFI

entails that computing the Bi-face centrality BFI of all type-I
nodes needs a time and space complexity of O(|G| × |C|). In
a dual way, the calculation of the Bi-face centrality BFII of
all type-II nodes has a time complexity of O(|M| × |C|). In
total, the Bi-face centrality has time and space complexity of
O
(
|C| × (|G|+ |M|)

)
.

b: Bi-Face vs. Cross-Face

One might contrast the bipartite Bi-Face (BF) and our Cross-
face (CF) centrality introduced in [22], which is a prominent
FCA-based centrality for one-mode networks. At a high
level, BF can be considered as a generalized form of CF
(with a larger size and a higher level of details and depth)
for two-mode networks. However, it is well-known that
two-mode networks have distinct characteristics with more
complex substructures than the one-mode ones, which leads
to a different computation of node centrality and distinct
applications. Thus, recalling the basic formulations used in
both centrality approaches, the BF and CF are fundamentally
different measures that share a similar FCA-based route.
Technically, some of these differences can be summarized as
follows: (1) In the preprocessing step of BF, a different adja-
cency matrix (see Eq. (14)) adapted for two-mode networks
is used to build the formal context; (2) In the BF framework,
we extract bicliques and bridges using concepts rather than
symmetrical concepts as in the CF framework. This is due

to the fact that the symmetrical ones do not exist in the
constructed lattice representing two-mode networks; (3) In
the BF approach, we use a refinement step to obtain what
we name face bicliques by pruning the non-influential nodes
from the original bicliques (see Definition 3.2 and Eq. (19)).
This step does not exist in the CF one-mode formulation
centrality. In practice, this step significantly improves the
outcome (as demonstrated by the results of experiment I
in subsection IV-C); (3) Face bridges in BF are identified
in a completely different way than in one-mode networks
for CF. Specifically, we leverage the minimal generators
of concepts in BF (see Definitions 3.3-3.4 and Eqs. (20)-
(21)) instead of the interesting faces and meet-irreducible
concepts in CF; (4) We detect the terminal nodes in the
BF framework, which is not taken into account in CF. Due
to the aforementioned differences, the two terms (i.e., face-
bicliques and face-bridges in Eqs. (20)-(21)) formulations of
BF meaningfully differ from the corresponding terms of CF
formulation presented in [22].

IV. EXPERIMENTAL EVALUATION

The objective of our experimental evaluation is to find robust
answers to the following essential questions.

• (Q1) Is the accuracy of Bi-face centrality competitive
with the prominent centrality measures?

• (Q2) Is Bi-face centrality performing fast compared to
state-of-the-art centrality measures?

• (Q3) Is there a correlation between the Bi-face centrality
approach and other state-of-the-art centrality measures?

We first consider the following five (real-life? and synthetic‡)
two-mode networks, which possess various configurations to
support the investigation of different scenarios.

A. DATASETS
• ?Norwegian Interlocking Directorates [23], which

contains interlocking boards of 1542 Norwegian direc-
tor women in 373 Norwegian public limited companies.
A link represents a board membership connecting a
woman as a director of a public company in Norway
on August 2009.

• ?PediaLanguages [24] involves the semantic web of
316 official languages spoken by people living in 169
different countries. An edge connects an official lan-
guage to a country if people in that country speak that
language.

• ?Southern-Women-Davis [25], [26], which is a two-
mode social network of 18 women reporting their partic-
ipation to 14 events (such as a meeting of a social club,
a church event or a party) over a nine-month period. A
woman is connected to an event if she attends that event.

• ‡CoinToss, which is a random bipartite network gener-
ated from indirect Coin-Toss model generator [27].

• ‡Dirichlet [28] which is a random formal context gen-

10

Page 35 of 42

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



M-H. Ibrahim et al.: Identifying Influential Nodes in Two-mode Data Networks

TABLE 2: The ranking of all nodes in the two-mode network of Figure 1 based on five bipartite centrality measures: Bi-face
(BFc), betweenness (Bc), eigenvector (Ec), closeness (Cc) and degree (Dc).

Rank Type-I Type-II

BFc

1 Lufthansa USA
2 AirCanada AsiaPacific, Europe
3 UnitedAirlines LatinAmerica
4 Varig Canada
5 SingaporeA, TheAustrianAG Mexico
6 ScandinavianA Africa
7 ThaiAirways MiddleEast
8 Mexicana Caribbean
9 AirNewZealand, AllNippnA -

10 AnsettAustralia, BritishMidland -

Ec

1 Lufthansa, AirCanada USA
2 UnitedAirlines AsiaPacific, Europe
3 Varig Canada
4 SingaporeA, TheAustrianAG LatinAmerica
5 ThaiAirways, ScandinavianA Mexico
6 Mexicana MiddleEast, Africa, Caribbean
7 AllNippnA, AirNewZealand -
8 AnsettAustralia, BritishMidland -

Cc

1 Lufthansa, AirCanada USA, AsiaPacific, Europe
2 UnitedAirlines LatinAmerica
3 Varig, SingaporeA, TheAustrianAG Canada
4 ThaiAirways, ScandinavianA Mexico
5 Mexicana, AllNippnA, AirNewZealand MiddleEast, Africa
6 AnsettAustralia, BritishMidland Caribbean

Bc

1 AirCanada AsiaPacific, Europe
2 Lufthansa USA
3 UnitedAirlines LatinAmerica
4 SingaporeA, TheAustrianAG Canada
5 Varig Mexico
6 ThaiAirways Africa
7 ScandinavianA Caribbean
8 Mexicana MiddleEast
9 AirNewZealand, AllNippnA -

10 AnsettAustralia, BritishMidland -

Dc

1 AirCanada, Lufthansa Europe, AsiaPacific, USA
2 UnitedAirlines LatinAmerica
3 TheAustrianAG, SingaporeA, Varig Canada
4 Mexicana, ScandinavianA, ThaiAirways Africa, Mexico
5 AirNewZealand, AllNippnA MiddleEast, Caribbean
6 AnsettAustralia, BritishMidland -

erated using the Dirichlet model generator4.

Table 3 gives the basic statistics of the networks.5

TABLE 3: The basic statistics of the two-mode networks
about the number |G| of type-I nodes, the number |M| of
type-II nodes, the number |I| of edges, and the density Θ in
%.

Name |G| |M| |I| Θ
Norwegian-Directorate 1542 375 1889 0.33
PediaLanguages 316 169 9022 17
Southern-Women-Davis 18 14 89 36
CoinToss 793 10 3310 42
Dirichlet 1100 55 30855 51

4Publicly available: https://github.com/maximilian-felde/
formal-context-generator

5Publicly available at: https://toreopsahl.com/datasets/
http://konect.cc/networks/opsahl-collaboration/
https://networkdata.ics.uci.edu/netdata/html/davis.html

B. METHODOLOGY
The results of our proposed Bi-face centrality measure are
then compared to the following state-of-the-art measures:
• Bipartite closeness [Definition 2.15].
• Bipartite betweenness [Definition 2.16].
• Bipartite eigenvector[Definition 2.14].
• Vote-Rank [29], which is a well-known method for

identifying decentralized spreaders. It calculates the
ranking of the nodes in the bipartite graph based on a
voting scheme. That is, at each turn, all nodes iteratively
vote in a spreader. The node with the highest vote num-
ber is elected iteratively, while decreasing the voting
ability of the elected spreader’ neighbours in the next
turn.

• Percolation [11], which measures the proportion of
percolated paths6 that go through a given node. So, it
quantifies the relative impact of nodes in various perco-
lation scenarios based on their topological connectivity

6We recall that the percolated path is the shortest one between two nodes
in which the source node is percolated (i.e., infected).
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over time. The percolation state is commonly assigned
a value between 0.0 and 1.0, with 0.5 being the most
commonly used value that we used in our experiment.

• Bipartite degree [Definition 2.14], which can act as an
effective baseline for comparison.

Subsequently, the two ranking lists of (type-I and type-II)
nodes calculated from the underlying centrality measures are
then compared with the corresponding lists obtained from
the spreading process of the node. We specifically evaluate
the tested centrality’s performance for each type of node by
applying the following common schema [30], [31]:

1) Calculate the centrality metric for all nodes and record
their ranking list

2) Simulate the spreading ability of nodes using SIR model
[30]. The node in the SIR model can be susceptible, in-
fected, or recovered. We set only one node to be infected
at a time, and the other remaining nodes are susceptible,
then we examine how the information spreads on the
network. With a spreading (or infection) probability, the
infected node can spread its infection to nearby suscepti-
ble nodes. In practice, we noticed that investigating the
spreading in the early stages is more meaningful than
examining each node recovered state, so we concentrate
on the effect within a t = 10 time range rather than the
recovered state of each node. Following the completion
of the SIR simulation, we obtain the node influence
ranking list by computing the spreading efficiency for
all nodes.

3) Compute the joint score list J = {(xi, yi)}ni=1 using
the SIR model’s ranking list and the centrality measure’s
ranking list. The xi and yi in each pair (xi, yi) ∈ J are
the centrality-based and SIR-based measures of a node
gi ∈ G, respectively. The two randomly chosen pairs
(xi, yi), (xj , yj) ∈ J are concordant if both (xi < xj)
and (yi < yj) or if both (xi > xj) and (yi > yj). They
are discordant if both (xi < xj) and (yi > yj) or if both
(xi > xj) and (yi < yj). If (xi = xj) and (yi = yj),
then the pair is neither concordant nor discordant. We
use nc and nd to denote the number of concordant and
discordant pairs in J , respectively.

Based on J , we then calculate the following Kendall’s tau
rank correlation coefficient τ metric:

τ =
2(nc − nd)

n(n− 1)
, (24)

If the underlying centrality measure has a high τ value, this
indicates that it produces an accurate ranked list. The ranked
list produced by the centrality measure is identical to the
ranked list obtained from the real spreading process when
τ = 1, which is, in fact, the ideal scenario. To evaluate
the accuracy of the results, we now calculate the average
Kendall’s tau rank correlation coefficient as follows:

τ̂ =
τI + τII

2
, (25)

where τI and τII are the Kendall’s tau correlation coefficients
calculated using Eq. (24) for type-I and type-II of nodes,
respectively.

To assess the scalability, we consider the average elapsed
time metric as:

ξ =
1

2

[∑ui∈G ti

n
+

∑
vj∈M tj

m

]
(26)

where ti and tj are the elapsed times for calculating the
centrality measure of a type-I node ui ∈ G and a type-II one
vj ∈M, respectively.

We carried out our experiments on a MacOS Mojave
computer with an Intel(R) Core-i7 CPU @2.6GHz and 16
GB of memory. As an extension to the NetworkX Python
package, we implemented all of the centrality measures. We
also used the Concepts 0.7.11 Python package, developed by
Sebastian Bank7, to extract formal concepts.

