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TITLE: Cellular Goore Game with Application to Finding Maximum Clique in Social Networks
AUTHORS: Daliri KHomami, Mohammad Mehdi; Meybodi, Mohammad Reza; Ameri, Reyhaneh

ABSTRACT: The Goore Game (GG) is a model for collective decision-making under uncertainty, which can
be used as a tool for stochastic optimization of a discrete variable function. The Goore Game has a
fascinating property that can be resolved in a completely distributed manner with no
intercommunication between the players. The game has found applications in many network
applications, including sensor networks, quality-of-service (QoS) routing, and social networks. In this
paper, we introduce an extension of GG called Cellular Goore Game (CGG). CGG is a network of Goore
Games in which at any time, every node in the network (or every node in a subset of the nodes in the
network) plays the rule of referees, each of which participates in a GG with its neighboring players
(voters). Like in GG, each player independently selects its optimal action between two available actions
based on their gains and losses received from its adjacent referee. Players in CGG know nothing about
how other players are playing or even how/why they are rewarded/penalized. To show the potential of
the CGG, an algorithm based on CGG for solving maximum clique in the application of community
detection in social networks is proposed. To evaluate the performance of the CGG based algorithm,
several experiments have been conducted on the real benchmark of the clique algorithm called DIMACS.
Form the obtained result, it has been shown that the CGG based algorithm is superior to the existing
algorithms in terms of size and time.
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We think the manuscript can give an important contribution in the field of Maximum Clique Problem (MCP) in
the social network analysis. However, the paper was not well written and the discussion was not clear,
particularly when comparing with the state-of-the-arts. Furthermore, the authors should claim the potential
contributions of the paper in the area of MCP. They just discussed how Goore game can be used to solve the
program of MCP. Therefore, several works have to do before the paper can be published in the journal.

*Comments to the Author

QSpecial Characters

Please do some revisions before the manuscript is accepted for publication in the journal: 1. in Section 2.1.,
please give a thorough discussion of Goore game, and the different with other game strategies should be
given! We think that the pseudo code of GG is not necessary to be shown in this section, just give a concise,
but clear explanation. The examples of implementation of GG should be written in section 1. Introduction. 2.
Using Table 1, you did a mini survey of the works of GG. We think it is good, but it is better than you survey
the MCP problem, possibly using Goore Game. Is your work the first that solves MCP problem using Goore
Game? If so, then claim it in the paper. If not, give a comparison with other works in MCP using Game or
maybe Goore Game! 3. Could you give a short discussion in Section 2.3. Goore Game without LA? Or Goore
Game is always implemented with Learning Automata? 4. Section 3. You said CGG that synchronous,
homogenous, and P=R=V is a basic CGG. Did your experiment use this setting? If so, why you choose such
scenario? 5. Section 5, please give a brief discussion of DIMACS networks! Are they real networks or
synthetic networks? Where and how did you get the DIMACS, citation is needed here!!! 6. Section 5, you
listed several benchmark algorithms. Why you selected them? Did one of them use a Game method to solve
MCP? 7. Section 5.1., Is there any relation between Average RF and Entropy in Fig. 8? Or they are totally
independent each other? 8. Fig. 9, the method you used called Average RF (brown line), but the y-axis is
also attributed as Average RF, please clarify it ! 9. Table. 2 the referee selection with maximum degree nodes
outperforms other strategies. Do you think in all social network scenarios , it will work? 10. Experiment IV.
Comparing your proposed method with other benchmark. Please give thorough discussion because this
section is very important. However, your explanation of the performance comparison with the state-of-the-arts
is very very short unfortunately. 11. Finally, you did a lot of mistakes in writing the paper, for example: a)
Where is Eq. (4), (6), (17)? They are all missing. b) Page 32. line 34. Therefore, it seems that CGG-Clique
algorithm. (is this a complete sentence?) and many more typo mistakes, please check the paper carefully.
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Manuscript # JCDE-2021-345: Responses to the reviewer’s comments
Dear Editor and reviewers of the Journal of Computational Design and Engineering

Thanks for the reviewers’ comments concerning our Manuscript entitled “Cellular Goore Game with
Application to Finding Maximum Clique in Social Networks” (ID: JCDE-2021-345). As far as we
can see, all of you have recommended that the paper be Accepted Conditionally, and we are very much
thankful to the reviewers for their in-depth and insightful review. We have revised my research paper
concerning their useful suggestions and comments. We hope our revision improves the paper to satisfy
the reviewers’ concerns. Revised portions are highlighted in yellow in the Manuscript with marked
changes. Our responses to the references have been given in detail as follows:

Response to the comments of Reviewer #1

Reviewer #1 stated that “The authors focus their study on the Goore game by introducing an extension of it called
cellular Goore game. In the proposed framework, each node belonging in a network of Goore games plays the rule
of referee, which participate in a Goore game with the corresponding neighboring players.

Specifically, each player independently selects an optimal action among two available ones considering the gains
and losses that can be potentially received from the corresponding adjustment referee. The authors introduce also an
algorithm based on the cellular Goore game in order to solve the maximum clique in social networks.

The provided mathematical analysis in the paper is concrete, complete, and correct and the authors have well
thought out their main contributions. The exploitation of Goore games can give solutions to several complex
problems where the interdependencies of the players can influence the outcome of the decision-making process.”
Thank you very much for these comments.

The authors should consider the following suggestions provided by the reviewer in order to improve the quality of
presentation of their Manuscript, as well as they should address the following comments in order to improve the
scientific depth of their Manuscript:

Comment 1. Initially, there are several prospect theoretic approaches that have been introduced in the literature in
order to deal with the consideration of the gains and the losses in the decision-making process of the players, such as
Vamvakas, P., et al. "Dynamic spectrum management in 5G wireless networks: A real-life modeling approach." IEEE
INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, 2019, within complex interdependent
systems.

Response:

In the new version of the manuscript, this issue has now been corrected as given below (Please see page.
2).

“Moreover, a game theory-based approach has been proposed for 5G Non-Orthogonal Multiple Access
(NOMA) wireless networks [8]. In the proposed algorithm, users are enabled to determine the optimal
allocation of their transmission power in each part of the bands while the unlicensed band is treated as a
Common Pool Resource (CPR) - being non-excludable and rivalrous - which may collapse due to over-

https://mc.manuscriptcentral.com/jcde
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exploitation. In this algorithm, the problem is transformed as a non-cooperative CPR game among the users,
while its convergence to a unique Pure Nash Equilibrium has been proven, and an algorithm that determines
the optimal power investment of each user to the corresponding bands in a distributed manner. The
extensive numerical results are provided to show the effectiveness and superiority of the proposed
framework about user decisions under realistic conditions and behaviors.”

Comment 2. The authors should improve the provided related work in order to better capture the state of the art in
the examined research topic.

Response: Since the article deals with the works related to Goore Game and maximum Clique problems,
the related works section has been rewritten in both sections. Also, in the maximum clique algorithms
section, we have provided a summary of the research work in a table. (Please see page 7 Table 1 for Goore
Game and page 17 Table 2 for the maximum clique algorithms in the new version of Manuscript).

“Table 2 : summarizes the research works algorithms and their characteristics related to the maximum

clique.
Algorith
Authors ‘i‘;;em Year Type of approach Summary of Findings
Reactive Tabu local
search, the past - -
- o A prominent MCP algorithm
Battiti & sensitive scheme to
i RLS 2001 - that reports better results
Protasi[58] determine the o )
than its pioneer algorithms.
amount of
diversification
The algorithm provides
better results than its
pioneers but performs
B&B Algorithm based
; - . less proper than
Ostergard[65] Cliquer 2002 | on solving sub-clique - -
complicated vertex coloring
problems
based
algorithms similar as MCQ,
MCS, and BB-MaxClique.
The MCQ is Faster than
Tomita and B&B based on Cliquer, and several results
- McQ 2003 -
Seki[66] subgraphs coloring for DIMACS benchmark

instances are reported.

https://mc.manuscriptcentral.com/jcde
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Regin[67] CPR
Katayama,
Hamamoto, & KLS

Narihisa,[68]

Grosso, A.,
Locatelli, M., & DAGS
Croce, F. D.[69]

Kumlander[70] DK

S. Busygin[71] QUALE X-MS

Pullan W, Hoos
H[72]

DLS

2003

2004

2004

2006

2006

2006

B&B uses filtering
algorithms to tighten
the
candidate set P

Iterated local search

Greedy algorithm
including plateau
search.

B&B based on a
unique coloring

a greedy algorithm,
vertex weights are
derived from a
nonlinear
programming
formulation

Dynamic local search
with a simplified
DAGS including
perturbation
strategies.

https://mc.manuscriptcentral.com/jcde

The CPR is faster than the
algorithm that uses the
filtering algorithms x + DF,
and the results are reported
on most DIMACS instances.

The algorithm shows an
appropriate performance on
the MANN instances from
DIMACS but a poor
performance on the Keller
and brock instance.

The algorithm provides
highly competitive results
compared with many state-
of-the-art algorithms based
on greedy strategy.

The reported results show
the algorithm outperforms
better than CP but is less
competitive than some
complicated vertex coloring-
based algorithms such as
MCQ, MCS, and BB-
MaxClique.

Better Performance on Brock
instances of DIMACS.

The algorithm uses
perturbation strategies aid of
local search to find the
solution, and the reported
result shows the algorithm's
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Phased based local

performance on Brock
instances of DIMACS.

The algorithm's performance
is competitive with the
DIMACS instance compared

Pullan W[73] PLS 2006 | search, a robust form with the algorithm used by
of DLS dynamic local search on the
DIMACS benchmarks, except
Kelleré6.
A modified version of MCQ
uses the branch and bound
technique to find MCQ. The
B&B based on . .
Tomita and Kameda[66] MCR 2007 i algorithm sorts the vertices
subgraphs coloring -
of the input graph
effectively, affecting the
algorithm's performance.
The MaxCLQ is an exact
algorithm that works based
on branch and bound
techniques for finding the
} B&B based on q ) &
Li and Quan[74] MaxCLQ 2010 maximum clique. The
MaxSAT _
reported results show high
effectiveness on a hard
instance p_hat1000-3 for the
first time.
The CLS is run on both
DIMACS and BOSHLIB
Cooperating local benchmarks, and the results
W. Pullan, F.
: search, advance than show remarkable
Mascia, M. CLS 2011
PLS and paralleled performances. Moreover,
Brunato[62] . . .
algorithm the CLS is classified as one of
the best-performing MCP
algorithms.
Edge-based local A local search strategy-based
search for vertex algorithm running on both
S. Balaji[75] ELS 2013

cover and
equivalently for MCP

https://mc.manuscriptcentral.com/jcde
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benchmarks, and the result
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cases, are better than
phased local search.

The algorithm uses a target-
aware local search to find

- Target aware local the maximum clique. The
K K Singh, K K -

search, Incorporating reported result shows the

Naveena, G TALS 2014 o . . . .
— prohibition time for superior concerning DLS in

Likhitaa[76] . e .
diversification some instances of P-hat, gen-
keller-6 of DIMACS <400,
benchmarks.

It's a combination of

ILS&MaxCLQ to reach
speedup for some hard

B&B based on . - )
- DIMACS instances.
MaxSAT using local -
Maslov et al.[77] ILS&MaxCLQ 2014 hf Moreover, the result is
search for
compared with MaxCLQ but
requires more computing

initial bounds

time for some easy
instances.

Proposed a
— E - The algorithm is applied in
- Distributed Learning -
Rezvanian et al. - the social networks graph
DLA-Clique 2016 automata-based -
[63] ) — model, demonstrating
algorithm for finding o
- - superiority.
a maximum clique

bR

Comment 3. In section 2, the authors should provide an introductory discussion of the main operation of the Goore
game before introducing the cellular Goore game that is proposed in the Manuscript.

Response: Thank you for your keen considerations of the new version of the Manuscript; we have
provided an introductory discussion of the main operation of the Goore Game. (Please refer to page 11 in
the new version of the manuscript).

“At each round k of the Goore Game with LA, each player i chooses one of its actions corresponds to a;(k)
from two possible actions a;; and a;, as a sample realization of its action probability vector pi(k) = (pii(k),
pio(k)). Then, the referee counts the fraction of the first action that corresponds to a;; based on equation (5)
and compute the performance criteria G based on equation (6) to generate reinforcement signal. Then the
Lp.; algorithm based on whether the chosen action is rewarded or penalized by the referee updates its action
probabilities as described below[2]. If player i chooses action o;; at round k and receives reward and A (0 <
A < 1) is the learning parameter. Then the action probability vector pi(k) = (pi1(k), piz(k)) is updated as
follows:

https://mc.manuscriptcentral.com/jcde
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pir(k + 1) = pir (k) + 2(1 — p;1 (k)
)
pi2(k + 1) = pi2(k) — Api2(k)

Figure 4 (a, b, c and d) given below show the operations of a GG with N players taking place in each
round.”

Comment 4. In section 2, the authors should discuss several other learning approaches other than the stochastic
learning automata that can be used, such as the gradient ascent learning algorithms, log linear learning algorithms,
and Q learning algorithms.

Response: This issue has now been corrected. (Please refer to page 10 in the new version of the
Manuscript, the first and second paragraph).

“In addition to stochastic learning automata for solving the learning problems, other learning models
such as Gradient descent learning algorithms[24], log-linear learning algorithms[25], and Q-learning[26]
[27]have been introduced to solve learning problems. Gradient descent learning algorithm is a type of
learning algorithm used in first-order iterative optimization algorithms for finding a local minimum of
differentiable functions in the process of learning mechanisms. This learning algorithm works iteratively
and moves in the opposite direction of the gradient or approximate gradient of the function at the current
point. The algorithm moves toward the direction of the steepest descent[24].

Log-linear learning[28] is one of the learning dynamics algorithms that include equilibrium selection.
In potential games, log-linear learning guarantees that only the joint action profiles that maximize the
potential function are stochastically stable. In log-linear learning algorithm by the aid of noise makes
to improve the algorithm's performance for the decision-making process. Moreover, the noise allows
players to make mistakes, where mistakes correspond to the selection of suboptimal actions irregularly.
The structure of the noise in log-linear learning is that the probability of selecting a suboptimal action
is connected with the magnitude of the payoff difference associated with the best response and the
suboptimal action. As the noise vanishes, the probability that a player selects a suboptimal action goes
to zero [25]. Q-learning [27] is a model-free reinforcement learning algorithm that learns the value of
an action in a particular state. This model is categorized into model-free learning due to no need for
the environment, and it can handle problems with stochastic transitions and rewards without requiring
adaptations. The capability of Q-learning is determined to find an optimal strategy in the context of
maximizing the expected value of the total reward over any successive steps, starting from the current
state in the finite Markov decision process (FMDP)[26]. Q-learning can identify an optimal action-
selection strategy appropriately for any given FMDP, given infinite exploration time and a partly-
random policy[29].”

Comment 5. Furthermore, the authors should include an additional subsection in their Manuscript discussing the
computational complexity of the cellular Goore game to determine its optimal decision making.

Response: To provide computational complexity of the cellular Goore game to determine its optimal
decision making, we have provided a new theorem that proves the time upper and lower bounds of the
algorithm's time complexity. Moreover, we have added a new experiment V and using Dolan More

https://mc.manuscriptcentral.com/jcde
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performance profile to show the effectiveness of the proposed algorithm in terms of execution time. (Please
see section 4 on page 26 and section 5.5 experiment V on page 37 in the new version of the manuscript).

“Theorem 2: The total running time complexity of CGG-Clique algorithm for CGG-Clique algorithm for
1
finding a T—; optima clique for the graph G is:

1 1
oG STl <eG71-D""H (40)

where d is the graph degree, M is the number of the clique of the maximum degree d, and ¢ is computed
based on:

__ 2 : (1)
1 +x—a

Proof: As mentioned in the CGG-Clique algorithm, each cell plays GG independently to find a maximum
clique. Hence, the maximum number of iterations for the algorithm for finding a %_s is associated with the
node with maximum degree. Therefore, the maximum running time of the proposed algorithm is related to
the cell with a maximum degree d;. On the other hand, as proven in lemma 1 and lemma 2, they bounded
into an upper and lower bound. Therefore, we may conclude that for the CGG-Clique, the required time for
finding an optimal clique is:

1 1
o STl < (71 =D ™H (42)

2
Where (x) = 17365-1031 ~2 01(178—;()’ hence the proof of theorem 2 is completed.m
T d

1.1 Experiment V

This experiment is done to compare the running time spent by the CGG-Clique for finding the maximum
clique; we have used the corresponding Dolan-Moré performance profile. The Dolan-Moré performance
criteria were first introduced in [85] as an appropriate method to analyze different algorithms in solving
specific test problems based on proper criteria such as time, the number of iterations, and the size of a
maximum clique. To perform a Dolan-Moré time profile for solving test problems p € P[Jusing different
solvers s € S, we first calculate the ratio:

_ e (43)
"= min {tpss € S}

https://mc.manuscriptcentral.com/jcde
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where t,sindicates the running time for solving the test problem p using solver s. To obtain a total
evaluation of the performance of each solver, we compute:

1 44
ps(®) = AP € Prye <) 9
p

which is, in fact, equal to the proportion of test problems solved by s in at most 7 times the minimum
running time among all solvers. Now, to sketch the Dolan-Moré profile, it is sufficient to plot ps(7) versus
7. The obtained result is depicted in figure 10.

—4— CGG-Clique DLA-Clique BBMCX C NEW_SORT
MAXCLQ —¢— MEAMCP —o— GENE
—+—FGA —a— |GFTT == SBTS

0.9

% OF SOLVED TEST PROBLEMS

Figure 10: Comparison of the CGG-Clique with other algorithms in terms of the Dolan-Mor¢ criteria

The result in figure 10 confirms that the execution time of the CGG-Clique algorithm is less than that of
the other algorithms in terms of the number of test problems. We note that the obtained result of the CGG-
Clique algorithm in the network is similar in DLA-Clique due to both algorithms using the learning
mechanisms to find the solution, but the CGG-Clique is distributed and running in a parallel manner to find
a solution. Hence the CGG-Clique reaches the solution significantly faster. Moreover, compared to SBTS,
FGA, and IGFTT, due to using different stages in designing the algorithm, including random selection,
heuristic search, and the optimizing technique, the SBTS, FGA, and IGFTT algorithms consume more time
than the proposed method algorithm. For other algorithms in the same way.”

Comment 6. Finally, the overall Manuscript should be checked for typos, syntax, and grammar errors in order to
improve the quality of its presentation.

https://mc.manuscriptcentral.com/jcde
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1
2
3 Response: Thanks for the kind suggestions. We have reviewed the entire Manuscript and tried our best to
g improve the English use. The revised sections in the manuscript are highlighted in yellow.
6 .
7 Response to the comments of Reviewer #2
8
9 Reviewer #2: The paper has been improved from the first version. However, the main issues raised in
1? connection with the experimental part of the paper are not sufficiently addressed.
12
13
14 Comment 1. In Section 2.1., please give a thorough discussion of Goore game, and the different with other
15 game strategies should be given! We think that the pseudo code of GG is not necessary to be shown in this
16 section, just give a concise, but clear explanation. The examples of implementation of GG should be written
1; in section 1. Introduction.
;g Response:
py Thank you very much for this advice (Please refer to pages 4 and 5 in the new version of the Manuscript).
;g “The GG is a simple symmetric game played by several players. It is a special form of a cooperative game
4 that can be resolved in an entirely distributed manner without inter-communication between the players.
25 The GG has many fascinating characteristics which make it differ from other games, such as:
2% e The game is a nontrivial non-zero-sum game.
27 e Unlike the games traditionally studied in artificial intelligence like chess, checkers, lights-out,
28 etc., the game is distributed.
29 e The game players are unaware of all of the game's parameters. All they know is that they have to
30 make a choice, for which they are either rewarded or penalized. They have no clue how many
31 other players there are, how they are playing, or how/why they are rewarded/penalized.
32 e The referee function used to reward or penalize the players can be optional, as long as unimodal.
33
34 For more clarity, the operation of GG is presented in Figure 1.
35
36
7
28 D ) e
39 D ) s
40 B I ‘ Yes
2; D i \_ ’ Yes
43 i @ . ‘ No Referee)
44 B | ’ No
1 D ) e
47 s 3 o e
48 5] ) e
49 - I Yes
o D '
51
52
53 a) Initial configuration GG with 10 players and b) On each iteration, the voters vote either
54 areferee. “Yes” or “No” (the issue is unimportant)
55
56
57
58
59

60 https://mc.manuscriptcentral.com/jcde
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simultaneously and independently (they do not
see each other)

| N T T e e T
E B BN BN BN OB O W OB W B

C) referee Counts how many Yes votes by players. D)Compute unimodal performance criterion
G(f).
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E) Referee awards a dollar with probability G(f) and F) Random number generationto cast the
assesses a dollar with probability 1 - G(f) to every voters again independently their votes on the
voter independently. next round.

Figure 1: The operation of the original goore game.
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Comment 2. Using Table 1, you did a mini-survey of the works of GG. We think it is good, but it is better
to survey the MCP problem, possibly using Goore Game. Is your work the first that solves the MCP problem

using Goore Game? If so, then claim it in the paper. If not, give a comparison with other works in MCP

using Game or maybe Goore Game!

Response: Based on your constructive comment, we have added a mini server related to the maximum
clique problem in table 2 in the new revision of the Manuscript. Moreover, this work is the first research
attempt introducing Cellular Game and its application for finding a maximum clique in the networks. It is

reflected in the Manuscript's abstract. (Please see section 3.1 on page 17 in the new version of the

manuscript)

“Table 2: Summary of the proposed algorithms for finding a maximum clique.

13

A ith
Authors Igorithm
Name
Battiti &
RLS
Protasi[58]
Ostergard[65] Cliquer
Tomita and
. MCQ
Seki[66]

Year Type of approach
Reactive Tabu local
search, the past
sensitive scheme to

2001 }
determine the
amount of

diversification

B&B Algorithm based

2002 | on solving sub-clique

problems

B&B based on
subgraphs coloring

2003

https://mc.manuscriptcentral.com/jcde

Summary of Findings

A prominent MCP algorithm
that reports better results
than its pioneer algorithms.

The algorithm provides
better results than its
pioneers but performs

less proper than
complicated vertex coloring
based

algorithms similar as MCQ,
MCS, and BB-MaxClique.

The MCQ is Faster than
Cliquer, and several results
for DIMACS benchmark
instances are reported.
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Regin[67] CPR
Katayama,
Hamamoto, & KLS

Narihisa,[68]

Grosso, A.,
Locatelli, M., & DAGS
Croce, F. D.[69]

Kumlander[70] DK

S. Busygin[71] QUALE X-MS

Pullan W, Hoos
H[72]

DLS

2003

2004

2004

2006

2006

2006

B&B uses filtering
algorithms to tighten
the
candidate set P

Iterated local search

Greedy algorithm
including plateau
search.

B&B based on a
unique coloring

a greedy algorithm,
vertex weights are
derived from a
nonlinear
programming
formulation

Dynamic local search
with a simplified
DAGS including
perturbation
strategies.

https://mc.manuscriptcentral.com/jcde

The CPR is faster than the
algorithm that uses the
filtering algorithms x + DF,
and the results are reported
on most DIMACS instances.

The algorithm shows an
appropriate performance on
the MANN instances from
DIMACS but a poor
performance on the Keller
and brock instance.

The algorithm provides
highly competitive results
compared with many state-
of-the-art algorithms based
on greedy strategy.

The reported results show
the algorithm outperforms
better than CP but is less
competitive than some
complicated vertex coloring-
based algorithms such as
MCQ, MCS, and BB-
MaxClique.

Better Performance on Brock
instances of DIMACS.

The algorithm uses
perturbation strategies aid of
local search to find the
solution, and the reported
result shows the algorithm's

Page 12 of 67
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Pullan W[73] PLS

Phased based local
2006 | search, a robust form
of DLS

performance on Brock
instances of DIMACS.

The algorithm's performance
is competitive with the
DIMACS instance compared
with the algorithm used by
dynamic local search on the
DIMACS benchmarks, except
Kelleré6.

Tomita and Kameda[66] MCR

Li and Quan[74] MaxCLQ
W. Pullan, F.
Mascia, M. CLS
Brunato[62]
S. Balaji[75] ELS

B&B based on
subgraphs coloring

2007

B&B based on
MaxSAT

2010

Cooperating local
search, advance than
2011
PLS and paralleled

algorithm

Edge-based local
search for vertex
2013
cover and

equivalently for MCP

https://mc.manuscriptcentral.com/jcde

A modified version of MCQ
uses the branch and bound
technique to find MCQ. The
algorithm sorts the vertices
of the input graph
effectively, affecting the
algorithm's performance.

The MaxCLQ is an exact
algorithm that works based
on branch and bound
techniques for finding the
maximum clique. The
reported results show high
effectiveness on a hard
instance p_hat1000-3 for the
first time.

The CLS is run on both
DIMACS and BOSHLIB
benchmarks, and the results
show remarkable
performances. Moreover,
the CLS is classified as one of
the best-performing MCP
algorithms.

A local search strategy-based
algorithm running on both
DIMACS and BOSHLIB
benchmarks, and the result
are equivalent or, in some
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K K Singh, K K
Naveena, G TALS
Likhitaa[76]

Maslov et al.[77] ILS&MaxCLQ

Rezvanian et al.

DLA-Clique
[63] a

2

Target aware local
search, Incorporating

201 e
prohibition time for
diversification
B&B based on
MaxSAT using local
2014

search for
initial bounds

Proposed a
Distributed Learning
2016 automata-based
algorithm for finding
a maximum clique

Page 14 of 67

cases, are better than
phased local search.

The algorithm uses a target-
aware local search to find
the maximum clique. The
reported result shows the
superior concerning DLS in

some instances of P-hat, gen-

keller-6 of DIMACS <400,
benchmarks.

It's a combination of
ILS&MaxCLQ to reach
speedup for some hard
DIMACS instances.
Moreover, the result is
compared with MaxCLQ but
requires more computing
time for some easy
instances.

The algorithm is applied in
the social networks graph
model, demonstrating
superiority.

Comment 3. Could you give a short discussion in Section 2.3. Goore Game without LA? Or Goore Game is

always implemented with Learning Automata?