C. RESULTS
1) Experiment I.
This experiment is devoted to answering Question 1. Each
infected node has a spreading probability β of infecting its
susceptible neighbours in the SIR model simulation. As a
result, and in accordance with the scheme described above,
we iteratively increase the spreading probability in the range
β = (0, 0.1] with increments of 0.01. At each step-size, we
compute the joint list J of each centrality measure and the
real spreading of the nodes for each individual type of nodes
separately. We then calculate the corresponding evaluation
metric τ̂ in Eq. (25).

Figure 4 displays the average Kendall’s tau correlation
coefficient τ̂ between the seven tested centrality measures
and the ranking list generated by the SIR model, with a
spreading probability β ∈ (0, 0.1] and at a given time t = 10.
Overall, Bi-face outperforms all the compared centrality
measures, achieving the most accurate Kendall coefficient
τ̂ on Norwegian-Directorate, PediaLanguages, CoinToss and
Dirichlet networks. On the Women-Davis network, Bi-face
has the highest τ̂ value when the spreading probability
β ≥ 0.03, otherwise vote-rank, closeness, betweenness and
degree slightly compete with Bi-face. The percolation comes
close behind Bi-face on Women-Davis, but considerably
further behind on Norwegian-Directorate, PediaLanguages,
CoinToss and Dirichlet networks. Except on the Women-
Davis network with spreading probability β < 0.03, the vote-
rank is clearly less accurate than Bi-face on all the tested net-
works, but it is more accurate than percolation, betweenness,
closeness, eigenvector and degree on PediaLanguages, Coin-
Toss and Dirichlet networks. On the Norwegian-Directorate
and Women-Davis networks, the vote-rank and percolation
compete with each other. The percolation is clearly more
accurate than betweenness and eigenvector when the spread-
ing probability β ≥ 0.05 on all the tested networks. Both
betweenness and eigenvector dominate degree and closeness

7Publicly available: https://pypi.python.org/pypi/concepts
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on Norwegian-Directorate, PediaLanguages and CoinToss
networks, but closeness outperforms betweenness centrality
on Dirichlet network. The betweenness is more accurate than
eigenvector on PediaLanguages network when the spreading
probability β ≥ 0.04, but it is outperformed by eigenvector
on CoinToss and Dirichlet networks. The betweenness cen-
trality is almost better than eigenvector for the Norwegian-
Directorate network while they have an opposite behavior for
the Women-Davis network.

2) Experiment II.

The second experiment is dedicated to answer Question 2.
The goal here is to evaluate the performance of the centrality
measures. To that end, we rerun Experiment I while reporting
their computational time as in Eq. 26. The average elapsed
time ξ of the seven centrality measures on the five underlying
networks is depicted in Figure 5. On all the tested networks,
the Bi-face dominates all centrality measures (except degree).
It finishes at least twenty-three times faster than betweenness,
eleven times faster than percolation, nine times faster than
eigenvector and ten times faster than closeness. Degree is
very competitive with Bi-face on Women-Davis, CoinToss
and Dirichlet networks, but Bi-face clearly prevailed over
the degree by a significant margin on Norwegian-Directorate
and PediaLanguages networks. Apart from Bi-face, the per-
colation is marginally slower than both the closeness and
eigenvector by at least factors of 1.15 and 1.25 on all net-
works (except Women-Davis) respectively. In addition, the
closeness is considerably faster than betweenness, and com-
petes with eigenvector on Norwegian-Directorate and Coin-
Toss networks. Vote-rank is significantly faster than close-
ness, eigenvector and percolation on Norwegian-Directorate,
PediaLanguages, CoinToss and Dirichlet networks, but on
the contrary, closeness is slightly quicker than vote-rank on
Women-Davis network.

3) Experiment III.

In this experiment, we focus on Question 3. That is, we are
interested here in exploring the monotonic relationships be-
tween Bi-face and the other underlying centrality measures.
Table 4 records the average Kendall’s tau rank correlation co-
efficient between Bi-face and the other six bipartite centrality
measures. Overall, all the centrality measures are positively
correlated with Bi-face, which is remarkably consistent and
supplement the finding of Experiment I. The Bi-face has
moderate monotonic relationships with vote-rank and perco-
lation on all tested networks. There is clearly a weak relation-
ship between Bi-face and betweenness on the Norwegian-
Directorate, PediaLanguages, and CoinToss networks. Fur-
thermore, it has a weak correlation with eigenvector on the
Women-Davis, CoinToss and Dirichlet networks. Moreover,
there is weak correlation between Bi-face and closeness on
the Women-Davis and Dirichlet networks. Noticeably, the Bi-
face has a very weak relationship with degree on all networks
except the Women-Davis.

D. DISCUSSION
Taking the identification of accurate node centrality into con-
sideration, the results of Experiment I in Subsection IV-C1
indicate that Bi-face outperforms traditional bipartite central-
ity measures such as vote-rank, percolation, degree, close-
ness, betweenness, and eigenvector. This is attributed to the
use of its face biclique and face-bridge terms in tandem
to leverage local and global aspects of network topology,
respectively. That is, the face-biclique term quantifies the
structural embeddedness of cohesive regions in a network
involving each individual (type-I and type-II) node. From a
conceptual perspective, this term considers the local infor-
mation on how the node influences its immediate important
neighbour nodes through the lens of its overlapping face
bicliques. The face-bridge term quantifies a node’s global
role based on how the information flows through influential
(face) bridges (i.e., important geodesics).

In terms of effective performance, the results of Experi-
ment II from the previous Subsection IV-C2, suggest that the
Bi-face is considerably faster than all other tested bipartite
centrality measures (except degree). This is due to the fact
that Bi-face primarily calculates the centrality of all nodes
based on the set of concepts C, which is frequently too small
in comparison to all other tested centrality measures with
polynomial time complexity in terms of nodes and edges, i.e.,
|C| � np and |C| � mq , with p, q > 1.

Besides that, several well-known observations are clearly
consistent with the obtained results in Subsection IV-C. First,
in some real-world applications, we may end up with several
nodes having approximately similar low or high degrees, and
in these cases, degree centrality cannot serve as a descrip-
tive measure that can distinguish between nodes. Second,
closeness can address the degree centrality limitation in a
few situations. For example, consider node u that is linked to
node v. Assume that node v is in close proximity to the other
nodes in the network, resulting in a high closeness score.
Node u has a very low degree score of 1, but a rationally high
closeness score, because node u can propagate information
to all other nodes that node v reaches with one extra step.
However, closeness, like degree, is usually inappropriate
for irregularly connected bipartite networks. Because the
shortest-path distance between two nodes is infinite when
they are not reachable through a path, the closeness score is
equal (or very close) to zero for those nodes in the network
that do not reach all other nodes. Third, since betweenness
lacks any form of measuring local nodal connectivity, it is
expected to produce relevant results only if the goal is only
to quantify influence on communication among local groups,
which is not always the case when studying the centrality
in real-world networks. Finally, and in practice, using the
efficient implementation adopted from the fastest algorithm
proposed in [7], the calculation of percolation centrality for
all nodes requires a time complexity of O(m2(n1 + n2)),
which still seems to impose a computational bottleneck even
with fairly medium-sized networks.

As frequently asked, are these centrality measures corre-
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FIGURE 4: The average Kendall’s tau coefficient τ̂ between the tested centrality measures and the ranking list generated by
the SIR model, with β ∈ (0, 0.1], at t = 10 on the five underlying datasets.
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FIGURE 5: Average elapsed time ξ (in secs) of the seven tested centrality measures: Bi-face, closeness, betweenness, degree,
eigenvector, percolation and vote-rank on the five underlying datasets.
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TABLE 4: Average Kendall’s tau rank correlation coefficient between Bi-face (BFc) and the other six bipartite centrality
measures: betweenness (Bc), eigenvector (Ec), closeness (Cc), degree (Dc), Percolation (PCc) and Vote-rank (VRc) on the five
underlying datasets. The moderate, weak, highly weak correlation values are represented in blue, red and black respectively.

BFc
Norwegian-Directorate PediaLanguages Women-Davis CoinToss Dirichlet

Ec 0.09 0.12 0.19 0.20 0.18
Cc 0.07 0.08 0.18 0.10 0.15
Bc 0.14 0.16 0.05 0.19 0.09
Dc 0.04 0.06 0.17 0.07 0.08

PCc 0.31 0.29 0.41 0.33 0.31
VRc 0.32 0.33 0.39 0.35 0.34

lated? The results of Experiment III in Subsection IV-C3 ex-
pound that Bi-face centrality gives unique node identification
based on network topology. The presence of terminal nodes,
influential (also known as face) bridges, and overlapping key
bicliques impacts both the performance and behaviour of Bi-
face as well as its relationship to other traditional centrality
measures. When the network contains a large number of
cohesive regions with many nodes having high degrees and
there is a small number of hole structures or terminal nodes,
the role of the face-biclique term dominates the face-bridge
one, and here it is anticipated that the Bi-face centrality could
be partially correlated with vote-rank, degree, eigenvector
and (may be) closeness centrality measures. This is due to
the fact that in this scenario, the network tends to decompose
into multiple bi-clusters (or two-mode communities), with
the nodes with the highest degree potentially serving as the
central nodes. On the flip side of the coin, when the network
contains a small number of cohesive regions or a large
number of sparse ones, as well as a large number of terminal
nodes and bridges, the role of the face-bridge term dominates
the face-biclique one, even when structural holes are present.
This is due to the effect of face-bridges in determining the
central nodes, and here the Bi-face centrality may be slightly
correlated with percolation and betweenness.

It is worth noting that the existence of the two scenarios,
mentioned above in the network, could potentially increase
Bi-face centrality to behave slightly similar to vote-rank or
percolation. In an extreme scenario, such as the Women-
Davis network with a large number of overlapping bicliques
and no terminal nodes, the likelihood of having face-bridges
decreases dramatically. This indeed imposes a harsh situation
on Bi-face because it will depend solely on its face biclique
term, and here it is clearly expected that Bi-face will behave
similarly to degree, closeness, eigenvector, and vote-rank, but
not similarly to betweenness. From a statistical perspective,
the low and moderate (i.e., not high) correlations between Bi-
face and other centrality measures suggest that it is, in fact, a
distinct measure that is likely to be associated with different
outcomes than other centrality measures. This is due to the
fact that if the measures are highly correlated, they may be
somewhat redundant and behave similarly.

Furthermore, one conjecture inferred from the experiment
results (I-III) is that two-mode network properties (e.g.,
density, reciprocity, centralization) may affect the correlation

among bipartite centrality measures, as well as their accu-
racy and performance. For instance, one observation from
Table 4 and Figure 4 is that as network density increases,
the correlation between Bi-face and closeness, eigenvector,
and degree increases, while its correlation with betweenness
decreases. This observation, however, does not clearly reflect
the correlation between Bi-face and both percolation and
vote-rank because Women-Davis has a lower density than
CoinToss and Dirichlet, and Bi-face is more correlated with
the two centrality measures on Women-Davis than on Coin-
Toss. While this shows that network density influences how
well different centrality measures correlate with one another,
it also indicates that the network density is not the only factor
and that other network properties may have an impact on
such correlations. Since the study of the network properties is
outside the scope of this paper, we could explore the effects of
reciprocity and centralization on Bi-face in our future work.

V. CONCLUSION
The detection of influential nodes in a two-mode network
is frequently an important task in scientific and industrial
data analysis pipelines for explaining various behaviours and
outcomes. Our work here addressed an obvious gap in the
present CNA literature, namely the efficient identification of
key nodes by combining both local cohesiveness and global
network flow aspects of centrality through the use of FCA
mathematical formalization. On this basis, we devised Bi-
face, a new bipartite centrality measure that quantifies the
prominence of a node in a two-mode network based on its
presence in influential overlapping bicliques and bridges.
While we focused on two-mode networks here, the approach
can easily be modified to accommodate other complex net-
work representations like multilayer networks.

From a conceptual perspective, the Bi-face score is a dis-
tinct centrality in the following three elements: (i) it uses the
concept lattice formulation to efficiently extract overlapping
bicliques and bridges, (ii) it leverages concept faces to refine
bicliques from non-influential nodes and detect influential
bridges, and (iii) it exploits the fact that influential bridges
and overlapping bicliques with a large number of important
neighbour nodes are likely to contain key central nodes. As a
result, it measures how a node affects and is influenced by its
important neighbours through refined bicliques, while also
linking the network dense substructures via its existence in
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influential bridges. According to a thorough empirical study
on several synthetic and real-life two-mode networks (see
Section IV), the Bi-face score can identify key nodes more
accurately and efficiently than other state-of-the-art centrality
indices such as degree, betweenness, closeness, eigenvector,
percolation, and vote-rank.

We believe that the bi-face centrality measure proposed
in this paper for two-mode networks can be adapted and
applied to more complex networks such as multidimensional
and multilayer ones [32], [33] in order to find relevant
patterns, including social network communities [34]. Our
next research steps will consist to first analyze triadic for-
mal contexts (tridimensional datasets) to adapt our bi-face
formulae to the new notions of extent-based and feature-
based faces presented in [34]. Later on, we will analyze
multilayer networks as interlinked two-mode data networks
discussed in [33], to first express them as individual formal
contexts, use the composition operator on contexts to form
enriched ones with their corresponding concept lattices for
which the bi-face centrality measure will finally be exploited
and validated. Another interesting solution for identifying
relevant concepts in multilayer networks is to first exploit
Relational Concept Analysis [35] on interlinked contexts to
construct enriched ones and then apply our bi-face centrality
measure.
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ABSTRACT Identifying important actors (or nodes) in a two-mode network is a crucial challenge in mining,
analyzing, and interpreting real-world networks. While traditional bipartite centrality indices are often
used to recognize key nodes that influence the network information flow, inaccurate results are frequently
obtained in intricate situations such as massive networks with complex local structures or a lack of complete
knowledge about the network topology and certain properties. In this paper, we introduce Bi-face (BF), a new
bipartite centrality measurement for identifying important nodes in two-mode networks. Using the powerful
mathematical formalism of Formal Concept Analysis, the BF measure exploits the faces of concept intents
to detect nodes that have influential bicliques connectivity and are not located in irrelevant bridges. Unlike
off-the shelf centrality indices, it quantifies how a node has a cohesive substructure influence on its neighbour
nodes via bicliques while not being in network core-peripheral ones through its absence from non-influential
bridges. In terms of identifying accurate node centrality, our experiments on a variety of real-world and
synthetic networks show that BF outperforms several state-of-the art bipartite centrality measures, producing
the most accurate Kendall coefficient. It provides unique node identification based on network topology.
The findings also demonstrate that the presence of terminal nodes, influential bridges, and overlapping key
bicliques impacts both the performance and behaviour of BF as well as its relationship with other traditional
centrality measures. On the datasets tested, the computation of BF is at least twenty-three times faster than
betweenness, eleven times faster than percolation, nine times faster than eigenvector, and ten times faster
than closeness.

INDEX TERMS Formal concept analysis, two-mode networks, influential node, cross-clique connectivity.

I. INTRODUCTION
In today’s world, complex real-life systems are ubiquitous.
For example, mobile phone as well as Facebook and Twit-
ter networks facilitate the way we interact with others. The
energy and electric power networks play a significant role
in supplying our domestic and industrial lives. Most of these
systems frequently feature two types of data with complex
substructures and can thus be represented as two-mode net-
works (also known as bipartite graphs or affiliation net-
works). Due to the complex structure of such networks, the
spread of information across the network makes some nodes
more important than others in certain contexts. Our main
motivation here is to solve the problem of identifying key

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko .

actors in such networks. This is the case for a wide range
of real-world applications, such as the identification of the
most active agents who serve customers in call centres at var-
ious locations, the most popular products in various hot-spot
regions, the most cited authors collaborating on scientific
papers published in top-tier conferences, the actors who have
a major influence on audiences in different movies, or pro-
teins that have a large impact on various metabolic processes.
As such, the interesting question of how to measure the
relative importance of nodes in a two-mode network is often
increasingly challenging in the field of complex network
analysis (CNA). As it is frequently used to understand the
role of nodes within a network, node centrality analysis can
provide efficient answers to this question.

The centrality measure ranks nodes based on how
they influence or are effected by other nodes via their
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connection topology. Since no consensus holds on a unique
definition of centrality for two-mode networks in the CNA
literature, while opening the door for the invention of
new ones, different centrality scores have been presented
(cf. [1], [2] for a detailed survey), each of which takes into
account a distinct aspect of a central node. In the mainstream
CNA research area, the bipartite centrality is frequently clas-
sified as local or global. The local centrality metrics focus
on the relative importance of a node in its neighbourhood
within local cohesive communities. For example, the degree
centrality [3] is a basic local metric that counts the number
of links that each node has. However, it frequently captures
irrelevant local information about a node in practice. Intu-
itively, it is assumed that only the node with the highest
degree should be in the centre (because it is the most densely
linked node i.e., a hub), but it does not account for the
cascade effects of its neighbour nodes. Hence, it is sometimes
necessary to remove nodes with high degree values because
they provide no information. For example, Angelina Jolie
has a high degree centrality in Facebook’s network because
so many people follow her. However, if you explore your
friends’ Facebook pages to find out what they are interested
in or who among them enjoy soccer the most, Angelina Jolie
becomes completely irrelevant in that network.

The k-shell centrality [4] is a community-based local cen-
trality that enhances the degree of a node in terms of its neigh-
bourhood connections using the k-core.1 Thus, the higher the
portions of k-cores contain a node, the more likely it is a hub
in the cores of a network, and thus the more important it is in
a network. However, k-shell frequently produces inaccurate
results when the network structure has a small number of
k-cores, which is prevalent in two-mode networks. This is
due to the fact that in this case, many nodes are assigned an
approximately equal number of k-cores. From the perspective
of the topological graph of a two-mode network, k-bicliques
may be more accurate graphical components than k-cores.
That is, the number of k-bicliques among a node neighbours
is counted in order to estimate its importance using the Cross
k-bicliques connectivity measure, which quantifies how the
node affects information propagation through the network.
However, in general, its calculation requires an exponen-
tial time and space complexity and is often sensitive to the
k parameter. To compute Cross k-bicliques connectivity for
a given node, we must first extract all k-bicliques from the
network containing this node, which is an NP-hard prob-
lem. Furthermore, the determination of the optimal value
of k may be problematic in many applications. Strictly speak-
ing, picking a large k value may result in the overstepping
of all k-bicliques with k less than the chosen one, leading to
an underestimation of the influence of other nodes in local
cohesive communities within the network. A small k value
may stimulate overestimation of the importance of other

1A k-core of a graph G is a maximal connected sub-graph of G such that
all nodes have at least k neighbours.

neighbour nodes, generating a behaviour similar to degree
centrality.

Bipartite closeness [3], [5] is a common type of local
centrality that is based on the geodesics. It computes the
reciprocal of the sum of the distances between the node and
all of the other nodes in the network. Its basic form intuitively
assumes that information can efficiently flow from one node
to every other node via the shortest distances. The important
node is therefore the independent one that is close to other
nodes in the network in terms of shortest paths. Thus, at a high
level, it can address the degree centrality limitation in a few
cases. However, on non-spatial networks, bipartite closeness
frequently produces inaccurate results [6], and its values on
spatial networks tend to span a rather small dynamic range
from the smallest to the largest. This is because most complex
real-world networks may have a high average length of the
shortest path as their largest distance increases exponentially
in terms of the number of nodes. That is, assuming that
the minimum distance is equal to one, the asymptotic ratio
between the minimum and the largest distances is O( 1

log n ).
This frequently implies that numerous nodes, with diverse
roles in the network information flow, may have comparable
closeness scores. On the contrary, most non-spatial networks
feature low geodesic distances among nodes given that high
geodesic distances increase logarithmically with their net-
work size. As a result, the dynamic range of variations, as well
as the network diameter, will be too small, and even slight
changes in the network structure can have a significant impact
on nodal closeness values.

The bipartite betweenness [3], [5], [7] is another common
geodesic-based measure. To evaluate the importance of a
node, it computes the number of times it exists in the bridge
along the geodesic paths among the other nodes in the net-
work. Thus, it considers other nodes’ dependence on a given
node, and measures its optimal flow control on information
passing among nodes, whether closeness perceives the con-
nection efficiency or independence from potential flow con-
trol through the use of intermediary nodes (cf. [8], a detailed
study differentiating between closeness and betweenness).
In general, bipartite betweenness does not consider node
connectivity and its calculation is frequently time-consuming.
The fundamental assumption of betweenness is that every
pair of nodes exchanges information through shortest-paths
with equal probability. However, this is, in many situations,
not a realistic assumption since information does not neces-
sarily take the shortest path [9] (e.g., news related to a friend
might not be directly known from another close friend but
from other mutual friends). As a result, it does not provide
a precise representation of the most influential nodes within
these groups, but rather a fair approximation (see [10] for a
more detailed explanation). Furthermore, its exact centrality
computation on large or dense two-mode networks requires
a time complexity of O(n31 + n32), where n1 and n2 are the
number of the two types of nodes, respectively.