Response:

This issue has been mentioned in section 2.1. The naive Goore Game is an example of a self-optimized

game that is not used in Learning Automata. In the naive Goore Game, voters and a referee exist, as

described bellows. The learning automata approach has been suggested as a solution to determine the

optimal action for each player present in the game. (Please refer to page 3 in the new version of the

Manuscript)

“Imagine a large room containing N cubicles and a raised platform. One person (voter) sits in each cubicle,
and a Referee stands on the platform. The Referee conducts a series of voting rounds as follows. On each
round, the voter's vote “Yes” or “No” (the issue is unimportant) simultaneously and independently (they do

https://mc.manuscriptcentral.com/jcde
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not see each other), and the Referee counts the fraction, A, of “Yes” votes. The Referee has a uni-modal
performance criterion G(A), optimized when the fraction of “Yes” votes is exactly A*. The current voting
round ends with the Referee awarding a dollar with probability G(A) and assessing a dollar with probability
1-G(X) to every voter independently. On the basis of their individual gains and losses, the voters then decide,
again independently, how to cast their votes on the next round.”

Comment : Section 3. You said CGG that synchronous, homogenous, and P=R=V is a basic CGG. Did your
experiment use this setting? If so, why you choose such scenario?

Response: Since CGG is not an application-dependent algorithm and was introduced for different
applications, the algorithm can be customized depending on the requirement. This capability shows the
power and flexibility of CGG for solving various problems from diverse domains. But in finding the
maximum clique, we are motivated to use the basic form of CGG in which the number of players is equal
to the number of the referee and show the potential of CGG for solving the problem.

Comment: Section 5, please give a brief discussion of DIMACS networks! Are they real networks or synthetic
networks? Where and how did you get the DIMACS, citation is needed here!!!

Response:

The DIMACS is a well-known synthetic graph benchmark devised to compare the goodness of the
algorithms from the different performance criteria aspects and designed for well-known graphs problems
such as Maximum Clique, Maximum Independent Set, Minimum Vertex Cover, and Vertex Coloring. We
have gathered a series of graphs for comparing graph algorithms with each other to evaluate the
performance of the proposed algorithm[78]. While we have aimed to use DIMACS instances related to
clique algorithms, we believe the benchmark is proper for related fields. The DIMACS networks which are
used for the experiments and their characteristics are described in Table 3, where |V| indicates the number
of nodes, |E| shows the number of edges, dmqy is the maximum degree of nodes, dqy,4 is the average degree
of nodes, and wyis the lower bound of the maximum clique in the networks.

Comment 6: Section 5, you listed several benchmark algorithms. Why you selected them? Did one of them use a
Game method to solve MCP?

Response: The aim of selecting these benchmark algorithms is to compare the performance of the proposed
algorithm in terms of evaluation criteria such as average referee value, entropy, and Dolan More
performance profile. Since the clique problem is NP-hard, hence there is no exact algorithm that provides
unique solutions. We have considered two criteria for choosing the algorithms for comparison in this
context. The first is, some of the algorithms used for comparison are well-known, and many researchers
have used these algorithms for evaluation. Another reason for selecting these algorithms is using the
algorithms based on the type of operation or functionality for finding the solution. For example, DLA-
Clique uses the learning automata to find the maximum clique.

Comment 7: Section 5.1., Is there any relation between Average RF and Entropy in Fig. 8? Or they are totally
independent each other?

Response:

https://mc.manuscriptcentral.com/jcde
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The aim of designing this experiment is to compare the average value of the referee function and its effect
on the probability vector of learning automata. Since in CGG- clique algorithm, each cell constitutes a
single referee function for identifying optimal action from the action set of each LA, and the algorithm
works in a distributed manner. It seems that as the algorithm proceeds, the entropy value decreases, and at
the same time, the average referee value increases. But, these changes are not interdependent. For example,
when the average referee approaches the maximum value, the probability vector of LAs gradually decreases
to the minimum value. We note that the learning rate of LAs, due to manipulation of the probability vector,
affects the speed of convergence of the algorithm and, as a result, impacts the speed of entropy value to
approaches to the minimum value.

Comment 8: Fig. 9, the method you used called Average RF (brown line), but the y-axis is also attributed as
Average RF, please clarify it !

Response: We thank you for this. This has been corrected (Please refer to section 5.2, page 31).

Comment 9: Table. 2 the referee selection with maximum degree nodes outperforms other strategies. Do you think
in all social network scenarios, it will work?

Response: Many researchers have focused on the degree distribution of nodes in the social networks and
proved that the distribution of nodes in social networks is fit to the power distribution (scale-free networks).
The most critical characteristic in a scale-free network is the near commonness of vertices with a degree
that significantly exceeds the average. The highest-degree nodes are often called "hubs" and are thought to
serve specific purposes in their networks, although this depends greatly on the domain. Hence, we believe
selecting the maximum degree strategy in CGG may solve problems related to social networks. Although
community structure is one of the interesting key features of many real-world networks, a variety of
definitions are presented for community structure; among them, the definition of community in terms of
the clique is the most intuitive way.

Comment 10: Experiment [V. Comparing your proposed method with other benchmark. Please give thorough
discussion because this section is very important. However, your explanation of the performance comparison with
the state-of-the-arts is very very short unfortunately.

Response:

Response: We thank you for this constructive comment. This has been corrected (Please refer to section
5.4, page 35).

“This experiment was conducted to compare the performance of the CGG-Clique with other algorithms
SBTS[79], IGFTT[80], GENE[81], FGA[82], MEAMCP[83], MAXCLQ[62], BBMCX +NEW_SORT
[60], and DLA-Clique[63] in terms of maximum clique size. Moreover, since CGG solves the maximum
clique problem for the first time, we have selected DLA-Clique for comparison because the algorithm uses
a learning mechanism to find the solution in addition to LAs. The results are shown in Figure 9 in terms of
the maximum and the average size of the clique. It is necessary to point out that in some networks, the size
of the clique is not reported for some algorithms because the problem is hard to solve, and the structure of
these networks is complex. Hence for these types of networks, the size of the clique is considered zero. For
other algorithms, we may conclude that the CGG-Clique algorithm in four networks such as Brock400-1,
Brock400-2, Brock400-3, and P-hat1500-1 is outperformed than IGFTT, GENE, FGA, and MAXCLQ, due

https://mc.manuscriptcentral.com/jcde

Page 16 of 67



Page 17 of 67

oNOYTULT D WN =

Manuscripts submitted to Journal of Computational Design and Engineering

to the CGG_Clique is a distributed algorithm and run locally for finding the solution and using learning
mechanisms to learn how to detect solution. For other data sets such as 1 Brock200, P_hat300-3 and
P_hat700-2 the obtained results are similar. Therefore, the CGG-Clique algorithm, due to using distributed
computing and considering the local neighborhood structure for finding a maximum clique, outperforms
competitive algorithms in some cases, and the results are competitive in terms of average and best results.”

Comment 11: Finally, you did a lot of mistakes in writing the paper, for example:

a) Where is Eq. (4), (6), (17)? They are all missing.

b) Page 32. line 34. Therefore, it seems that CGG-Clique algorithm. (is this a complete sentence?)
and many more typo mistakes, please check the paper carefully.

Response: We corrected the equation number and made an appropriate change in the sentences.
Moreover, we have reviewed the entire Manuscript and tried our best to improve the English use.
The revised sections in the manuscript are highlighted in yellow

Response to the comments of Reviewer #3
Reviewer 4: The Manuscript proposes a new framework CGG, a combination of Goore Game and Cellular
Automata. It also proposes an algorithm based on CGG to find the maximum clique in a graph. The structure of the

Manuscript is appropriate and the results show the superiority of the proposed method. The paper can be considered
for publication if it is improved as stated in the following comments.

Comment 1. Why did you use learning automata for your purpose?

Response: Since a network can be supposed to be corresponding to a stochastic environment and Learning
Automata (LA) also comes from a stochastic origin, learning automata is a proper and efficient tool to
model networks. More precisely, our proposed algorithm is efficient because of uses the stochastic-based
environment learning automata. Moreover, the time complexity of the proposed algorithm is analyzed in
section 4 in the new version manuscript. (Please refer to section 4, pages 23-28)

Comment 2: Please use the same format for the equations (e.g., Eq.1 and Eq.2)

Response: In the new version, this issue has now been corrected as given below. (Please refer to page 10
in the new version of the manuscript).

pi(k + 1) = p;(k) + a(1 — py(k))
(1)
pjtk + 1) =pj(k) —ap;(k) Vj#i

pi(k + 1) = (1 — b)pi(k) @)

b
pj(k +1)= m +(1-— b)p]-(k) Vj#i

Comment 3: - "at each round k, each LAi simultaneously and independently select one of its actions": selects.

https://mc.manuscriptcentral.com/jcde
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Response: This typo inaccuracy has now been corrected, as given below. (Please refer to page 20 in the
new version of the manuscript).

“After initialization is done, at each round k, each LA; simultaneously and independently selects

one of its actions.”
Comment 4: "If the selected actions by adjacent LAs forms a candidate clique": form.

Response: This has now been corrected as given below. (Please refer to page 20 in the new version of the
manuscript).

“. If the selected actions by adjacent LAs forms a candidate clique 6;(k), then the referee uses
equation (10) to compute G(6;(k)) and generate reinforcement signal.”

Comment 5: Cellular Goore Game is introduced in [24] (based on section 3). However, you claim that you
proposed CGG. If [24] is your previous work, please indicate that clearly.

Response:

Initially, we have provided a limited version of the CGG at Amirkabir University (reference [39]), But in
this Manuscript, this model has been completed and studied in the application of finding a maximum clique.
Moreover, the reference [24] in the draft of the manuscript contains a typo mistake, and the citation number
must be [39]. The correct form is now presented on page 13, as given below.

“The Cellular Goore Game (CGQG), introduced in [39], may be used as a model for systems
consisting of simple identical components with local interactions to optimize one or more
criteria.”

Comment 6: - In Table 1, you reference "Megan Ayers and Yao Liang [24]". Paper [24] is something else in the
references.

Response: We are sorry for these inaccuracies. In our new revision, this has been corrected as given
below. (Please refer to Table 1 on page 7).

Comment 7: Please rewrite this sentence: "A clique is a subset of vertices that every two distinct nodes that are
adjacent to each other"

Response: This has now been corrected as given below. (Please refer to page 16 in the new version of the
manuscript).

“Let G = (V. E) be a connected and undirected network, where V is the set of nodes, and E C V X
Vdenotes the edges. A subset of nodes C € V of a graph G induces a clique if every pair of vertices
of C is connected by an edge in G (V u,v € C, (u,v) € E). A clique C of G is a maximum clique if
its size is the largest among all cliques of G.”

Comment 8: In Table 1 some numbers are not in English.

https://mc.manuscriptcentral.com/jcde
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Response: This has now been corrected as given below. (Please refer to page 28 in the new version of the
manuscript).

“Table 3: Characteristics of the DIMACS test networks.

Networks \4 |E| Amax davg wip
1_Brock200 200 15K 165 148 18
Brock400_1 400 60K 320 298 22
Brock400_2 400 60K 328 298 22
Brock400 3 400 60K 322 298 21
Brock800_1 800 208K 560 518 19
P_hat300-3 300 33K 267 222 33
P_hat700-2 700 122K 539 347 22
P_hat1500-1 2000 285K 614 379 11

Comment 9: - How does the method scale for larger graphs, such as social networks with millions of nodes?
Response:

We have theoretically shown that the algorithm converges to the optimal solution, and the experimental
result confirms the ability of the CGG to find the solution on the standard DIMCS benchmark. Moreover,
the distributed computing and scalability characteristics of the CGG-based algorithms make it possible for
applications to operate successfully in a large environment. In addition, in the proposed model, it is possible
that the number of players (P) and referees(R) change according to the problem, even in terms of execution,
the algorithm is capable of running synchronously or asynchronously, which creates flexibility in the use
of large applications such as social networks.

Comment 10: Add future works to the last section

Response: In the new version of the manuscript, we have added future works to continuum the research.
(Please refer to page 39 in the new version of the manuscript).

“As future works, we plan to define new metrics to evaluate the behavior of the CGG and apply the CGG
model for finding a maximum clique in multi-layer social networks.”

Reviewer 5:

Comment 1: Page 3 the last line should be with page 4, it is one algorithm.
Response: We corrected the issue now.

Comment 2: Page 10 the title of the figure should be with the previous page.

Response: This has now been corrected as given below. (Please refer to page 9 in the new version of the
manuscript).

https://mc.manuscriptcentral.com/jcde
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Random Environment

a(k) Bk

Learning Automaton

Figure 2: the communication between the learning automata and random environment.

Comment 3: equations at the beginning of Page 22 without number reference.

Response: This has now been corrected as given below. (Please refer to page 23 in the new version of the
manuscript).
“Lemma 1. If p;is updated according to the proposed CGG-Clique algorithm, the time required

. 1 . . .
for finding a 7—,|6;" | local clique in the worse case is:

2 £ (19)

£ 081-1 77
1 +X—E

L

Where x > p;* (1 — )"~ 1

Comment 4: Table 1 in page 25 (section 5) should be number 2, and table 2 should be number 3 and so on. In the
same table the first set of experiment has Arabic numbers and should be English.

Response: In the new version of the manuscript, the table number and figures have been corrected.
Moreover, in this table, the Arabic numbers are corrected. (Please refer to page 28 in the new version of the
manuscript).

13

Table 3: Characteristics of the DIMACS test networks.

Networks V| |E| i davg wip

https://mc.manuscriptcentral.com/jcde
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1_Brock200
Brock400_1
Brock400_2
Brock400 3
Brock800_1
P_hat300-3
P_hat700-2
P_hat1500-1

200
400
400
400
800
300
700
2000

15K
60K
60K
60K
208K
33K
122K
285K

165
320
328
322
560
267
539
614

148
298
298
298
518
222
347
379

18
22
22
21
19
33
22
11
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Abstract

The goore game (GG) is a model for collective decision making under uncertainty, which can be used as a tool for stochastic
optimization of a discrete variable function. The GG has a fascinating property that can be resolved in a distributed manner
with no intercommunication between the players. The game has found applications in many network applications,
including sensor networks, quality-of-service routing, and social networks. In this paper, we introduce an extension of GG
called cellular goore game (CGG) for the first time. The CGG is a network of GGs. In this network, each node (or subset of
nodes in the network) plays the rule of referees, each of which participates in a GG with its neighboring players (voters) at
any time. Like in GG, each player independently selects its optimal action between two available actions based on their
gains and losses received from its adjacent referee. Players in CGG know nothing about how other players are playing or
even how/why they are rewarded/penalized. The potential of the CGG is shown by providing an algorithm for finding a
maximum clique in social networks. Our research provides the first-time study of the CGG for finding a maximum clique in
graphs. The performance of the CGG-based algorithm for finding maximum clique is studied on the standard clique
benchmark called DIMACS by several experiments. The obtained result shows that the CGG-based algorithm is superior to
the existing algorithms in terms of finding maximum clique size and time.

Keywords: cellular goore game;learning automata; goore game; social networks; maximum clique problem

1. Introduction cide, again independently, how to cast their votes on the next
iteration.

After enough iterations, the number of players that will say
“Yes” correlates with the maximum of G(f). The GG has a fasci-
nating property that can be resolved in an entirely distributed
manner with no intercommunication between the players. In
most general situations, a player may not even be aware of ei-
ther the existence of the other players or the number of players
involved. Each player needs to know only the outcome of select-
ing their action. The learning automaton (LA) theory has been
widely used to develop GG in the literature.

LAs are models for adaptive decision making in unknown
random environments. An LA has a finite set of actions, and each

The goore game (GG), formulated by Tsetlin (1973), is a game
among a set of players and a referee. It is a particular form of a
cooperative game in which each player has two possible choices
to vote that correspond to “Yes” or “No” (Thathachar & Arvind,
1997). The referee evaluates the selected vote by players. The ref-
eree has a unimodal performance evaluation function G. Ateach
instance, all players choose one of their choices, and the referee
computes the function of votes, which is the number of players
voted “Yes” divided by the total number of players voted. Then,
the referee awards a dollar with probability G(f) and assesses
a dollar with probability 1 — G(f) to every player independently.
Based on their individual gains and losses, the players then de-
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action has an equal probability initially(unknown to the automa-
ton) that is rewarded or penalized by its environment. The goal
of LA is to learn the optimal action (i.e. the action with the high-
est probability of obtaining reward) through repeated interaction
with the environment. An optimal action is an action with the
highest probability of getting a reward from the environment.
One fascinating characteristic of LA is that it could be consid-
ered a simple agent for doing simple things. This capability en-
ables LAs to handle complicated learning problems (Thathachar
& Sastry, 2011). The full potential of an LA is realized when mul-
tiple LAs work as a team cooperatively, such as GG. The inter-
action may assume a different form of different games, such as
cooperative and competitive games. As an example of cooper-
ation among LAs, it is shown that in Thathachar and Arvind
(2013), using LAs as a mechanism for rewarding or penalizing
the players in response to their votes will lead to maximizing
G(f). Recently, the GG has found important applications in two
main major domains: quality of service (QoS) control in wireless
sensor networks (Chen & Varshney, 2004) and cooperative mo-
bile robotics (Granmo & Glimsdal, 2013). Another application of
GG is found for the problem of discrete stochastic optimization
in one variable, with bounded domain and range. In many spe-
cific applications based on decision making, such as battlefield
communications, the optimum number of sensors sending in-
formation at any given time is necessary for QoS requirements.
For such a requirement, some GG-based QoS control approaches
have been exploited to dynamically adjust the number of active
sensors to determine the optimal one (Li et al., 2016). Since the
base station collects data from a sensor network and network
sensors are battery driven that dropped from the air, leaving
some of them may lead to nonfunctioning. A solution to reduce
losses and increase the efficiency of the functionality of sensors
can use the technique of switching on or off. In addition, since
they are battery driven, itis expedient to turn them off whenever
possible.

On the other hand, the base station has been set to main-
tain a specific resolution (i.e. QoS), and therefore requires that
Q sensors be switched on (Chen & Varshney, 2004). Moreover,
a game theory-based approach has been proposed for 5G Non-
Orthogonal Multiple Access wireless networks (Vamvakas et al.,
2019). In the proposed algorithm, users can determine the opti-
mal transmission power allocation in each part of the bands. The
unlicensed band is treated as a Common Pool Resource (CPR)—
being nonexcludable and rivalrous—which may collapse due to
overexploitation. In this algorithm, the problem is transformed
as a noncooperative CPR game among the users, while its con-
vergence to a unique Pure Nash Equilibrium has been proven,
and an algorithm that determines the optimal power invest-
ment of each user to the corresponding bands in a distributed
manner. The extensive numerical results show the effectiveness
and superiority of the proposed framework about user decisions
under realistic conditions and behaviors. Most network applica-
tions may need to consider local interaction like a network GG;
this requirement comes to close the idea of cellular goore game
(CGG).

In this paper, we introduce a new model of GG called CGG.
The CGG is a network of GG (a combination of GG and CA) in
which each node in this network plays the role of referee and
players simultaneously. This model, which opens a new learning
paradigm, is superior to CA because of its ability to learn and
superior to a single GG. It makes the distributed computing of
a collection of LAs in the form of GG. CGG aims to maximize
the sum of the objective functions in the referee nodes. Each
node in CGG can simultaneously play the role of a player or a

referee. CGG can be used as a model for large numbers of simple
identical components with local interactions. An application of
CGG to solving maximum clique problems in social networks is
also proposed. The proposed CGG-Clique algorithm is tested on
the subset of well-known DIMACS networks.

The rest of this paper is organized as follows: In Section 2,
some preliminaries for the research work, LAs, and GG with LAs
are briefly introduced. The proposed CGG-based algorithms for
finding a maximum clique are described in Section 3. The time
complexity of the CGG-based algorithm for maximum clique is
discussed in Section 4. Section 5 gives the experiment results,
and we finally conclude the paper in Section 6.

This section provides background information for the remainder
of the paper. After then, we present a brief overview of GG, LAs,
and GG with LA in the following subsections.

In this section, we introduce the original GG. The GG is a self-
organized and self-optimized game studied in artificial intelli-
gence. This game is presented by Tsetlin (1973) and analysed
in detail by Thathachar and Arvind (2013) and Narendra and
Thathachar (2012). The GG had been described in Oommen
and Granmo (2009) by using the following informal formulation
given:

“Imagine a large room containing N cubicles and a raised platform.
One person (voter) sits in each cubicle and a Referee stands on the plat-
form. The Referee conducts a series of voting rounds as follows. On each
round the voter’s vote “Yes” or “No” (the issue is unimportant) simulta-
neously and independently (they do not see each other) and the Referee
counts the fraction, A, of “Yes” votes. The Referee has a unimodal perfor-
mance criterion G(1), which is optimized when the fraction of “Yes” votes
is exactly Ax. The current voting round ends with the Referee awarding a
dollar with probability G(») and assessing a dollar with probability 1 —
G(») to every voter independently. On the basis of their individual gains
and losses, the voters then decide, again independently, how to cast their
votes in the next round.”

Each player plays exclusively in a greedy manner, voting each
round that seems to give the player the best payoff. This is some-
what unexpected. Greed unpredictably affects outcomes: the
player does not attempt to predict the behavior of other players.
Instead, each player performs by trial and error and only pref-
erentially repeats those actions that produce the best result for
that player. The GG has several characteristics, which are listed
below (Granmo et al., 2012):

1. The game is a nonzero-sum game.

2. Unlike the games traditionally studied in the AI literature
(Chess, Checkers, etc.) GG is inherently a distributed game.

3. The players of the game are ignorant of all of the game’s pa-
rameters. All they know is that they have to make a choice,
for which they are either rewarded or penalized. They have
no clue how many other players there are, how they are play-
ing, or how/why they are rewarded/ penalized.

4. After measuring their performance as a whole, the stochas-
tic function used to reward or penalize the players can be
completely arbitrary, as long as it is unimodal.

5. The game can achieve a globally optimal state with N-players
without explicitly dictating each player’s action. The players
self-organize and self-optimize based on the reward function.

For more clarity, the operation of GG is presented in Fig. 1.
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Figure 1: The operation of the original GG.

Several models of GG are reported in the literature. In the fol- They proved a correspondence between stable stationary points
lowing, a brief survey related to different forms of the GG model of the algorithm and the Nash equilibria of the game. They have
presented by scholars is provided. The analysis of GG in which also proposed a parallel algorithm comprising a module of LAs

each player uses Lg is studied in Thathachar and Arvind (1997). for each player’s aim to improve the acceleration performance.
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Tung and Kleinrock (1996) have investigated the GG as a coordi-
nator among a group of mobile robots in the presence of restric-
tion ability to communicate. In this application, the GG is used
to make sure that the mobile robots choose their action to maxi-
mize the throughput of the overall collection and sorting system.
Recently, GG has found crucial application in the context of QoS
support in wireless sensor networks. Iyer and Kleinrock (2003)
modeled the QoS of sensor networks as the optimum number
of sensors that are required to send information to a base sta-
tion (or sink node) at any given time. The mentioned problem
was solved using this model by modeling it as a GG. A sensor is
considered a voter that chooses between transmitting data or re-
maining idle to preserve energy from GG modeling. Thus, each
sensor exerts a GG player’s role that either votes “On” or “Off”
and acts accordingly.

On the other hand, the base station is considered the GG Ref-
eree with a unimodal performance function G, whose maximum
is found at Q normalized by the total number of sensors avail-
able. In Oommen et al. (2006), the authors studied the verifica-
tion of arbitrarily accurate solutions to the GG experimentally.
They have shown that unbounded accuracy for the GG is ob-
tained by utilizing no more than three stochastic learning ma-
chines and a recursive pruning of the solution space. Omen et
al. (2007) have shown how an unbounded accuracy for the GG is
achieved by employing at most a constant number of LAs and
recursively pruning the solution space to guarantee the solu-
tion to the game with a probability as close to unity as desired.
A modification of GG called Gureen game is proposed by Ayers
and Liang (2011), and it is applied in the problem of energy-
efficient QoS control in WSNs. The Gureen game extends GG
and adds new concepts such as player rotation, proactive ref-
eree, and unambiguous award/punishment. In player rotation,
each player can suspend a game without leaving it. In a proac-
tive referee, the referee can take predictive correction action by
updating reward probability without delay and finally in unam-
biguous award/punishment, which exerts an extra bit to reward.
Granmo et al. (2012) studied the accuracy of the GG solution in
the presence of a finite number of players. They have shown
how to achieve the unbounded accuracy of the GG by utilizing
no more than three stochastic learning mechanisms and using
recursive pruning of the solution space to guarantee the solution
to the game with a probability as close to unity as desired.

Moreover, Granmo and Glimsdal (2013) propose decentral-
ized decision making based on the GG in which each decision
maker uses inherently Bayesian LAs. Furthermore, they have
provided theoretical results on the variance of the random re-
wards experienced by each decision maker. Their results show
the acceleration of learning in applying the bandit problem.
Semprebom et al. (2013) proposed a communication approach
based on GG called (M, k)Gur game. The (M, k)Gur game main-
tains QoS parameters as determined by the application and pre-
serves the spatial coverage of the network. Elshahed et al. (2014)
investigated the limitation of the nodes in handling many mes-
sages simultaneously by the sink node as the GG in WSN. They
considered some nodes that coordinate to minimize the num-
ber of dropped messages. Besides, defining some nodes to send
to the sink node at a particular time makes it possible for the
other nodes to sleep. Li et al. (2016) considered a new framework
based on the GG for dealing with the QoS control framework in
WSN application. In this framework, the optimum number of
the sensor is not determined in advance but learned by inter-
acting with upper level applications in a reinforcement man-
ner. Moreover, an algorithm named Estimator GG is devised
to effectively improve the number of active sensors. Table 1

classified and summarized the works that used GG and their
finding.

In this section, the LAs and their learning algorithms are ex-
plained briefly. The learning process of an LA is described as
follows. The LA randomly selects an action from its action set
and then performs it on the environment. The environment then
evaluates the chosen action and responds to the LA with a re-
inforcement signal (reward or penalty). According to the rein-
forcement signal of the environment to the selected action, the
LA updates its action probability vector, and then the learning
process is repeated. The updating algorithm for the action prob-
ability vector is called the learning algorithm. The learning algo-
rithm of the LA aims to find an appropriate action from the set
of actions so that the average reward received from the environ-
ment is maximized.