Looking at local centrality from a different angle, bipar-
tite percolation centrality [11] estimates a node’s relative
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importance by counting the number of percolated paths that
pass through it. The percolated path is the shortest path
between two nodes in which the source node is percolated
(e.g., infected) but the target node may not be. The perco-
lation centrality fully captures the essential mechanics of
contagion-mediated network spreading by associating per-
colation paths with weight terms that determines how much
importance is given to potential percolation paths originating
from given nodes. This is indeed helps percolation centrality
to avoid the limitation of both betweenness and closeness,
which rely solely on topological and random diffusion pro-
cesses via random shortest-paths. It may, however, produce
inaccurate results when the spread of contagion has no effect
on changing the node state, and it is frequently compu-
tationally expensive to calculate. Because the percolation
through a network is affected by both the level of contagion
and the network structure [12], the spread of contagion in
a complex network (CN) may not change node states in a
few scenarios. From a theoretical standpoint, it is possible
that there is no transmissibility, and in this case, the perco-
lated contagion spreads over the edges of a complex network
without changing the state of a node to either recoverable or
infected, leaving it in the default state. Moreover, computing
the percolation centrality in worst-case scenarios with large
bipartite networks having complex local structures requires a
cubic time complexity in the two types node numbers.

Globalmeasures, on the other hand, consider a node promi-
nence in the context of the entire network. Its principle
emphasizes the hypothesis that a few important neighbours
can weight more than a large number of unimportant ones.
That is, a node is important if it is connected to other impor-
tant nodes. For example, Bipartite Eigenvector centrality [3],
[5] quantifies whether a node is central based on its connec-
tions to other high-score nodes. It utilizes indefinite-length
random walks to estimate the number of node traversals.
From a conceptual standpoint, a node’s eigenvector can be
thought of as the global extension of its local degree cen-
trality, in which both count walks that begin and terminate
at that node. Eigenvector may include a localization transi-
tion, which frequently results in inaccurate centrality scores.
As demonstrated in [13], eigenvector centrality has a local-
ization transition under the common conditions of a network
regime, causing the majority of the weight of the centrality to
concentrate on a small number of nodes in the network. This
implies that when a network structure contains many hubs,
the eigenvector weights are skewed toward some few nodes:
The eigenvector values of the hub node and its neighbours
are the highest, while the other nodes have identical centrality
values (likely close to zero).

In this paper, we present Bi-face (BF), a new bipartite
centrality that can be used to identify key nodes in two-mode
networks. From the standpoint of graphmodelling, the superi-
ority of the bipartite graph formulation of two-mode networks
over other graphical models such as concept lattices, factor
graphs, or graph neural networks is still uncertain. That is,
it is dependent on the task we aim to apply to the problem.

One of our goals here is to show that the concept lattice
model of such problems is more advantageous than bipar-
tite graph formulation for efficiently computing two-mode
node centrality. Thus, the guiding idea of BF is to use a
formal concept analysis framework to bring together the
centrality aspects of cohesiveness via bicliques, network flow
via bridges, and influence of important neighbour nodes for
the benefit of actionable node identification. Its conceptual
hypothesis is based on the fact that important nodes should be
found in influential bridges and overlapping bicliques with a
large number of important nodes. That is, it quantifies how
a node affects, and is affected by, its important neighbours
via bicliques while also connecting the densely substructures
of a network through its presence in influential bridges. Thus,
it differs from betweenness in that it deems influential bridges
rather than all bridges. Unlike closeness and eigenvector,
it can efficiently deal with the diverse topological structures
of a network, without potentially having localization transi-
tion, due to this hybridization of the influential bridges and
overlapping bicliques aspects. Furthermore, it leverages the
powerful mathematical formulation of Formal Concept Anal-
ysis (FCA) to overcome the limitation of Cross k-bicliques
connectivity. That is to say, it utilizes the concept lattice
related to the network to efficiently extract concepts that
capture bridges and k-bicliques from the network while being
insensitive to the k parameter. Technically, BF computation is
based solely on the set of these extracted concepts, which is
often quite small in comparison with polynomial functions
in terms of nodes and edges. As a result, in contrast to
percolation, it is relatively quick to compute in practice.

The paper is organized as follows. In Section II, we review
some basic definitions and concepts including: FCA and
traditional bipartite centrality measures in social networks.
In Section III, we demonstrate our proposed Bi-face centrality
for detecting influential nodes of two-mode networks in fur-
ther more detail. In Section IV we conduct a thorough exper-
imental study and a discussion. Finally, Section V presents
our conclusions.

II. BACKGROUND
This section will briefly review the main concepts that sup-
port the comprehension of our proposed centrality measure
by using an illustrative example, which is a two-mode net-
work of airline companies and their flying destinations in the
year 2000. As shown in Figure 1, the network is modelled as
an undirected bipartite graph ϒ = (G,M, I), where G is
a set of 13 objects (also called type-I nodes) representing
Star Alliance airline companies, M is a set of 9 attributes
(type-II nodes) representing flying destinations, and I is a set
of edges where an edge (ui, vj) ∈ I links two nodes ui ∈ G
and vj ∈M, if a flight from airline company ui lands at the
destination vj.

A. FORMAL CONCEPT ANALYSIS
In the following we recall notions of FCA [14] that will be
used in this paper.
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FIGURE 1. A two-mode graph network representing flights from 13 star alliance airline companies (in red) landing at 9
destinations (in green) in year 2000.

TABLE 1. The formal context K̃ for the two-mode network of Figure 1.

Definition 1 (Formal Context): It is a triple K = (G,
M, I), where G is a set of objects,M a set of attributes, and
I a binary relation between G and M with I ⊆ G ×M.
For g ∈ G and m ∈ M, (g,m) ∈ I holds (i.e., (g,m) = 1)
iff the object g has the attribute m, and otherwise (g,m) /∈ I
(i.e., (g,m) = 0).
Table 1 is the formal context equivalent to the adjacency

matrix that expresses the two-mode network exhibited in
Figure 1.
Given arbitrary subsets A ⊆ G and B ⊆M, the following

derivation operators are defined:

A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}, A ⊆ G
B′ = {g ∈ G | ∀m ∈ B, (g,m) ∈ I}, B ⊆M

where A′ is the set of attributes common to all objects of A
and B′ is the set of objects sharing all attributes from B. The
closure operator (.)′′ implies the double application of (.)′,
which is extensive, idempotent and monotone. The subsets A
and B are closed when A = A′′, and B = B′′.

Definition 2 (Formal Concept): The pair c = (A,B) is
called a formal concept of K with extent A and intent B if
both A and B are closed and A′ = B, and B′ = A.

The object concept g ∈ G is expressed by γ g :=(
g′′, g′

)
and the attribute concept of m ∈ M is defined by

µm :=
(
m′,m′′

)
.

Definition 3 (Partial Order Relation �): A concept c1 =
(A1,B1) � c2 = (A2,B2) if:

A1 ⊆ A2 ⇐⇒ B1 ⊇ B2. (1)

In this case, c2 is called a superconcept (or successor) of c1,
and c1 is called a subconcept (or predecessor) of c2. The set
of all concepts of the formal context K is expressed by C(K)
or simply C.
Definition 4 (Concept Lattice): The concept lattice of a

formal context K, denoted by B(K) = (C,�), is a Hasse
diagram that represents all formal concepts C together with
the partial order that holds between them. InB(K), each node
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represents a concept with its extent and intent while the edges
represent the partial order between concepts.

Figure 3 is the Hasse diagram of the concept lattice
that corresponds to the context of Table 1. More precisely,
it is a diagram with reduced labeling. This means that the
label g is written below γ g and m above µm. The extent of
a concept represented by a node a is given by all labels in G
from the node a downwards, and the intent by all labels inM
from a upwards. For example, the node indicated by the red
arrow represents the formal concept whose extent contains
Mexicana, ThaiAirways, UnitedAirlines, and AirCanada by
collecting the object labels in white boxes from the cur-
rent node downward to the lattice infimum, while its intent
contains the attribute labels in grey boxes LatinAmerica,
Caribbean, and USA collected from the current node upward
to the lattice supremum. Here the current node whose label
is Caribbean is one of the direct predecessor (lower cover)
of the node named UnitedAirlines, and the direct succes-
sor (upper cover) of the nodes labeled by Mexicana and
ThaiAirways.
Definition 5 (Formal Context): It is a formal context K̃ =

(G,M, I) in which G is set of objects and G is the set of
attributes, and I is a set of relations defined on G and M
with I ⊆ G ×M. For gi ∈ G and gj ∈ G, (gi, gj) ∈ I holds
iff object gi is linked to gj.

There are several methods (cf. [14]–[16]) that build the
lattice, i.e., compute all the concepts together with the partial
order.
Definition 6 (Lower and Upper Covers): For any two for-

mal concepts c1 = (A1,B1) � c2 = (A2,B2) if:

(A1,B1) � (A2,B2),@ c3 = (A3,B3) such that

(A1,B1) � (A3,B3) � (A2,B2), (2)

or

A1 ⊆ A3 ⊆ A2 ⇐⇒ B1 ⊇ B3 ⊇ B2, (3)

then c1 = (A1,B1) is a lower cover of c2 = (A2,B2), and
c2 = (A2,B2) is an upper cover of c1 = (A1,B1); represented
as c1 ≺ c2 and c2 � c1 respectively.
We will use U(c) and L(c) to denote the sets of upper and
lower covers of the formal concept c respectively.
Definition 7 (Concept Intentional Face [17]): The inten-

tional face fin(c, cd ) of a concept c = (A,B) w.r.t. its d-th
upper cover concept, cd = (Ad ,Bd ) ∈ U(c), is the difference
between their intent sets as: fin(c, cd ) = B \ Bd .
Definition 8 (Concept Extensional Face): The extensional

face fex(c, cl) of a concept c = (A,B) w.r.t. its l-th lower cover
concept, cl = (Al,Bl) ∈ L(c), is the difference between their
extent sets as: fex(c, cl) = A \ Al .
Definition 9 (Blocker [17]): Given the family of faces3c,

the set Z is said to be a blocker of3c if ∀fi ∈ 3c, fi∩Z 6= ∅,
and the blocker Z is said to be minimal if @Zj ⊂ Z , ∀fi ∈
3c, fi ∩ Zj 6= ∅.
Definition 10 (Generator [18]): Given a concept c =

(A,B) in a formal context K = (G,M, I), a subset H ⊆ B

is called a generator of c iff H ′′ = B, and it is a minimal
generator when @H1 ⊆ H such that H ′′1 = B. We use Hex

c
andHin

c to denote the sets of minimal generators of a concept
c w.r.t. its extent and intent respectively.
For example, {Canada} is a generator associated with the

intent {Canada,USA}, and allows us to infer that whenever
an airline has a Canada destination, then it necessarily has an
USA destination.

B. SOCIAL NETWORK ANALYSIS
Definition 11 (Biclique): Let ϒ = (G,M, I) be an

undirected bipartite graph defined over the objects G and
attributesM. A biclique Q̃ = (G̃,M̃) is a complete subgraph
of ϒ induced by a pair of two disjoint subsets G̃ ⊆ G,M̃ ⊆

M, such that G̃ 6= ∅, M̃ 6= ∅, ∀u ∈ G̃, ∀v ∈ M̃, (u, v) ∈ I.
The disjoint subsets Q̃ = ({AirCanada,Mexicana,
ThaiAirways,UnitedAirlines}, {LatinAmerica,Caribbean,
USA}) is an example of a biclique. Henceforth, we use Q̃ as
our illustrative biclique (see the lattice node indicated by a red
arrow in Figure 3) to support the understanding of definitions
and principles related to the Bi-face centrality.
Definition 12 (Bridge): An edge (u, v) ∈ I of a two-mode

data network ϒ is a bridge iff it is not contained in any
cycle and its removal increases the number of connected
components in the graph ϒ .

For instance, the edge (AnsettAustralia,AsiaPacific) rep-
resents a bridge in ϒ .
Definition 13 (Bipartite Centrality Measure): The cen-

trality measure of a type-I node u ∈ G is a function that
assigns a positive real number to u quantifying its centrality
w.r.t. to all other type-II nodes v ∈M in the network ϒ (and
vice versa).

In two-mode networks, bipartite (also known as two-mode)
centrality measures are commonly utilized to detect impor-
tant nodes. Although numerous centrality metrics have been
proposed, the degree, closeness, betweenness, and eigen-
vector have been demonstrated to be the most outstand-
ing in a variety of applications, and they are thus widely
used.
Definition 14 (Degree Centrality Dc [3], [19]]): The

degree centrality of a node in a two-mode graph network ϒ
is defined as:

Dc(ui) =
∑
vj∈M

Iij, ∀ui ∈ G, (4)

Dc(vj) =
∑
ui∈G

Iij, ∀vj ∈M (5)

where Iij is equal to 1 when a link exists between ui and vj,
and 0 otherwise. Thus, the summation in Eq. (4) represents
the number of edges (or ties with other type neighbour nodes)
involving the node.
Definition 15 (Closeness Centrality Cc [3], [5]]): The

normalized closeness centrality of a node gi, in a two-mode
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graph network ϒ , is defined as:

Cc(ui) =
|M| + 2(|G| − 1)∑

vj∈M d(ui, vj)
, ∀ui ∈ G, (6)

Cc(vj) =
|G| + 2(|M| − 1)∑

ui∈G d(ui, vj)
, ∀vj ∈M (7)

where d(ui, vj) is the geodesic distance (shortest path)
between the nodes ui and vj.
Definition 16 (Betweenness Centrality Bc [7]): In bipar-

tite networks ϒ , the normalized betweenness centrality of a
node is defined as in [5]:

Bc(ui) =
∑

uj 6=uk 6=ui, uj,uk ,ui∈G

σujuk (ui)

σujuk
, ∀ui ∈ G, (8)

Bc(vj) =
∑

vj 6=vk 6=vi, vj,vk ,vi∈M

σvigk (vj)
σvivk

, ∀vj ∈M, (9)

where σxjxk denotes the total number of shortest paths
between nodes xj and xk , and σxjxk (xi) is the number of
those paths that traverse gi. To normalize the betweenness,
we simply divide Bc(ui) and Bc(vj) by the corresponding term
to its node set [5]:

Bc(G) =
1
2

[
|M|2(s+ 1)2

+ |M|(s+ 1)(2t − s− 1)− t(2s− t + 3)
]
, ∀ui ∈ G,

(10)

where s = (|G − 1| div |M|) and t = (|G − 1| mod |M|),

Bc(M)

=
1
2

[
|G|2(p+ 1)2

+ |G|(p+ 1)(2r − p− 1)− r(2p− p+ 3)
]
, ∀vj ∈M,

(11)

where p = (|M− 1| div |G|) and r = (|M− 1| mod |G|)
Definition 17 (Eigenvector Centrality EVc [3], [5]): The

eigenvector centrality of a node gi, in a graph network ϒ ,
can be iteratively computed as:

EVc(ui) =
1
λ

∑
vj∈M

auivjEVc(vj), ∀ui ∈ G, (12)

EVc(vj) =
1
λ

∑
ui∈G

auivjEVc(ui), ∀vj ∈M, (13)

where the eigenvalue λ 6= 0 is a constant, and auivj is the
adjacency element which is equal to 1 if node ui is linked to
node vj, and 0 otherwise.

III. BI-FACE FRAMEWORK
From a conceptual standpoint, and as depicted by the
flowchart in Figure 2, the Bi-face centrality approach consists
of the following basic steps.

1) We construct the formal context associated with the
network and then its corresponding concept lattice.

FIGURE 2. A flowchart illustrating the basic steps of the bi-face
framework.

We then extract the set of bicliques that coincide with
the set of formal concepts whose extent or intent is not
empty.

2) We detect what we call face-bridges, which are the
non-influential bridges in the network that contain ter-
minal nodes.

3) We refine the bicliques by removing non-influential
nodes in order to obtain face-bicliques (see Defini-
tion 20).

4) We compute the Bi-face centrality measures of nodes
using face-bridges and face-bicliques.

5) Eventually, we use the Bi-face centrality measures to
rank the two types of nodes in a descending order of
importance before identifying the key ones.

A. BUILDING THE FORMAL CONTEXT OF A TWO-MODE
NETWORK
We first construct the formal context of the two-mode net-
work ϒ = (G,M, I) by calculating the adjacency matrix as
follows:

K̃ = (G,M, I) =
{
(ui, vj) = 1, ∃ (ui, vj) ∈ I
(ui, vj) = 0, Otherwise.

(14)

In Eq. (14), If the object ui (node type-I) is linked to the
attribute vj (node type-II) in the network ϒ , we set 1 to K̃
element in the row i and column j. Otherwise, we assign 0 to
it. For instance, Table 1 shows the constructed formal context
K̃ of our toy graph in Figure 1.
We then construct the concept latticeB(K̃) from the formal

context, as it is shown in Figure 3. Note that Figure 3 shows
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FIGURE 3. The Hasse diagram of the concept lattice B(K̃) that
corresponds to the context of the two-mode network in Figure 1. More
precisely, it is a diagram with reduced labeling. This means that the label
g is written below γg :=

(
g′′,g′

)
and m above µm :=

(
m′,m′′

)
. The

extent of a concept represented by a node a is given by all labels in G
from the node a downwards, and the intent by all labels in M from a
upwards. The red downward arrow indicates the illustrative biclique cited
after Definition 11.

the Hasse diagram ofB(K̃) with reduced labelling, where the
label g is written below γ g and m above µm. The extent of
a concept represented by a node a is given by all labels in G
from the node a downwards, and the intent by all labels inM
from a upwards.

B. OVERLAPPING BICLIQUE EXTRACTION AND
REFINEMENT
Using the constructed lattice B(K̃), it is now possible to
extract concepts that capture the corresponding bicliques of
the two-mode network as follows:
Proposition 18: Given a network ϒ and its corresponding

concept latticeB(K̃), a concept c = (A,B) ∈ B with |A| ≥ 1
and |B| ≥ 1, represents a biclique Q = ({u : u ∈ A}, {v : v ∈
B}) in ϒ .

Proof: Given a concept c = (A,B) ∈ B(K̃), then we
have fromDefinition 2 that ∀u ∈ A,∀v ∈ B, ∃(u, v) ∈ I. This
entails that the concept c represents a sub-matrix Q̂ ⊆ K̃ of
size |A|×|B| that contains all 1’s. Now, given that the concept
lattice B, which is constructed from the formal context K̃,
is equivalent to the network ϒ – where the sets of objects
G, attributes M and relations I in K̃ correspond to the two
disjoint sets of nodes and set of edges in ϒ respectively –
we can then deduce that the sub-matrix Q̂ of the concept c
coincides with a complete sub-graph Q = (A,B) in ϒ such
that ∀u ∈ A,∀v ∈ B there is an edge (u, v) that connects the
two nodes u and v. Pursuant to Definition 11, this complete
sub-graph Q represents a biclique ({u : u ∈ A}, {v : v ∈
B}) ∈ ϒ . This implies that the concept c = (A,B) ∈ B is

equivalent to a biclique Q ∈ ϒ in which both extent A and
intent B involve only the objects {u : u ∈ A} and attribute
{v : v ∈ B} nodes of Q respectively.

An interesting question that could be raised now is how
to determine the non-influential nodes in a given con-
cept (or biclique). To answer this question, let us define a
non-influential node from the viewpoint of FCA.
Definition 19 (Non-Influential Node): For a formal con-

cept (biclique) ci = (Ai,Bi) ∈ C, a type-I node u ∈ Ai is
non-influential if its removal from ci (and accordingly from
the graph G) does not violate the closure conditions of other
biclique concepts C \ {ci} that involve it:

∀cj ∈ C \ {ci} and u ∈ Aj, (Aj \ {u})′′ = Aj. (15)

In a dual manner, a type-II node v ∈ Bi is non-influential if:

∀cj ∈ C \ {ci} and v ∈ Bj, (Bj \ {v})′′ = Bj. (16)

That is, the subset of concepts (or bicliques) that contain
either node u or node v nevertheless preserve their conceptual
substructures even after eliminating u from their extents or v
from their intents. In fact, this implies that the node u or v
is non-influential (e.g., has no essential conceptual informa-
tion) since removing it from the bicliques does not influence
the network’s intrinsic connectivity (e.g., which may clearly
appear through the non-expansion of the concepts’ extents or
intents). In fact, Definition 19 raises another interesting ques-
tion of how to identify the non-influential nodes in bicliques.
Fortunately, the faces of corresponding concepts, w.r.t. their
upper and lower covers, can reveal information about their
non-influential nodes. As a result, one efficient way to
answer this question is to juxtapose the corresponding con-
cept (biclique) with its lower and upper covers through exten-
sional and intentional faces to determine its non-influence
type-I and type-II nodes respectively. That is, the set of faces
of its concept ci = (Ai,Bi), w.r.t. its lower and upper covers,
have in common the same non-influential (type-I and type-II)
nodes in its (extent and intent) respectively:

∀u ∈ {∩cl∈B(ci)fex(ci, cl)} H⇒ (Aj \ {u})′′ = Aj,

∀cj ∈ C \ {ci} and u ∈ Aj. (17)

∀v ∈ {∩cd∈U (ci)fin(ci, cd )} H⇒ (Bj \ {v})′′ = Bj,

∀cj ∈ C \ {ci} and v ∈ Bj. (18)

For example, the corresponding concept of Q̃ has two
extensional faces f 1ex = {ThaiAirways} and f

2
ex = {Mexicana}.