The LAs can be represented by quadruple (A.B.J.P(k)), where
A={og..... o} is a finite set of actions, B is the set of all possible
inputs or reinforcements to the automation, 7 is the learning
algorithm for updating action probabilities, and P (k) is the action
probability vector at instance k. The learning algorithm refers
to a recurrence relation used to modify the action probability
vector.

pi(k+1) = pi () +a(l - pi(k)
pj (k+1) = p; (k) —ap; (R)Vj #1 (1)

pi(k+1) =(1-b)pi (k)

pj(R+1) +(1-b)piRVj#i )

“ro1

Let o; denote the action chosen by a learning automaton, at
instance k from distribution P (k). In a linear learning algorithm,
the equation for updating probability vector P (k) is determined
by equation (1) for a favorable response (8 = 1) and an unfa-
vorable response (8 = 0). The probability of getting an unfavor-
able response by action «; is denoted by ¢; = Pr[8 = O|«;]. Note
that the probability of getting the unfavorable response or fa-
vorable response is unknown for the LA. Let a denote the re-
ward parameter, which determines the amount increase of the
action probability vector, and consider b is the penalty param-
eter determining the amount the decrease of the action prob-
ability values. If a = b, the recursion equations (1) and (2) are
called linear reward penalty (Lz_»p);if a >> b, the recursion equa-
tion is called linear reward-¢ penalty (Lr_.p); and finally, if b = 0,
they are called linear reward inaction (Lg_;) algorithm. In Lz_;.
The action probability vectors remain unchanged when the en-
vironment penalizes the action. The relationship between the
LA and its random environment is illustrated in Fig. 2. Learning
has been used as an optimization tool in complex and dynamic
environments where a large amount of uncertainty or lackingin-
formation about the environment exists. In addition to stochas-
tic LAs for solving the learning problems, other learning models
such as gradient descent learning algorithms (Basha et al., 2018),
log-linear learning algorithms (Marden & Shamma, 2012), and
Q-learning (Melo, 2001, Watkins & Dayan, 1992) have been intro-
duced. Gradient descent learning algorithm is a type of learning
algorithm used in first-order iterative optimization algorithms
for finding a local minimum of differentiable functions in the
process of learning mechanisms. This learning algorithm works
iteratively and moves in the opposite direction of the gradient or
approximate gradient of the function at the current point. The
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Figure 2: The communication between the LAs and random environment.

algorithm moves toward the direction of the steepest descent
(Basha et al., 2018).

Log-linear learning (Blume, 1993) is one learning dynam-
ics algorithm that includes equilibrium selection. In potential
games, log-linear learning guarantees that only the joint ac-
tion profiles that maximize the potential function are stochas-
tically stable. In log-linear learning algorithm, the aid of noise
improves the algorithm’s performance for the decision-making
process. Moreover, the noise allows players to make mistakes,
where mistakes correspond to the selection of suboptimal ac-
tions irregularly. The noise structure in log-linear learning algo-
rithm is that the probability of selecting a suboptimal action is
connected with the magnitude of the payoff difference associ-
ated with the best response and the suboptimal action. As the
noise vanishes, the probability that a player selects a subopti-
mal action goes to zero (Marden & Shamma, 2012). Q-learning
(Watkins & Dayan, 1992) is a model-free reinforcement learn-
ing algorithm that learns the value of an action in a partic-
ular state. This model is categorized into model-free learning
due to no need for the environment, and it can handle prob-
lems with stochastic transitions and rewards without requiring
adaptations. The goal of using Q-learning is to benefit from the
advantage of reinforcement learning to find an optimal strat-
egy for maximizing the expected value of the total reward over
any successive steps based on the finite Markov decision pro-
cess (FMDP; Melo, 2001). Q-learning can appropriately identify
an optimal action-selection strategy for any FMDBP, given infi-
nite exploration time and a partly-random policy (Xiong et al.,
2020). LAs have been studied widely in social network applica-
tions in recent years. In Khomami et al. (2018b), a cellular LA-
based algorithm for finding communities in the social network
has been investigated. With the aid of cellular LAs, the algo-
rithm constructed a partial spanning tree to detect communities
and overcome the network size. Moreover, Khomami et al. (2016)
studied a distributed learning automaton-based algorithm for
finding communities in deterministic graphs. According to this
algorithm, a set of LAs cooperates to determine high-density lo-
cal communities by updating the action probability vector of a
cooperative network of LAs. The modified version of this algo-
rithm for finding communities has also been devised by Gham-
gosar et al. (2017), utilizing extended distributed LAs. Khomami
et al. (2018a) proposed an LA-based algorithm to determine the
minimum positive influence dominating set and studied the in-
fluence maximization problem for finding influential nodes. A
path selection algorithm based on LAs for trust propagation has
been proposed (Rezvanian et al., 2019). This algorithm applies
the LAs to detect reliable trust paths between users and pre-
dict the trust value between two indirectly connected users.
Ghavipour and Meybodi (2016) proposed a continuous action-
set learning automaton (CALA)-based method to adjust mem-
bership functions of fuzzy trust and distrust lifetime of the rec-

ommender system. In this algorithm, with the aid of CALA to
the center parameter of each triangular membership function,
the algorithm tries to optimize the number and position of fuzzy
sets. A new sampling algorithm based on distributed LAs has
been proposed for sampling from complex networks. In this al-
gorithm, a set of distributed LAs cooperate to take the appro-
priate sample from the network (Rezvanian et al., 2014). In Rez-
vanian and Meybodi (2016), a stochastic graph as a model for
social network analysis is introduced and redefined some net-
work measures in the context of the stochastic graphs. Based
on the new concept of the stochastic graph and computing the
network measure, several LA-based algorithms are proposed for
calculating these measures under the situation that the prob-
ability distribution functions are unknown. A novel algorithm
based on LAs for link prediction in weighted social networks is
proposed in Moradabadi and Meybodi (2018). By taking advan-
tage of LAs, the weight of each link directly from the weight
information in the network is estimated. A new link prediction
method based on temporal similarity metrics and CALA is pro-
posed in Moradabadi and Meybodi (2016). The CALA uses differ-
ent similarity metrics and different periods to try to model the
link prediction problem as a noisy optimization problem and ap-
ply a team of CALAs to solve the noisy optimization problem.
LAs as models have been successfully applied to a wide variety
of applications such as graph problem (Beigy & Meybodi, 2002),
Petri net (Vahidipour et al., 2017), image processing (Anari et al.,
2017), internet of things (Wheeldon et al., 2020), cloud computing
(Rahmanian et al., 2018), wireless sensor networks (Torkestani
& Meybodi, 2010), p2p networks (Saghiri & Meybodi, 2018), and
complex networks (Rezvanian & Meybodi, 2015b).

When the GG was first investigated, Tsetlin utilized his so-called
Tsetlin automaton to solve it. Later, more research was done in
the LA area, and many families of LA proved to solve the GG effi-
ciently. For example, Thathachar and Arvind (1997) proposed the
solution to the GG using variable structure learning automata
(VSLAs). Each player is represented by an LA with its actions cor-
responding to the player’s strategies. Each LA uses the Lg.; learn-
ing algorithm for updating its action probabilities. This scheme
is based on the principle that whenever the automaton receives
a favorable response (i.e. a reward) from the environment, the
action probabilities are updated, whereas if the automaton re-
ceives an unfavorable response (i.e. a penalty) from the environ-
ment, the action probabilities remain unchanged. We define R(k)
to indicate the total number of players who cast “Yes” vote at the
round k as defined by equation (3):

R (k) = ZI {ei (k) = @in} . ()

where I is the indicator function. The referee R(k) (environ-
ment) counts the number of players who select the first action,
“casting Yes vote” at round k, to compute the performance func-
tion and generate reinforcement signal (k) € [0, 1]. The goal of
the players is to maximize E[B(k)] by choosing the appropriate
number of first actions collectively.

E[8(R) IR (R)] = G (R (k) /N), ()

where N is the number of LAs participating in the game.

At each round k of the GG with LA, each player i chooses
one of its actions corresponds to «;(k) from two possible ac-
tions «;1 and «i, as a sample realization of its action probability
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vector pi(k) = [pi1(k), pi2(k)]. Then, the referee counts the frac-
tion of the first action that corresponds to «;; based on equation
(5) and computes the performance criteria G based on equation
(6) to generate reinforcement signal. Then, the Lg; algorithm
based on whether the chosen action is rewarded or penalized
by the referee updates its action probabilities as described be-
low (Thathachar & Arvind, 1997). If playeri chooses action «;j; at
round k and receives reward, then the action probability vector
pi(k) = [pi1(k), pi2(k)] is updated as follows:

pi1 (R+1) = pi1 (R) + 4 (1 — pi1 (k)
pi2 (R+1) = piz (R) — 2 pi2 (k) (5)

where A (0 < & < 1) is the learning parameter. Figure 3 (a, b, c,
d, e, and f) shows the operations of a GG with N players taking
place in each round.

In some applications, such as the maximum clique problem,
distributed computing like CGG based algorithm may be appro-
priate for finding solutions due to the hardness and existence of
local information. In this context, using GG in a distributed man-
ner may be proper to find the maximum clique. One of the inter-
esting key applications of the clique is the definition of commu-
nity, which provides the most intuitive way. Hence, in the next
section, CGG is introduced, and then an algorithm-based CGG
for finding a maximum clique is provided. We point out that the
paper is the first research attempt introducing CGG and its ap-
plication for finding a maximum clique in the networks.

The CGG, introduced in Khomami and Meybodi (2020), may be
used as a model for systems consisting of simple identical com-
ponents with local interactions to optimize one or more crite-
ria. CGG is suitable for modeling systems described as massive
collections of simple objects interacting locally. It is called cellu-
lar because it is made up of cells like points in a structure. The
CGG is a network of GGs in which at any time, every node in the
network (or every node in a subset of the nodes in the network)
plays the rule of referees, each of which participates in a GG with
its neighboring players (voters). Like in GG, each player indepen-
dently selects its optimal action between two available actions
based on their gains and losses received from its adjacent ref-
eree. Players in CGG know nothing about how other players are
playing or even how/why they are rewarded/penalized.

In CGG, each node simultaneously can play the role of a
player and a referee. When a cell plays the role of a referee,
the cells adjacent to this referee play the role of voters. In each
round of CGG, all the nodes (as referees) synchronously or asyn-
chronously play a GG with its neighboring cells (as voters). A
voter may participate in more than one GG simultaneously. As in
GG, each referee i has a unimodal performance criterion G; (i), which
is optimized when the fraction of neighboring players that cast “Yes”
votes is exactly A7. On each round of CGG, the players vote “Yes”
or “No” simultaneously and independently (they do not see each
other), and the referees count the fraction, %;, of “Yes” votes for
adjacent player cells. The current voting round ends after each
referee rewards its players with probability Gi(1) and penalizes
with probability 1 — G; () simultaneously and independently. A
player in CGG is rewarded or penalized by one of its neighboring ref-
erees selected randomly or according to some other policy. Based on
the rewards received from its adjacent referee, each player then inde-
pendently decides how to cast its vote for the next round. The
procedure of CGG also is described step by step in Fig. 3, with a
simple example.

In CGG with LA, each player is modeled by a learning au-
tomaton with two actions and uses the Lz learning algorithm
to update its action probability vector. At round k of the game,
player ichooses its action «; (k) from two available actions «j; and
@iz according to its action probability vector p;(k) = [pi1(k). pi2(R)]-
Then, based on the average value of performance criterion of
the corresponding neighboring referees (or according to some
other policy depending on application), each of the LAs gener-
ates a random number independently to reward or penalize the
selected action according to the learning algorithm. According to
the average value of performance criteria, if the selected action
by each of the LAs is the first action, and the random number is
less than the value of performance criteria, then the first action
of each of the LAs is rewarded. Similarly, if the selected action is
the second one and the random number is less than the value of
performance criteria, then the second actions by each of the LAs
are rewarded. The goal of CGG is to maximize the total perfor-
mance criterion, i.e. the sum of G}s, where G; is the performance
criterion for node i. A CGG with LAs can be formally defined as
follows:

Definition 1. A CGG with LA can be defined by five-tuple CGG =
(N, P, R, A, G), where

I. N = (V, E) is an undirected network that determines the
structure of CGG, where V = {cell;.cell,..... cell,} is the set
of vertices with n = |V| that can be either players or referees
or both, and E is the set of edges.

II. Pis asubset of V playing the role of players.

III. Risasubsetof Vplaying the role of referees (the intersection
of sets P and R may or may not be empty).

IV. A=(LA1,LAy,...LAy)isasetof LAs, where LA; is thelearning
automaton residing in cell;.

V. G = (G4, Gy, ...Gy) is a set of unimodal performance criteria
for the referees, where G; is the performance criterion for
cell;.

The aim of CGG is to maximize the total performance crite-
rion, i.e. the sum of G}s, where G; is the performance criterion
for referee i.

CGG can be either synchronous or asynchronous. In syn-
chronous CGG, in each round of CGG, all the nodes in CGG are
considered referees, and each referee starts playing a GG with
its neighboring nodes as players. In asynchronous CGG, at each
round, only some of the nodes are considered as referees, and
play a GG with its neighboring nodes as players. In asynchronous
CGG, the nodes as referees may play in either a time-driven
or step-driven manner. In time-driven asynchronous CGG, each
cell is assumed to have an internal clock that activates a cell
as a referee, while in step-driven, a cell is activated as a ref-
eree in a fixed or random sequence. In asynchronous CGG, the
order by which the cells are activated depends on the appli-
cation for which CGG is designed. Also, CGG can be either ho-
mogeneous or inhomogeneous depending on whether the ref-
erees’ performance criterion function is identical or not. The
performance criterion function for referees may differ depend-
ing on the specific application it is applied for. We call a CGG
that is synchronous, homogeneous, and P = R = V a basic CGG.
Figure 4 shows the pseudo-code for the operation of a standard
CGG, which uses LAs as the learning paradigm.