Since the intersection of the faces f 1ex and f 2ex is empty, Q̃
contains no non-influential type-I nodes. It also has only one
intensional face f 1in = {Caribbean}. Thus, the intersection
is also f 1in, which entails that Caribbean is a non-influential
type-II node in the Q̃.
On the basis of Equations (17) and (18), we can leverage

the faces of concepts to define a key biclique2 as follows:
Definition 20 (Face Biclique): Given a two-mode net-

workϒ and its corresponding concept latticeB(K̃), a concept

2Note that a biclique is key when all of its nodes are influential.
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(representing a biclique) c = (A,B) ∈ B, is called a face
biclique if all of its (type-I and II) nodes are influential, i.e.,
no one of them satisfies the conditions in Equations (17)
and (18).

Based on Definition 20, we can obtain the face biclique
ĉ = (Â, B̂) by refining the original biclique c = (A,B) as
follows:

Â =

{
A \ {∩cl∈L(ci)fex(ci, cl)}, |A| > 1
A, otherwise,

B̂ =

{
B \ {∩cd∈U (ci)fin(ci, cd )}, |B| > 1
B, otherwise.

(19)

In Equation (19), we remove non-influential type-I nodes
from its extent and non-influential type-II nodes from its
intent. It is worth noting that when the extent or intent con-
tains only one node, no refinement is applied because this
node is influential by default. This is due to the fact that
removing this node clearly violates the closure conditions in
Equations (17) and (18).

C. FACE-BRIDGE DETECTION
Definition 21 (Face-I Bridge and Terminal Type-I Node):

Given a 2-mode networkϒ and its corresponding concept lat-
ticeB(K̃), an edge (u,B) represents a non-influential (face-I)
bridge containing a terminal (type-I) node u ∈ G when there
is an attribute concept c = (A,B) ∈ B(K̃) with |B| = 1 that
satisfies the following:

u ∈ A and ∃hi ∈ Hex
c S.t. hi = u and |hi| = 1 (20)

For instance, the attribute concept c = ({AirCanada,
AirNewZealand,AllNippnA,TheAustrianAG,
BritishMidland, Lufthansa,ScandinavianA,SingaporeA,
ThaiAirways, UnitedAirlines,Varig}, {Europe}) that appears
in blue/black in Figure 3 has an extensional minimal gen-
erator set Hex

c = {BritishMidland}. This implies that
BritishMidland (framed in yellow in Figure 3) is a terminal
(type-I) node and the edge (BritishMidland,Europe) repre-
sents a non-influential (face-I) bridge. Similarly, we have:
Definition 22 (Face-II Bridge and Terminal Type-II

Node):Given a 2-mode networkϒ and its corresponding con-
cept lattice B(K̃), an edge (A, v) represents a non-influential
(face-II) bridge containing a terminal type-II node v ∈ M
when there is an object concept c = (A,B) ∈ B(K̃) with
|A| = 1 that satisfies the following:

v ∈ B and ∃hj ∈ Hin
c S.t. hj = v and |hj| = 1 (21)

The question now is, how can we obtain the minimal gen-
erators of object and attribute concepts? We can efficiently
compute the set of minimal generators Hin

c of a concept c
intent by applying Minigen() procedure, which is given in
Algorithm 1. It iteratively calculates the face of c w.r.t. each
upper cover in U(c) (Line 3). If the set of intentional minimal
generators is empty, it then assigns the individual attributes
in the first face toHc (Lines 4-5). Otherwise, it progressively
checks the intersection between the calculated face fu and

Algorithm 1 Minigen() Procedure for Computing the
Intentional Minimal Generators of a Concept Intent
Input: Concept intent B, Set of upper covers U(c).
Output: Set of minimal generatorsHin

c .
1: Hin

c ← ∅;
2: for each cu = (Au,Bu) in U(c) do
3: fu← B \ Bu;
4: ifHin

c == ∅ then
5: Hin

c ← {a|∀a ∈ fu};
6: else
7: Gen← ∅;
8: for each hi inHin

c do
9: if hi ∩ fu == ∅ then

10: Gen← (Gen ∪ {hi ∪ a|∀a ∈ fu});
11: else
12: Gen← (Gen ∪ {hi});
13: end if
14: end for
15: Hin

c ← minimal(Gen);
16: end if
17: end for
18: Return Hin

c ;

each generator hi in Hin
c (Line 8). If the intersection with

the current generator hi is empty, then hi is not in the family
blocker formed by the face (Line 9). This entails that the
generator hi must then be modified so that it belongs to
the minimal blocker family of faces. Thus, the new minimal
generators will be obtained by adding each element of the
current face fu to hi (Line 10). If the intersection is not empty,
then the current generator hi, which exists in the family of
minimal blockers of previous faces, is also a minimal blocker
of the family formed of the current face fu. So, we add
the generator hi, without performing any modification to the
minimal generator setHin

c (Line 12). It ultimately verifies the
minimality of the obtained set (Line 15) and returns the final
set of minimal generators Hin

c (Line 18). Note that, in a dual
way and using the set of concept’s lower-covers L(c), we can
apply Minigen() procedure to compute the set of extensional
minimal generatorsHex

c of a concept w.r.t. its extent A.

D. BI-FACE CENTRALITY
Definition 23 (Bi-face Centrality BFc): The Bi-face cen-

trality of nodes u ∈ G and of v ∈M, in a given graph network
ϒ , can be computed as:

BFI(u) =

Face-bicliques containing u︷ ︸︸ ︷
|{ĉ ∈ Ĉ | u ∈ Â|}

|Ĉ|

+
[
1−

Face-I bridges containing u︷ ︸︸ ︷
|{g ∈ 0I | g == u|}

|0I |

]
, (22)
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BFII(v) =

Face-bicliques containing v︷ ︸︸ ︷
|{ĉ ∈ Ĉ | v ∈ B̂|}

|Ĉ|

+
[
1−

Face-II bridges containing v︷ ︸︸ ︷
|{m ∈ 0II | m == v|}

|0II |

]
. (23)

Ĉ stands for the set of face bicliques while 0I and
0II represent the two sets of non-influential (face-I) and
(face-II) bridges, respectively. In Eq. 22, the Bi-face centrality
calculates the sum of face-biclique3 and face-bridge terms.
The numerator of the face-biclique term simply counts the
number of refined concepts, with extent and intent sizes
greater than 1, that involve a type-I node u. That is, it mea-
sures the amount of face bicliques to which node u belongs
in the graph network ϒ . From a conceptual viewpoint, this
term effectively approximates the cross connectivity [20],
[21] of the node u using refined overlapped bicliques that only
contain influential nodes. In the face-bridge term, we first
quantify the ratio of the face bridges that involve the node
u. This ratio is then subtracted from 1 to approximate the
portion of influential bridges in the graph that contain the
node u. It is worth noting that the numerators of two Bi-Face
terms in Eq. (22) are unnormalized quantities. As a result,
the denominators in Eq. 22 act as normalization factors to
scale the two terms between 0 and 1. In a similar manner, the
Bi-face centrality in Eq. (23) can be interpreted and used to
compute the centrality of type-II nodes in the graph.

The pseudo-code for calculating the Bi-face centrality of
all type-I nodes in the two-mode network ϒ is given in
Algorithm 2. The algorithm takes as input the set of all
extracted concepts C =

{
cj = (Aj,Bj)

}|C|
j=1. For each

type-I node ui ∈ G, it first iteratively refines the extents
of the bicliques to obtain the face ones by removing all
their non-influential type-I nodes (lines 4-5). It then counts
the number of those refined face bicliques in the graph
that involve ui (lines 7-9). Hereafter, it iteratively computes
the minimal generators of the attribute concepts w.r.t. their
extents to identify the face-bridges that involve the node ui
(lines 11-12). Subsequently, it counts how many face-bridges
containing the node ui as a terminal (type-I) one (lines 13-15).
It then calculates the Bi-face centrality BFI of a node ui
(lines 19-21). Eventually, it returns a list with the Bi-face
centrality measures BFI of all type-I nodes in the graph
respectively (line 22). Without loss of generality, and in a
dual manner, algorithm 2 can be applied to compute the
Bi-face centrality for each type-II node vj ∈ M as fol-
lows. It iteratively obtains the face bicliques by refining the
non-influential type-II nodes from the intents of their corre-
sponding concepts. It then identifies the face bicliques in the
graph that involve vj. It then uses the minimal generators of
object concepts to count the number of the face-bridges that
involve the node vj as a terminal (type-II) one. Eventually,

3Note that the face-clique of a node is the number of overlapping face
bicliques to which it belongs to.

it returns a list containing the Bi-face centralitymeasures BFII
of all type-II nodes in the graph.

Consequently, we can now use the resulting Bi-face cen-
trality lists to rank the two types of nodes in descend-
ing order based on their importance. Table 2 summa-
rizes the ranked lists of the most important airlines and
destinations, in Figure 1, based on five bipartite central-
ity measures: Bi-face, betweenness, eigenvector, closeness
and degree. For example, because the node Lufthansa has
slightly fewer geodesics than AirCanada, Betweenness con-
siders AirCanada to be the most important type-I node.
In contrast, the Bi-face centrality ranks the node Lufthansa
as the most important type-I node because Lufthansa
exists in considerably more overlapped bicliques than
AirCanada. Closeness, degree, and eigenvectors are unable to
distinguish which node Lufthansa or AirCanada is more
important than another. Furthermore, neither degree nor
closeness centrality can determine which type-I node from
{TheAustrianAG, SingaporeA,Varig} is more influential than
the others. The eigenvector centrality cannot distinguish
between type-II nodes in {MiddleEast,Africa,Caribbean}.

Algorithm 2 Calculating Bi-Face Centrality (BFc) for All
Type-I Nodes in a Two-Mode Network

Input: Set of bicliques (C =
{
(Aj,Bj)

}|C|
j=1).

Output: Bi-face centrality (BFI) of all type-I nodes.
1: BFI← 0I ← ∅;
2: for each ui ∈ G do
3: countI ← γI ← [0]|G|i=1;
4: for each Aj ∈ C do
5: Âj← Refine(Aj); //usingEq. 19
6: // Counting face bicliques that contain the node ui
7: if |Âj| > 0 and ui ∈ Âj then
8: countI [i]← countI [i]+ 1;
9: end if

// Counting face-bridges that contain the node ui
10: if |Bj| == 1 then

// using the extensional version of Algorithm 1.
11: Hex

Aj ← Minigen(Aj);
12: if ∃h ∈ Hex

cj , h == ui then
13: γI [i]← γI [i]+ 1;0I .append(ui);
14: end if
15: end if
16: end for
17: end for
18: for each i = 1 to |G| do
19: BFI[i]←

(
countI [i]/|C|

)
+
(
1− (γI [i]/|0I |)

)
;

20: end for
21: Return BFI

1) COMPLEXITY ANALYSIS
The calculation of the face biclique term has a time and
a space complexity equal to O(|C|) since we store and
proceed through the extent of all the bicliques to count
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TABLE 2. The ranking of all nodes in the two-mode network of Figure 1 based on five bipartite centrality measures: Bi-face (BFc), betweenness (Bc),
eigenvector (Ec), closeness (Cc) and degree (Dc).

the face bicliques that contain the node. The Face-bridge
term of type-I node needs iterating through the attribute
concepts C̃ and calculates their minimal generators w.r.t. their
corresponding lower covers. Thus, the Bi-face centrality BFI
of all type-I nodes requires

(
|G| × |C| + |C̃| × |L̃| × |H̃ex|),

where C̃ is the set of attribute concepts, |H̃ex| is the largest
size of an obtained set of minimal generators for attribute
concepts, and L̃ is the largest number of lower covers for an
attribute concept. Now, since we often have |C̃| � |C| and
also |L̃| � |G|, then the first term frequently dominates the
second one. This entails that computing the Bi-face centrality
BFI of all type-I nodes needs a time and space complexity of
O(|G| × |C|). In a dual way, the calculation of the Bi-face
centrality BFII of all type-II nodes has a time complexity of
O(|M| × |C|). In total, the Bi-face centrality has time and
space complexity of O

(
|C| × (|G| + |M|)

)
.

2) BI-FACE VS. CROSS-FACE
One might contrast the bipartite Bi-Face (BF) and our
Cross-face (CF) centrality introduced in [22], which is a
prominent FCA-based centrality for one-mode networks.

At a high level, BF can be considered as a generalized form
of CF (with a larger size and a higher level of details and
depth) for two-mode networks. However, it is well-known
that two-mode networks have distinct characteristics with
more complex substructures than the one-mode ones, which
leads to a different computation of node centrality and distinct
applications. Thus, recalling the basic formulations used in
both centrality approaches, the BF and CF are fundamentally
different measures that share a similar FCA-based route.
Technically, some of these differences can be summarized
as follows: (1) In the preprocessing step of BF, a different
adjacency matrix (see Eq. (14)) adapted for two-mode net-
works is used to build the formal context; (2) In the BF
framework, we extract bicliques and bridges using concepts
rather than symmetrical concepts as in the CF framework.
This is due to the fact that the symmetrical ones do not exist
in the constructed lattice representing two-mode networks;
(3) In the BF approach, we use a refinement step to obtain
what we name face bicliques by pruning the non-influential
nodes from the original bicliques (see Definition 20 and
Eq. (19)). This step does not exist in the CF one-mode
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formulation centrality. In practice, this step significantly
improves the outcome (as demonstrated by the results of
experiment I in subsection IV-C); (3) Face bridges in
BF are identified in a completely different way than in
one-mode networks for CF. Specifically, we leverage the
minimal generators of concepts in BF (see Definitions 21-22
and Eqs. (20)-(21)) instead of the interesting faces and
meet-irreducible concepts in CF; (4) We detect the ter-
minal nodes in the BF framework, which is not taken
into account in CF. Due to the aforementioned differ-
ences, the two terms (i.e., face-bicliques and face-bridges
in Eqs. (20)-(21)) formulations of BF meaningfully differ
from the corresponding terms of CF formulation presented
in [22].

IV. EXPERIMENTAL EVALUATION
The objective of our experimental evaluation is to find robust
answers to the following essential questions.
• (Q1) Is the accuracy of Bi-face centrality competitive
with the prominent centrality measures?

• (Q2) Is Bi-face centrality performing fast compared to
state-of-the-art centrality measures?

• (Q3) Is there a correlation between the Bi-face cen-
trality approach and other state-of-the-art centrality
measures?

We first consider the following five (real-life? and synthetic‡)
two-mode networks, which possess various configurations to
support the investigation of different scenarios.

A. DATASETS
•
?Norwegian Interlocking Directorates [23], which
contains interlocking boards of 1542Norwegian director
women in 373 Norwegian public limited companies.
A link represents a board membership connecting a
woman as a director of a public company in Norway on
August 2009.

•
?PediaLanguages [24] involves the semantic web of
316 official languages spoken by people living in 169
different countries. An edge connects an official lan-
guage to a country if people in that country speak that
language.

•
?Southern-Women-Davis [25], [26], which is a
two-mode social network of 18 women reporting their
participation to 14 events (such as a meeting of a social
club, a church event or a party) over a nine-month period.
A woman is connected to an event if she attends that
event.

•
‡CoinToss, which is a random bipartite network gener-
ated from indirect Coin-Toss model generator [27].

•
‡Dirichlet [28] which is a random formal context gen-
erated using the Dirichlet model generator.4

Table 3 gives the basic statistics of the networks.5

4publicly available at: https://github.com/maximilian-felde/formal-
context-generator

5Publicly available at: https://toreopsahl.com/datasets/
http://konect.cc/networks/opsahl-collaboration/
https://networkdata.ics.uci.edu/netdata/html/davis.html

TABLE 3. The basic statistics of the two-mode networks about the
number |G| of type-I nodes, the number |M| of type-II nodes, the
number |I| of edges, and the density 2 in %.

B. METHODOLOGY
The results of our proposed Bi-face centrality measure are
then compared to the following state-of-the-art measures:
• Bipartite closeness [Definition 15].
• Bipartite betweenness [Definition 16].
• Bipartite eigenvector[Definition 14].
• Vote-Rank [29], which is a well-known method for
identifying decentralized spreaders. It calculates the
ranking of the nodes in the bipartite graph based on a
voting scheme. That is, at each turn, all nodes iteratively
vote in a spreader. The node with the highest vote num-
ber is elected iteratively, while decreasing the voting
ability of the elected spreader’ neighbours in the next
turn.

• Percolation [11], which measures the proportion of per-
colated paths6 that go through a given node. So, it quan-
tifies the relative impact of nodes in various percolation
scenarios based on their topological connectivity over
time. The percolation state is commonly assigned a value
between 0.0 and 1.0, with 0.5 being the most commonly
used value that we used in our experiment.

• Bipartite degree [Definition 14], which can act as an
effective baseline for comparison.

Subsequently, the two ranking lists of (type-I and type-II)
nodes calculated from the underlying centrality measures are
then compared with the corresponding lists obtained from
the spreading process of the node. We specifically evaluate
the tested centrality’s performance for each type of node by
applying the following common schema [30], [31]:

1) Calculate the centrality metric for all nodes and record
their ranking list

2) Simulate the spreading ability of nodes using SIR
model [30]. The node in the SIR model can be suscep-
tible, infected, or recovered. We set only one node to
be infected at a time, and the other remaining nodes
are susceptible, then we examine how the information
spreads on the network. With a spreading (or infection)
probability, the infected node can spread its infection
to nearby susceptible nodes. In practice, we noticed
that investigating the spreading in the early stages is
more meaningful than examining each node recovered
state, so we concentrate on the effect within a t =
10 time range rather than the recovered state of each

6We recall that the percolated path is the shortest one between two nodes
in which the source node is percolated (i.e., infected).
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node. Following the completion of the SIR simulation,
we obtain the node influence ranking list by computing
the spreading efficiency for all nodes.

3) Compute the joint score list J = {(xi, yi)}ni=1 using the
SIR model’s ranking list and the centrality measure’s
ranking list. The xi and yi in each pair (xi, yi) ∈ J are
the centrality-based and SIR-based measures of a node
gi ∈ G, respectively. The two randomly chosen pairs
(xi, yi), (xj, yj) ∈ J are concordant if both (xi < xj)
and (yi < yj) or if both (xi > xj) and (yi > yj). They are
discordant if both (xi < xj) and (yi > yj) or if both (xi >
xj) and (yi < yj). If (xi = xj) and (yi = yj), then the
pair is neither concordant nor discordant.We use nc and
nd to denote the number of concordant and discordant
pairs in J , respectively.

Based on J , we then calculate the following Kendall’s tau
rank correlation coefficient τ metric:

τ =
2(nc − nd )
n(n− 1)

, (24)

If the underlying centrality measure has a high τ value,
this indicates that it produces an accurate ranked list. The
ranked list produced by the centrality measure is identical
to the ranked list obtained from the real spreading pro-
cess when τ = 1, which is, in fact, the ideal scenario.
To evaluate the accuracy of the results, we now calculate
the average Kendall’s tau rank correlation coefficient as
follows:

τ̂ =
τI + τII

2
, (25)

where τI and τII are the Kendall’s tau correlation coefficients
calculated using Eq. (24) for type-I and type-II of nodes,
respectively.

To assess the scalability, we consider the average elapsed
time metric as:

ξ =
1
2

[∑ui∈G ti
n

+

∑
vj∈M tj

m

]
(26)

where ti and tj are the elapsed times for calculating the
centrality measure of a type-I node ui ∈ G and a type-II one
vj ∈M, respectively.
We carried out our experiments on a MacOS Mojave com-

puter with an Intel(R) Core-i7 CPU @2.6GHz and 16 GB of
memory. As an extension to the NetworkX Python package,
we implemented all of the centrality measures. We also used
the Concepts 0.7.11 Python package, developed by Sebastian
Bank,7 to extract formal concepts.

C. RESULTS
1) EXPERIMENT I
This experiment is devoted to answering Question 1. Each
infected node has a spreading probability β of infecting its
susceptible neighbours in the SIR model simulation. As a
result, and in accordance with the scheme described above,

7publicly available at: https://pypi.python.org/pypi/concepts

we iteratively increase the spreading probability in the range
β = (0, 0.1] with increments of 0.01. At each step-size,
we compute the joint listJ of each centrality measure and the
real spreading of the nodes for each individual type of nodes
separately. We then calculate the corresponding evaluation
metric τ̂ in Eq. (25).

Figure 4 displays the average Kendall’s tau correlation
coefficient τ̂ between the seven tested centrality measures
and the ranking list generated by the SIR model, with a
spreading probability β ∈ (0, 0.1] and at a given time
t = 10. Overall, Bi-face outperforms all the compared
centrality measures, achieving the most accurate Kendall
coefficient τ̂ on Norwegian-Directorate, PediaLanguages,
CoinToss and Dirichlet networks. On the Women-Davis net-
work, Bi-face has the highest τ̂ value when the spread-
ing probability β ≥ 0.03, otherwise vote-rank, closeness,
betweenness and degree slightly compete with Bi-face. The
percolation comes close behind Bi-face on Women-Davis,
but considerably further behind on Norwegian-Directorate,
PediaLanguages, CoinToss and Dirichlet networks. Except
on the Women-Davis network with spreading probability
β < 0.03, the vote-rank is clearly less accurate than
Bi-face on all the tested networks, but it is more accurate
than percolation, betweenness, closeness, eigenvector and
degree onPediaLanguages,CoinToss andDirichlet networks.
On the Norwegian-Directorate and Women-Davis networks,
the vote-rank and percolation compete with each other. The
percolation is clearly more accurate than betweenness and
eigenvector when the spreading probability β ≥ 0.05 on
all the tested networks. Both betweenness and eigenvector
dominate degree and closeness on Norwegian-Directorate,
PediaLanguages and CoinToss networks, but closeness out-
performs betweenness centrality on Dirichlet network. The
betweenness is more accurate than eigenvector on Pedi-
aLanguages network when the spreading probability β ≥
0.04, but it is outperformed by eigenvector on CoinToss and
Dirichlet networks. The betweenness centrality is almost bet-
ter than eigenvector for the Norwegian-Directorate network
while they have an opposite behavior for the Women-Davis
network.