The performance of CGG may be evaluated using the entropy,
which is defined for CGG as below.
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node simultaneously plays the role of a player and a performance criterion, conduct a series of voting rounds.
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Figure 3: Operations of CGG in each round.
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Inputs

E // the set of edges
P // the set of player cells
R // the set of referee cells

K // the maximum number of iterations
Tumin// the entropy threshold

Notations:
t // the iteration counter

Begin Algorithm
Sett=0
while t< K or P< T ,;, do
For each cell;in V do

cell; send o;(k) to adjacent referees;
End For
For each celljin R do

independently;
End For
For each cell;in P do

End For
//Calculate LAs Information Entropy

Sett=t+1;
end while
End Algorithm

N =(V, E) // an undirected network that determines the structure of CGG
V= {celly, cell,, ..., cell,} // the set of vertices

LA // a set of learning automata where LA, is the leaning automaton residing in cell;
G // a set of unimodal performance criteria for the referees

Output: The estimate of 1™ corresponding to find maximum clique size.

P// the average entropy of learning automatons that belong to LA

LA chooses one of its action a;(k) from two available actions a,;(“YES”) and a,(“NO”)
according to its action probability vector p;(k) = (p1(k), p2(k));

cellj count the fraction, 4, of “Yes” votes for neighboring player nodes;
cellj rewards a dollar with probability G(A;) to every adjacent player cell

cell; calculate its reward through its neighbor referees;
LA, updates its action probability vector based on its reward in this round,;

Set P = Calculate the average entropy of all LAs in the player cells;

Figure 4: The pseudo-code of a basic synchronous CGG with LAs.

Entropy: The entropy of the CGG at iteration k is defined
by equation (6) given below:

HE=-Y H®. ©

where H;(k) is the entropy of learning automaton LA;, defined
by equation (7) given below:

2
Hi(]) =) pij (k) log, (pij (K) - )
j=1

pij(t) indicates the probability of selecting action «; of learning
automaton LA; at instance k. The value of H(k) may be used to
study the changes that occur in the states of the cells of CGG.
The value of zero for H(t) means that the LAs of the cells of the
CGG no longer change their action. Higher values of H(t) mean
higher rates of changes in the actions selected by LAs resid-
ing in the cells of the CGG (Vamvakas et al., 2019; Narendra and
Thathachar, 2012).

Let G = (V. E) be a connected and undirected network, where
V is the set of nodes, and E € V x V denotes the edges. A sub-

set of nodes C € V of a graph G induces a clique if every pair of
vertices of C is connected by an edge in (VYu, v € C, (u, v) € E).
A clique C of G is a maximum clique if its size is the largest
among all cliques of G. The clique problem is applied in many
domains of science (Mei et al., 2017; Liu et al., 2018; Su & Kurths,
2018; Wang et al., 2018; Zhuang et al., 2018). A significant gen-
eralization of the MC problem specified for the weighted graph
is the maximum weight clique (MWC) problem, which implies
finding a clique with the largest total weight. MC and MWC
problems are both known to be NP hard, and many approxima-
tion algorithms have been proposed in the literature to solve
them. In addition, these problems are applied in many popu-
lar domains. For example, the MCor MWC of users in online so-
cial networks shows a highly coherent collection of users as a
community structure. Many researchers have focused on find-
ing a maximum clique in a deterministic graph in the litera-
ture. Motzkin and Straus (1965) investigated MC problem by min-
imizing a quadratic form over the standard simplex by solv-
ing the MWC problem as a classic quadratic optimization prob-
lem. A framework for the MWC problem is introduced by linear
complementary benefits a quadratic programming formulation,
which is generalized the pivoting-based heuristic and uses the
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continuous formulation to find MWC (Massaro et al., 2002). Ba-
bel and Tinhofer (1990) proposed a branch and bound strategy,
which used upper and lower bounds according to coloring the
weight of the graph. Also, Carmo and Ziige (2012) compared
and implemented eight different branch and bound algorithms
for MC under a unifying framework. Since the maximum clique
problem is an NP-hard problem, finding a clique of size k known
as k-clique is NP complete (Rahmanian et al., 2018) and ap-
plied in many popular domains (Karp, 1972). Many scholars have
proposed approximation and heuristic approaches for finding
a maximum clique. However, this exact algorithm has not run
in polynomial time (Singh & Pandey, 2015). Balas and Niehaus
(1998) presented a genetic algorithm with optimized crossover
for the MC, and Brunato and Battiti (2011) recommended an evo-
lutionary algorithm with guided mutation and a novel reactive
and evolutionary algorithm (R-EVO) to solve the MC problem.
Geng et al. (2007) have performed a simple simulated anneal-
ing algorithm and evaluated it on DIMACS maximum clique in-
stances. Wu and Hao (2013) proposed a multistart tabu search
algorithm that integrates a constrained neighborhood, dynamic
tabu tenure mechanism, and long-term memory restart strategy.
A novel immune genetic algorithm based on the clonal selection
strategy and uniform design sampling to solve the MC problem
is suggested by Zhou et al. in Zhou et al. (2012). A different direc-
tion for devising heuristic algorithms for MC problem focused on
the benefit of combining a local search procedure within a typi-
cal algorithm to improve the solution’s quality. Battini and Pro-
tasi (2001) proposed a reactive local search procedure. Katayama
et al. (2005) suggested a variable depth search-based strategy
that adaptively moves in the feasible search space. Benlic and
Hao (2013) performed a local breakout search (BLS) without any
particular adaptation for finding MC problem. BLS’s basic idea is
to apply local search to explore local optima and use adaptive
diversity strategies to travel between local optima in the search
space. Soleimani-Pouri et al. (2012) proposed an ACO-based al-
gorithm for solving the maximum clique problem for the de-
terministic graph and its application to social networks. In the
proposed algorithm, local search is guided by particle swarm
optimization. Pullan et al. (2011) proposed a combination of lo-
cal search as a parallelized hyper-heuristic for MC problem and
represented an application to desktop multicore machines. Rez-
vanian and Meybodi (2015a) have proposed four different LA-
based algorithms for MC in stochastic graphs, and the algo-
rithms are evaluated on DIMCS datasets. Blum et al. (2020) have
transformed the MC problem for finding the longest common
subsequence. In addition, they used the heuristic approach to
reduce the size of the resulting graphs to find the solution. Ta-
ble 2 summarizes the research work algorithms and their char-
acteristics related to the maximum clique.

This section presents a CGG with an LA-based algorithm called
CGG-Clique to find a maximum clique in an undirected network.
The proposed algorithm tries to find a clique with maximum car-
dinality. The algorithm is fully distributed since all decisions are
made locally. Let G = (V.E) be the input undirected and un-
weighted networks in which V = {cell;.cell,..... cell,} is the
set of nodes or cells and E ={ej.e,..... em} €V xV is the set
of edges. We first briefly describe the CGG-Clique algorithm. In
CGG, each node that we call a cell from now on is equipped with
a learning automaton with two actions «; and «, correspond-
ing to “Yes” action (is a node for candidate clique) and “No” ac-

tion (is not a node for candidate clique) as described in GG, re-
spectively. Moreover, each cell has a unimodal objective function
used by the referee to compute the fraction of players that select
the “Yes” action to the total number of nodes participating in a
clique. In each round, every cell in the network as a referee si-
multaneously and independently plays GG with its neighboring
cells (as players) to find a clique with maximum cardinality. For
this goal, each learning automaton residing in each cell chooses
one of its actions according to its action probability vector. Then,
each referee takes the selected actions by the adjacent players
and computes the performance criteria residing in to generate a
reinforcement signal. We note that the performance function is
a unimodal function and the adjacent player for each referee is
a player that is directly connected. Based on the reinforcement
signal that each referee generates, each LA generates a random
number independently to update the action probability vectors.
According to the reward and penalization, each LA casts their ac-
tion selection in the next round. We note that, since each player
may contribute in several GGs for finding maximum clique and
generating different reinforcement signals by the adjacent ref-
erees, several strategies can be considered for updating the se-
lected actions. Moreover, the CGG-Clique algorithm for finding
the maximum clique is the basic CGG in which P = V =R as the
number of players, referees, and nodes are equal.

The operation of the CGG-Clique can be described as the fol-
lowing steps: The initialize consist, a CGG-Clique structure is
created, which is isomorphic to the input network. To construct
such CGG-Clique, each LA is mapped to each cell with two ac-
tions. Let LA; be a learning automaton residing in cell; with
two actions ay; (“YES”) and «jp (“NO”). Moreover, p;(k) = [pi1(k),
pi2(R)] is the action probability vector of LA; with an initial value
pi1 (k) = pi2 (k) = 0.5.In addition, there exists a referee function
in each cell of the CGG-Clique. Let (k) be the number of adja-
cent players to cell; selects action «;;. This function counts the
action «j1 by the neighboring players at round k and is defined
by equation (8):

d(vi)+1

M) = Y HHai(R) =ain}. ®)
i=1

where d(v;) is the degree of node i and I is the indicator function.

We point out that, since each cell; is associated with node v,

hereafter (in some cases) node v; may be referred to as cell; and

vice versa. Let ¢;(k) be the candidate clique at round k that is

obtained by equation (9):

% (R)

“ 0= da+ 1

©)
Then, the expected value of E[;(k)|0i(k)] is denoted by equation
(10):

E 15 010 01 = 6 (g ). (10

where G() at round k is defined by equation (11):
G (6 (k) =03+ 0.7e0-002(|6; ®)] 1671 ’ »

where |6; (k)| is the cardinality of candidate clique found by ref-
eree i at round k and |6*| is the cardinality of maximum clique
in the entire network. We note that G is the unimodal perfor-
mance function and optimized when the fraction of “Yes” votes
is exactly equal to |6*|. Figure 5 illustrates an example of the per-
formance function G(.) when |6*| is equal to 25.

After initialization is done, at each round k, each LA; simul-
taneously and independently selects one of its actions. Then,
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Figure 5: Reward probability function G(.) with 70 nodes and [6*| = 25.

each cell; computes the number of adjacent LAs that choose
the first action based on equation (8) and determines whether
the chosen actions form a clique or not. If the selected actions
by adjacent LAs form a candidate clique 6;(k), then the referee
uses equation (10) to compute G[6;(k)] and generate reinforce-
ment signal. Otherwise, each player selects their actions inde-
pendently to obtain a candidate clique in the next round. Af-
ter G[6;(k)] computation by the referees, each referee generates
areinforcement signal. Let B; be the reinforcement signal that is
generated by referee i. Then, each player that is adjacent to ref-
eree i updates its action probability vector independently based
on Ly_; reinforcement scheme. Since each player may partici-
pate in different games to find maximum clique, different val-
ues of g may be generated by other adjacent referees of each
cell;. However, to update the internal state of LAs, different or-
ders may be considered. In the basic CGG-Clique, each learn-
ing automaton randomly selects a reinforcement signal value g;
and updates its internal state. According to the value of G[#;(k)],
each LA; generates a random number independently. If the se-
lected action by a player is equal to «j; and the random number
is less than the value of the performance function G[6;(k)], then
the probability of the action pi;(k) for each adjacent LA; is up-
dated based on equation (12):

pir (R+1) = pia (k) + 2 (1 — pir (R)
pi2 (R+1) = piz (k) — 2piz (k) (12)

where 1 is the learning rate. On the other hand, if the selected
action by each player is equal to &, and the random number is
less than the value of the performance function G[6;(k)], then the
probability of the action pi»(k) for each adjacent LA; is updated
based on equation (13):

pi2 (R+1) = pia (k) + 2 (1 — pi2 (R)
pir (R+1) = pi1 (R) — Apix (R). (13)

For all the learning automaton, two criteria may be used for
stopping the CGG-Clique algorithm: either the algorithm termi-
nates after a predefined number of iterations Kmax or the value

of entropy reaches a predefined value. The definition of entropy
is provided below:

E(p)=-) pilogp, (14)
ieP
where p; is the probability of choosing action ;. The pseudo-
code of the CGG-Clique algorithm is given in Fig. 6.

Note 1.1: In the CGG-Clique algorithm, a penalizing parame-
ter is assumed so that when an action is penalized, the action
probability vector for each of the LAs is updated based on equa-
tions (12) and (13). However, in our experiments the Lg_; learn-
ing scheme is used in which the penalizing parameter is as-
sumed to be equal to zero; hence, the action probability vectors
are rewarded or the probabilities remain unchanged.

Note 1.2: The performance function used in CGG-based algo-
rithm is unimodal. However, in many applications finding the
unimodal performance function is a challenging task, and the
objective is multimodal. Our solution to tackle the mentioned
problem is using Z-score transformation to transform the mul-
timodal performance function into unimodal performance. The
Z-score is denoted by equation (15).

Z-score = X_—M, (15)
[

where p is the mean of the population and o is the standard
deviation of the population.

Note 1.3: In CGG-Clique, due to ¢* is not known in advance by
the performance function G(.), therefore, we estimate the size
of a maximum clique with the aid of the upper bound of de-
gree. An upper bound for the estimation of the size of the clique
with maximum cardinality is using the maximum degree of the
graph, due to the size of the maximum clique being at most
equal to the maximum degree denoted by 4. Hence, equation
(11) can be transformed by equation (16):

~1\2

G [6: (§)] = 0.3 + 0.7¢~ 0221 ®I-[7])" (16)

where [9] is the upper bound for the size of maximum clique in
the networks.
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Cellular Goore Game-Based Algorithm for Solving Maximum Clique Problem

Inputs: The graph N = (V, E), Threshold 7,,;, , Kyax
Output: The maximum Clique
Initialization

Create CGG isomorphic to the graph N by associating with a cell in each node and then assigning a Player/LA in each

cell.