2) EXPERIMENT II
The second experiment is dedicated to answer Question 2.
The goal here is to evaluate the performance of the centrality
measures. To that end, we rerun Experiment I while reporting
their computational time as in Eq. 26. The average elapsed
time ξ of the seven centrality measures on the five underly-
ing networks is depicted in Figure 5. On all the tested net-
works, the Bi-face dominates all centrality measures (except
degree). It finishes at least twenty-three times faster than
betweenness, eleven times faster than percolation, nine times
faster than eigenvector and ten times faster than closeness.
Degree is very competitive with Bi-face on Women-Davis,
CoinToss and Dirichlet networks, but Bi-face clearly pre-
vailed over the degree by a significant margin on Norwegian-
Directorate and PediaLanguages networks. Apart from
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FIGURE 4. The average Kendall’s tau coefficient τ̂ between the tested centrality measures and the ranking list generated by the SIR model, with
β ∈ (0,0.1], at t = 10 on the five underlying datasets.

Bi-face, the percolation is marginally slower than both the
closeness and eigenvector by at least factors of 1.15 and 1.25
on all networks (except Women-Davis) respectively. In addi-
tion, the closeness is considerably faster than betweenness,
and competes with eigenvector on Norwegian-Directorate

and CoinToss networks. Vote-rank is significantly faster
than closeness, eigenvector and percolation on Norwegian-
Directorate, PediaLanguages, CoinToss and Dirichlet net-
works, but on the contrary, closeness is slightly quicker than
vote-rank onWomen-Davis network.
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FIGURE 5. Average elapsed time ξ (in secs) of the seven tested centrality measures: Bi-face, closeness, betweenness, degree, eigenvector,
percolation and vote-rank on the five underlying datasets.

3) EXPERIMENT III
In this experiment, we focus on Question 3. That
is, we are interested here in exploring the monotonic

relationships between Bi-face and the other underlying
centrality measures. Table 4 records the average Kendall’s
tau rank correlation coefficient between Bi-face and the other
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six bipartite centrality measures. Overall, all the centrality
measures are positively correlated with Bi-face, which is
remarkably consistent and supplement the finding of Exper-
iment I. The Bi-face has moderate monotonic relationships
with vote-rank and percolation on all tested networks. There
is clearly a weak relationship between Bi-face and between-
ness on the Norwegian-Directorate, PediaLanguages, and
CoinToss networks. Furthermore, it has a weak correlation
with eigenvector on theWomen-Davis, CoinToss and Dirich-
let networks. Moreover, there is weak correlation between
Bi-face and closeness on theWomen-Davis andDirichlet net-
works. Noticeably, the Bi-face has a very weak relationship
with degree on all networks except theWomen-Davis.

D. DISCUSSION
Taking the identification of accurate node centrality
into consideration, the results of Experiment I in
Subsection IV-C1 indicate that Bi-face outperforms tradi-
tional bipartite centrality measures such as vote-rank, perco-
lation, degree, closeness, betweenness, and eigenvector. This
is attributed to the use of its face biclique and face-bridge
terms in tandem to leverage local and global aspects of
network topology, respectively. That is, the face-biclique term
quantifies the structural embeddedness of cohesive regions in
a network involving each individual (type-I and type-II) node.
From a conceptual perspective, this term considers the local
information on how the node influences its immediate impor-
tant neighbour nodes through the lens of its overlapping face
bicliques. The face-bridge term quantifies a node’s global role
based on how the information flows through influential (face)
bridges (i.e., important geodesics).

In terms of effective performance, the results of
Experiment II from the previous Subsection IV-C2, suggest
that the Bi-face is considerably faster than all other tested
bipartite centrality measures (except degree). This is due to
the fact that Bi-face primarily calculates the centrality of all
nodes based on the set of concepts C, which is frequently too
small in comparison to all other tested centrality measures
with polynomial time complexity in terms of nodes and
edges, i.e., |C| � np and |C| � mq, with p, q > 1.
Besides that, several well-known observations are clearly

consistent with the obtained results in Subsection IV-C. First,
in some real-world applications, we may end up with several
nodes having approximately similar low or high degrees, and
in these cases, degree centrality cannot serve as a descrip-
tive measure that can distinguish between nodes. Second,
closeness can address the degree centrality limitation in a
few situations. For example, consider node u that is linked
to node v. Assume that node v is in close proximity to the
other nodes in the network, resulting in a high closeness score.
Node u has a very low degree score of 1, but a rationally
high closeness score, because node u can propagate infor-
mation to all other nodes that node v reaches with one extra
step. However, closeness, like degree, is usually inappropri-
ate for irregularly connected bipartite networks. Because the
shortest-path distance between two nodes is infinite when

they are not reachable through a path, the closeness score is
equal (or very close) to zero for those nodes in the network
that do not reach all other nodes. Third, since betweenness
lacks any form of measuring local nodal connectivity, it is
expected to produce relevant results only if the goal is only
to quantify influence on communication among local groups,
which is not always the case when studying the centrality
in real-world networks. Finally, and in practice, using the
efficient implementation adopted from the fastest algorithm
proposed in [7], the calculation of percolation centrality for
all nodes requires a time complexity ofO(m2(n1+n2)), which
still seems to impose a computational bottleneck even with
fairly medium-sized networks.

As frequently asked, are these centrality measures corre-
lated? The results of Experiment III in Subsection IV-C3
expound that Bi-face centrality gives unique node identi-
fication based on network topology. The presence of ter-
minal nodes, influential (also known as face) bridges, and
overlapping key bicliques impacts both the performance and
behaviour of Bi-face as well as its relationship to other tra-
ditional centrality measures. When the network contains a
large number of cohesive regions with many nodes having
high degrees and there is a small number of hole structures or
terminal nodes, the role of the face-biclique term dominates
the face-bridge one, and here it is anticipated that the Bi-face
centrality could be partially correlatedwith vote-rank, degree,
eigenvector and (maybe) closeness centrality measures. This
is due to the fact that in this scenario, the network tends to
decompose into multiple bi-clusters (or two-mode commu-
nities), with the nodes with the highest degree potentially
serving as the central nodes. On the flip side of the coin, when
the network contains a small number of cohesive regions or
a large number of sparse ones, as well as a large number
of terminal nodes and bridges, the role of the face-bridge
term dominates the face-biclique one, even when structural
holes are present. This is due to the effect of face-bridges
in determining the central nodes, and here the Bi-face
centrality may be slightly correlated with percolation and
betweenness.

It is worth noting that the existence of the two scenarios,
mentioned above in the network, could potentially increase
Bi-face centrality to behave slightly similar to vote-rank or
percolation. In an extreme scenario, such as the Women-
Davis network with a large number of overlapping bicliques
and no terminal nodes, the likelihood of having face-bridges
decreases dramatically. This indeed imposes a harsh situation
on Bi-face because it will depend solely on its face biclique
term, and here it is clearly expected that Bi-face will behave
similarly to degree, closeness, eigenvector, and vote-rank, but
not similarly to betweenness. From a statistical perspective,
the low and moderate (i.e., not high) correlations between
Bi-face and other centrality measures suggest that it is, in fact,
a distinct measure that is likely to be associated with different
outcomes than other centrality measures. This is due to the
fact that if the measures are highly correlated, they may be
somewhat redundant and behave similarly.

VOLUME 9, 2021 159563



M. H. Ibrahim et al.: Identifying Influential Nodes in Two-Mode Data Networks Using Formal Concept Analysis

TABLE 4. Average Kendall’s tau rank correlation coefficient between Bi-face (BFc) and the other six bipartite centrality measures: betweenness (Bc),
eigenvector (Ec), closeness (Cc), degree (Dc), Percolation (PCc) and Vote-rank (VRc) on the five underlying datasets. The moderate, weak, highly weak
correlation values are represented in blue, red and black respectively.

Furthermore, one conjecture inferred from the experiment
results (I-III) is that two-mode network properties (e.g., den-
sity, reciprocity, centralization) may affect the correlation
among bipartite centrality measures, as well as their accu-
racy and performance. For instance, one observation from
Table 4 and Figure 4 is that as network density increases,
the correlation between Bi-face and closeness, eigenvector,
and degree increases, while its correlation with betweenness
decreases. This observation, however, does not clearly reflect
the correlation between Bi-face and both percolation and
vote-rank because Women-Davis has a lower density than
CoinToss and Dirichlet, and Bi-face is more correlated with
the two centrality measures on Women-Davis than on Coin-
Toss. While this shows that network density influences how
well different centrality measures correlate with one another,
it also indicates that the network density is not the only factor
and that other network properties may have an impact on
such correlations. Since the study of the network properties is
outside the scope of this paper, we could explore the effects of
reciprocity and centralization on Bi-face in our future work.

V. CONCLUSION
The detection of influential nodes in a two-mode network
is frequently an important task in scientific and industrial
data analysis pipelines for explaining various behaviours and
outcomes. Our work here addressed an obvious gap in the
present CNA literature, namely the efficient identification of
key nodes by combining both local cohesiveness and global
network flow aspects of centrality through the use of FCA
mathematical formalization. On this basis, we devised Bi-
face, a new bipartite centrality measure that quantifies the
prominence of a node in a two-mode network based on its
presence in influential overlapping bicliques and bridges.
While we focused on two-mode networks here, the approach
can easily be modified to accommodate other complex net-
work representations like multilayer networks.

From a conceptual perspective, the Bi-face score is a dis-
tinct centrality in the following three elements: (i) it uses the
concept lattice formulation to efficiently extract overlapping
bicliques and bridges, (ii) it leverages concept faces to refine
bicliques from non-influential nodes and detect influential
bridges, and (iii) it exploits the fact that influential bridges
and overlapping bicliques with a large number of important
neighbour nodes are likely to contain key central nodes.

As a result, it measures how a node affects and is influenced
by its important neighbours through refined bicliques, while
also linking the network dense substructures via its existence
in influential bridges. According to a thorough empirical
study on several synthetic and real-life two-mode networks
(see Section IV), the Bi-face score can identify key nodes
more accurately and efficiently than other state-of-the-art
centrality indices such as degree, betweenness, closeness,
eigenvector, percolation, and vote-rank.
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