Let a(k) = {ai(k).....a,(k)} denotes the action set in which o;(k) consist of two actions o;; and oy, for LA; in cell v;
1

Let pitk) = (pu(k), pi2(k)) be the action probability vector of LA; in cell v; and initialized to 3 .
Let rnd;(k) be the random number generated by player; at round k.

Beginning algorithm

Let k be the iteration number of the algorithm and initially set to 1
Let E(p) be the entropy value for the referee in cell v; and initially set to the maximum value

while k< K,,..x or P< T,,;, do
For each cell;in V do in parallel

LA; chooses one of its action o;(k) from two actions o;(“YES”) and o,(“NO”) according to its action probability

vector pi(k) = (pu(k), pia(k));
End For
For each cell;in R, do in parallel

cellj count the fraction of “Yes” corresponding to selecting candidate clique for neighboring player nodes;

If the number of “Yes” votes forms a clique, then

Compute the cardinality of the clique based on equation (8)

generate reinforcement signal based on equation (10)

End IF
End For

For each cell;in P do in parallel

Let G(0;(k)) be the reward probability at round k computed by the randomly selected referee.

If (rndi(k)) < G(6;(k))) and selected action is equal to a;; then
LA, updates its action probability vector based on equation (12);

End IF

1f (rnd;(k)) < G(6;(k))) and selected action is equal to o, then
LA, updates its action probability vector based on equation (13);

End IF
End For
//Calculate LAs Information Entropy

Set P = Calculate the average entropy of all LAs in the player cells;

Setk=k+1;
end while
End

Figure 6: Pseudo code for the CGG-Clique algorithm.

This section provides the time complexity analysis of the CGG-
based algorithm for finding a maximum clique. To compute the
running time of the CGG-Clique algorithm, we present an es-
timation for the upper bound (lemma 1) and a lower bound
(lemma 2) based on the number of iterations of the proposed
CGG-Clique for finding ;1 optimal local clique in the neighbor-
hood of each cell. Then, we prove that the time required for
finding ;& optimal clique is confident between two estimated
bounds, and the running time of the CGG-Clique depends on the
required number of iterations for finding the maximum clique is
proportional with the maximum degree.

Theorem 1: Let |¢;| define the cardinality of the optimal clique of
cell; (C) and the action probability of LA; (P;) is an update based
on the CGG-Clique algorithm. Therefore, the time required for

finding a ;1 |67| size is equal to

w(diirl)5ﬂ(k)5¢<di11(1*/\)’"“1>, 17)

where

2 e
v (x)= 1+x—di'10g1"di(1—x)’

(18)

where ¢¢(0.1) is the error rate of the CGG-Clique algorithm, 2 is
the learning rate of the algorithm, M; is the number of candidate
clique which forms clique, and d; is the degree of node v;.

Proof: Let 6* = {C{, C2, ...
1

cliques, which is formed by node v; and its neighboring cells,

where M; is the number of local cliques. Let 6} = max6* be

s CiM‘} denote the set of all possible

the maximum size of clique found by cell;. Before providinlg the
proof of the theorem, the two following lemmas would be prodf]
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Lemma 1. If p; is updated according to the proposed CGG-Clique
algorithm, the time required for finding a - |6;| local clique in
the worse case is

&
1+x— logl xd ( ) (19)

where x > pr(1— A)M-1,

Proof: The goal of lemma 1 is to compute the worst-case run-
ning time of the CGG-Clique algorithm. The worst case for each
cell; occurs when all candidate cliques (smaller than maximum)
are selected before the optimal clique c}. In this situation, the
learning algorithm can be divided into two distinct stages, in-
cluding decreasing and increasing stages. In decreasing stage,
for each cell;, all candidate cliques from largest one to smallest
one are selected by LAs before ¢} for all cells. Therefore, in the
worst case, referee generates a reinforcement signal and is re-
warded. In addition, the probability of finding optimal clique by
cell; at the end of the decreasing phase is calculated by equation
(19):

pi(Mi—1) = pf (Mi —2)(1-2), (20)

where M; is the number of a possible clique that is formed by the
neighboring cell C; and 4 is the learning rate of CGG-Clique and
pf(M; — 1) indicates the probability with which cell; is formed the
optimal clique 6; at the end of the decreasing phase.” By repeat-
edly substituting the recursion function pj(.) on the right-hand
side of inequality (20), we achieve

pi (M — 1) = pr(1— )"~

where p; denotes the initial probability of finding clique by cell
C; with its optimal clique (p}). To continue of the prove in above
equation and for simplicity in notation, pi(M; — 1) is replaced by
q; -

The second phase, which is called the increasing stage, is be-
ing started when the optimal clique 6; for each cell is selected
based on the CGG-Clique algorithm for the first time. During the
increasing stage, the probability of penalizing the optimal clique
is zero for each cell C;. In addition, the reinforcement learning al-
gorithm in which LAs update their internal state is Lz_;. Hence,
the conditional expectation of g; (k) remains unchanged for each
cell, when the other candidate cliques are selected, and the size
of the maximum clique is reached to ¢;. That is, during the in-
creasing stage, the changes in the conditional expectation g (k)
are always nonnegative and computed by

4 (1) = a7 (0) + 2 (1 — g7 (0))
4’ () =a’ () +r(1-a’ (1) =g (1).(1-2)+2

1
s

L]
G k-1=qk-2)+2(1-q' (k-2)=q (k-2).(1-2)+2
4 () =a’ (k=1 +2(1-q'(kR-1)=aq’ (kR=1).(1-2)+2
(21)
where k denotes the number of times that candidate clique 6;
must be selected until the following condition is satisfied:
¥ &

G l=1-7. 22
where 1~ £ = . We note that the increasing phase contin-
ues until the probability of selecting a candidate clique C; ap-
proaches to 1 — £. By substituting the recurrence function q; (k)

and after some simplifications, we have
g’ (k) =g (k—1).(1—2)+4
=g (k=2).(1-2)+2.1-2)+2
= g7 (k=2).(1— ) +
= [qf (k—3).(1—2) +2].(1—2) +
=g (k=2).1-1’+

A(L—2)+2
A(1=2)+2

AL =2+ A=A+

=q¢M)=q Q-+ -02+

4 (0) = q'(1—A +A1 -2+ a1 2+

L@ =2)+ A

After some algebraic simplifications, we have
g (R =a' (1= )+ (14 Q-2+ @+, + (1 —x)“).
(24)

And so
k-1
G () =a (1-A+1) (1-2). (25)
i=0

In equation (25), the second term is calculated as geomet-
) where |1 — 1| < 1. Since the

ric series that sums up to A.(3= - 1 =
learning rate A € (0.1), we have

G (9 = (1 - 1) + 2 (%) (26)
and
a0 = g(L— 1+ 1— (1) @)
Then, from equations (22) and (26), we have

q;(1fx)k+1f(1f/\)"=1f§

and

&
&(1-qf)

Taking log;_; of both sides of the above equation, we derive

(1-nk=

&

k= 10814m . (30)

Since during the increasing stage, g remains unchanged
when the other candidate clique is penalized, k does not show
the number of times the other cliques are chosen and should
be separately calculated based on k. Let g be the probability of
selecting optimal clique 07 at the beginning of the increasing
stage and reaches 1 — £ after kiterations; on the other hand, the
probability of choosing all the other candidate cliques is initially
1 - ¢ and reaches ; after the same number of iterations. Thus,
the number of times the other candidate clique is obtained as

1-gf+ ¢

— .k 31
Tre -t &

Let K denote the total number of iterations needed to satisfy
the condition mentioned in equation (22). From equation (31),
we achieve

2

—_— 32
1+q1 (52
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By substituting from equation (30), we achieve

2 &
K= log, - 33
1+qi*_d% gladi(l_ql') ( )
From inequality (23) and equation (33), we conclude that the
time complexity of CGG-Clique for finding a 7 |opt;| size for lo-
cal clique is less than

2 log &
1+q -5 i (1-q)

(34)
where g* > p#.(1 — 1)1, and therefore the lemma one is proved.
Lemma 2. If p; is an update based on the CGG-Clique algorithm,

the running time for inding a ;% |¢;| local clique in the best case
is greater than

2 &
-lo . 35
rg -3 oa(l-q) 9

Proof: Lemma 2 aims to show the proof of the proposed algo-
rithm in the best case. In CGG-Clique, the best case occurs when
the optimal clique 67 is selected as the first iteration for cell v;. In
this situation, the learning process does not include a decreas-
ing stage, and the increasing stage inclusive the probability of
finding an optimal clique 6} is equal to the initial probability of
pi. Hence, similar to the proof of lemma 1, it is easy to prove that
the minimum number of iterations for finding maximum clique
that is satisfied by equation (22) is

2 lo &
T1q -5 o d1-q)

(36)

where g = p; , which completes the proof of lemma 2.
From inequality (35) and (36), we conclude that

2 e 2 &
1 T:(k 1
Trg - oBeg—q) = "0 = Trg— 5 Bagi—_gq)

(37)

where g > pr.(1—a)™~1. As described in Section 3, the action
set of LAs A; consists of two actions each of initial probability

equal to ;. Hence, the initial probability pf = } and then

o(gog) <T@ =e(goga-0"") o9

where

2 &
¢ (X) = 1+x— di 10g1—a d; (1 — qu)’ (39)

which completes the proof of the theorem.

Theorem 2: The total running time complexity of the CGG-
Clique algorithm for finding a ;1. optima clique for the graph
Gis

o(737) =m0 =o(go70-2") (40)

where d is the graph degree and M is the number of the cliques
of the maximum degree d, and ¢ is computed based on

2 €
=— "1 —. 41
(p(X) 1+X—§ Ogl—)\d(l_x) ( )
Proof: As mentioned in the CGG-Clique algorithm, each cell
plays GG independently to find a maximum clique. Hence, the
maximum number of iterations for the algorithm for finding a

Table 3: Characteristics of the DIMACS test networks.

Networks V| |E| Amnax davg Wiy
Brock200_1 200 15K 165 148 18
Brock400_1 400 60K 320 298 22
Brock400_2 400 60K 328 298 22
Brock400_3 400 60K 322 298 21
Brock800_1 800 208K 560 518 19
P_hat300-3 300 33K 267 222 33
P_hat700-2 700 122K 539 347 22
P_hat1500-1 2000 285K 614 379 11

1= is associated with the node with maximum degree. There-
fore, the maximum running time of the proposed algorithm is
related to the cell with a maximum degree d;. On the other hand,
as proven in lemma 1 and lemma 2, they bounded into an upper
bound and a lower bound. Therefore, we may conclude that for
the CGG-Clique, the required time for finding an optimal clique

1S

v (m) <10 <o (70-0"7). 42)

where ¢ (x) = ﬁ .logl_kﬁ; hence, the proof of theorem 2
is completed.

To show the efficiency of the proposed CGG-Clique algorithm,
we have conducted several computer simulations. The proposed
CGG-Clique algorithm is tested in these experiments on the sub-
set of well-known DIMACS benchmark networks. The DIMACS
is a well-known synthetic graph benchmark devised to compare
the goodness of the algorithms from the different performance
criterion aspects and designed for well-known graph problems
such as Maximum Clique, Maximum Independent Set, Mini-
mum Vertex Cover, and Vertex Coloring. We have gathered a se-
ries of graphs for comparing graph algorithms with each other
(Hasselberg et al., 1993). While our focus has been on assembling
instances for benchmarking graphs related to clique algorithms,
we believe that the suite is proper for related fields. The DIMACS
networks that are used for the experiments and their charac-
teristics are described in Table 3. In this table, |V| indicates the
number of nodes, |E| shows the number of edges, dmax is the
maximum degree of nodes, dayg is the average degree of nodes,
and oyp is the lower bound of the maximum clique in the net-
works.

To evaluate the performance of the proposed CGG-Clique al-
gorithm in comparison with other algorithms, we applied sev-
eral commonly used measures for comparisons. Moreover, the
algorithm is compared with several MCP algorithms including
SBTS (Jin & Hao, 2015), IGFTT (Ordénez-Guillén & Martinez-
Pérez, 2016), GENE (Marchiori, 2002), FGA (Zhang et al., 2014),
MEAMCP (Guo et al., 2019), MAXCLQ (Pullan et al., 2011), BBMCX
C NEW_SORT (Benlic & Hao, 2013), and DLA-Clique (Rezvanian
& Meybodi, 2015a). The descriptions of the algorithms used to
provide comparison are presented in Table 4.

This experiment is conducted to study the behavior of the CGG-
Clique algorithm for finding the solution. For this purpose, we
plot both the average referee value and the entropy value of LAs
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Table 4: Description of the algorithms used for experimental comparisons.

Algorithms

SBTS (Jin & Hao, 2015)

IGFTT (Ordéniez-Guillén & Martinez-Pérez, 2016)
FGA (Zhang et al., 2014)

GENE (Marchiori, 2002)

MEAMCP (Guo et al., 2019)

MAXCLQ (Pullan et al., 2011)
BBMCX C NEW_SORT (Benlic & Hao, 2013)

DLA-Clique (Rezvanian & Meybodi, 2015a)

Description

A heuristic-based algorithm that combines random selection and Tabu
search uses the independent set and Tabu list to optimize the solution.
A heuristic algorithm that works based on k clique encoding and parallel
filtering to find a maximum clique.

An improved GA-based algorithm with the post-processing for finding a
maximum clique.

A hybrid genetic algorithm that is outperformed by many local search
heuristics.

A heuristic Membrane Evolutionary Algorithm (MEA) that uses
membrane operators including selection, division, fusion, and cytolysis
to find a maximum clique.

A new PMAX-SAT-based maximum clique solver that relies on an upper
bound for the partial maximum satisfiability problem.

The algorithm starts initial vertex ordering to enhance approximately
the exact algorithms for finding the maximum clique.

The algorithm takes a sample from edges to find a clique with a
maximum size. We note that the original algorithm is proposed for
stochastic graphs, but we have used the modified version for the binary
graphs.

‘We note that for all experiments present in this paper, the learning scheme that is used for the CGG-based algorithm is Lz_;.

that participate in clique finding. It is necessary to point out that
the average RF value is scaled between (0, 1), using the value of
the average referee’s value divided by the best-obtained value
of the referee’s value. Moreover, the average referee value is the
sum of each independent referee divided by the total number
of referees. The obtained results for different networks are de-
pictedin Fig. 7. The horizontal axis represents the iteration num-
ber, and the vertical axis represents the average RF and entropy
value, respectively. From the result, we may conclude that, as
the algorithm proceeds, each referee takes a candidate clique
and generates a reinforcement signal for the neighborhood’s
LAs. In other words, the clique size increases over time, and
after enough iterations, each referee finds a clique with maxi-
mum cardinality, meaning that the RF converges to the maxi-
mum value. Besides, average RF converges to clique with max-
imum cardinality, indicating that each referee converges to the
maximum referee value. At the same time, the entropy value
gradually reduces and converges to 0. This behavior means that
the algorithm gradually finds the clique with maximum cardi-
nality.

This experiment is conducted using the CGG-Clique algorithm,
with the same algorithm in which the LAs are replaced with the
pure-chance LAs. The actions in the pure-chance automaton are
always selected with equal probabilities, and any learning au-
tomaton must at least do better than a pure-chance automaton.
The comparison is accomplished for the average referee value,
which is scaled between (0, 1) by dividing the maximum referee
value. The obtained result is plotted in Fig. 8 that shows the im-
pact of learning mechanisms in guiding the algorithm for finding
a maximum clique. By using LAs and learning mechanisms, the
average referee value converges to the optimal value, meaning
that the LAs learn how to cast their votes for finding the optimal
solutions. In contrast, LAs are not guided to converge to optimal
solutions in pure-chance LAs.

This experiment is carried out to study different strategies for
the players of the CGG-Clique algorithm for finding the solution.
In the CGG-Clique algorithm, since each player selects one of
their neighboring referees at any time to participate in GG ran-
domly, this random selection strategy may not be achieving ap-
propriate results. In this experiment, we applied different strate-
gies, including Random, High Degree, Average Degree, High Clus-
ter Coefficient, and Consensus strategy for LAs to select referees
participating in GG for finding cliques. For example, in the High
Degree strategy, a learning automaton plays GG with its adjacent
referee with the maximum degree to find the maximum clique.
This strategy called High Degree and for other strategies sim-
ilarly. We note that the CGG-Clique algorithm in which players
select referees Random, High Degree, Average Degree, High Clus-
ter Coefficient, and Consensus are called Algorithm 1, Algorithm
2, Algorithm 3, Algorithm 4, and Algorithm 5, respectively. We
studied the impact of different learning rates » = {0.02..... 0.3}
with a step length of 0.02 for finding the maximum clique size.
The obtained result is shown concerning mean and standard de-
viation u + o. The best outcome for each network is shown in a
boldface manner. Also, the results are given in Tables 5-12. From
the results, we may conclude that low value of the learning rates
leads to accuracy in obtaining clique size, while high learning
rates lead to rapid convergence and reduce the accuracy of re-
sults.

Moreover, in Brock200-1, Brock400-1, Brock400-3, Phat700-2,
and Phat1500-1, the algorithm in which LAs select their neigh-
boring referee based on the maximum degree, which is called
Algorithm 2, outperforms other algorithms, due to nodes with
a maximum degree as referees tend to more likely belong to
a maximum clique than other nodes. Besides, during finding
clique in Algorithm 2, learning automaton guides these nodes
to play CGG with the referee with maximum degree. For other
datasets, the result obtained by Algorithm 2 is similar to Algo-
rithm 3 and Algorithm 4 because the density and size of the
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Figure 7: The plot of the average value of referee and entropy for different datasets with » = 0.02.

clique are sparse with respect to the structure of networks. Since obtained results and the simplicity computation, in the rest of
the algorithm in which LAs use their referee with maximum de- the paper, we select high degree as a criterion for selecting clique
gree (Algorithm 2) outperforms other algorithms, in the follow- for studying the performance of the CGG-Clique algorithm in

ing, we have used Algorithm 2 for comparisons. According to the comparison with that of other algorithms.
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Figure 8: Comparison of the CGG-Clique algorithm with the same in which LAs are replaced with pure-chance automata.

To detect the best performance among all different strategies
applied by CGG-Clique (Random, High Degree, Average Degree,
High Cluster Coefficient, and Consensus), Tukey-Kramer (Cabral,
2008) multiple tests have been made over all the datasets.

Table 13 indicates the result of multiple comparisons in the form
of (b. — w). For each cell (row, col.) of Table 13, b and -w repre-
sent the number of test networks for which Cliquey is signif-
icantly better than and worse than Clique.o, respectively. If the
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Table 5: Average result for different algorithms in terms of maximum clique size for Brock 200-1.

X Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5
Clique size Clique size Clique size Clique size Clique size
0.02 21 +0.02 21+ 0.01 21 +0.02 21+ 0.03 21 +0.05
0.04 21+ 0.02 214+ 0.02 21+ 0.01 21+ 0.05 20+ 0.11
0.06 20 £ 0.00 21 +0.02 20 £0.03 21 +0.06 20+0.21
0.08 20 +0.01 20 +0.03 20 + 0.04 20 +0.03 19 +£0.15
0.1 20+ 0.12 20 +0.04 19+ 0.11 20 +0.07 18 +£0.25
0.3 18 +0.23 19 +0.09 19 +0.13 20 +£0.18 18 +£0.31

Table 12: Average result for different algorithms in terms of maximum clique size for P_hat1500-1.

X Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5
Clique size Clique size Clique size Clique size Clique size
0.02 11 +£0.07 12 +£ 0.02 12 £ 0.05 12 £ 0.02 12 £ 0.02
0.04 11+£0.15 12 + 0.05 12 +0.08 12 + 0.06 12 +0.12
0.06 11+ 0.22 12 +0.08 12 +£0.11 12 £ 0.08 11+141
0.08 11+0.28 11+ 1.02 114+ 0.33 12 +£0.15 11+ 1.52
0.1 11+ 0.35 11+1.21 11+1.24 11+0.23 11+ 1.75
0.3 10+ 1.24 11+ 1.35 11+ 1.87 11+ 1.54 11+2.41

Table 6: Average result for different algorithms in terms of maximum clique size for Brock 400-1.

P Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5
Clique size Clique size Clique size Clique size Clique size
0.02 26 +£0.03 27 £ 0.01 27 +£0.05 27 £0.11 26 £0.21
0.04 26 £ 1.05 27 £0.02 26 £ 0.07 26 +£0.21 26 +£0.41
0.06 24 +1.07 26 £ 0.02 26 £0.14 26+ 041 26 £1.07
0.08 24 +1.24 26 £+ 0.07 25+0.11 26 +0.72 26 +£1.40
0.1 24 +£1.33 26 £1.21 25+£0.13 26 +£1.52 26 £2.58
0.3 23 +£145 26 +£1.45 25+274 26+2.72 26 +2.87

Table 7: Average result for different algorithms in terms of maximum clique size for Brock 400-2.

X Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5
Clique size Clique size Clique size Clique size Clique size
0.02 27 £1.51 29 + 1.05 29 +£1.03 28 +£1.02 28 £1.91
0.04 26 +1.42 29 +0.15 29 +0.12 28 +1.42 27 £2.04
0.06 25+2.44 29 £ 0.55 29+ 0.34 26 +1.62 26 +£241
0.08 23 +£3.72 29+ 1.84 29 +1.02 26 +£1.75 26 + 2.65
0.1 23 +£3.84 28 £1.25 27 £141 26 +2.11 26 +£2.87
0.3 22 +£4.01 27 £2.01 25 +241 26 +2.42 25+ 3.54

Table 8: Average result for different algorithms in terms of maximum clique size for Brock 400-3.

X Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5
Clique size Clique size Clique size Clique size Clique size
0.02 29+0.21 31+ 0.07 31+0.11 31+0.12 29+211
0.04 28 £1.52 31+041 30 + 1.02 28 +£1.12 28 +2.54
0.06 26 +£3.01 28 +1.22 30+1.12 27 +£141 26 +£3.11
0.08 25+3.11 28 £1.34 27 £2.31 25+ 225 25+3.23
0.1 24 +2.54 27 +£2.41 25+224 25+3.12 25+ 3.45
0.3 23 +2.94 26 +1.78 24 + 341 24 + 341 25+ 3.85

subtraction of b and w gives a positive number, then Clique oy is better than Clique.o; and vice versa. When these values are equal
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Table 9: Average result for different algorithms in terms of maximum clique size for Brock 800-1.

Py Algorithm 1
Clique size

Algorithm 2
Clique size

0.02 21+211 23+ 0.03
0.04 19 +£2.24 23 £+ 0.05
0.06 19 £2.57 23 £+ 0.07
0.08 19 +£2.85 22 +£1.02
0.1 19 £3.24 21+ 1.05
0.3 19 £3.75 21+ 1.07

Algorithm 3
Clique size

Algorithm 4
Clique size

Algorithm 5
Clique size

23 4+ 0.05 23 +0.11 22 +£1.24
22 +£0.17 22 +£1.15 22 +£1.35
22 +0.19 22 +£1.17 22 £1.45
22+0.21 22 +£1.23 21 +2.12
22 +1.23 20 +2.11 21+214
21 +£1.52 20 £+ 2.35 20 +2.52

Table 10: Average result for different Algorithms in terms of maximum clique size for P_hat300-3.

A Algorithm 1
Clique size

Algorithm 2
Clique size

0.02 8+0.11 8+ 0.04
0.04 8+0.34 8 £ 0.05
0.06 8 +1.02 8 +£0.09
0.08 7+£1.33 7+£111
0.1 7 +£1.45 7+121
0.3 7+174 7 £1.52

Algorithm 3
Clique size

Algorithm 4
Clique size

Algorithm 5
Clique size

8+ 0.03 8 +£0.03 8+ 0.09
8 £+ 0.05 8 £ 0.05 8 +0.11
8 £+ 0.06 8 +£0.07 8+0.13
8+0.14 8 +0.09 8 +£0.15
7+0.24 7 £1.02 7+1.11
7 £1.55 7 £1.05 7+124

Table 11: Average result for different algorithms in terms of maximum clique size for P_hat700-2.

A Algorithm 1
Clique size

Algorithm 2
Clique size

0.02 43 +1.41 44 + 0.54
0.04 40 +3.41 44 + 0.67
0.06 40 + 3.87 44 +1.82
0.08 39+4.21 43 +1.23
0.1 38 £4.45 43 + 1.54
0.3 38 +4.61 42 +2.36

Algorithm 3
Clique size

Algorithm 4
Clique size

Algorithm 5
Clique size

Table 13: Multiple comparisons of different strategies for finding maximum clique based on the Turkey-Kramer method.

Algorithms Algorithm 1 Algorithm 2
Algorithm 1 0 (0, —48) — 48
Algorithm 2 (48, 0) + 48 0
Algorithm 3 (47, -1) + 46 (13, —29) — 16
Algorithm 4 (48, 0) + 48 (9, —35) - 26
Algorithm 5 (48, 0)48 (3, -44) — 41

to zero, none of the algorithms is superior to any other. The last
column provides the overall superiority of each of the strategies
with respect to others and is computed based on summing the
boldface value of each row. From the result of Table 13, one can
conclude that Algorithm 1, in which LAs select their referees
randomly, is the worst performing algorithm, and by all other
clique strategy algorithms, Algorithm 2, in which players select
the referee based on the degree strategy, is the best performing
algorithms. Hence, for comparison with other algorithms, we se-
lect a maximum degree strategy for LAs.

44 +0.24 44 + 0.05 44 + 1.08
44 +0.65 44 +1.25 43+ 211
44 +1.54 43 +2.07 43 +2.23
43 +2.78 43 +2.15 43 4+ 2.33
43 +3.01 43 +2.32 43 +2.41
43 +1.05 43 +2.57 43 +2.51
Algorithm 3 Algorithm 4 Algorithm 5 Score
(1, —47) - 46 (0, —48) — 48 (0, —48) — 48 -190
(29, —-13)16 (35, —9)26 (44, -3) — 41 131
0 (24, -16)8 (40, —8)32 70
(16, —24) - 8 0 (43, —4)39 53
(8, —40) — 32 (4, —43) - 39 0 —64

This experiment was conducted to compare the performance
of the CGG-Clique with other algorithms like SBTS (Jin & Hao,
2015), IGFTT (Ordéiiez-Guillén & Martinez-Pérez, 2016), GENE
(Marchiori, 2002), FGA (Zhang et al., 2014), MEAMCP (Guo et al.,
2019), MAXCLQ (Pullan et al., 2011), BBMCX + NEW_SORT (Ben-
lic & Hao, 2013), and DLA-Clique (Rezvanian & Meybodi, 2015a)
in terms of maximum clique size. Moreover, since CGG solves
the maximum clique problem for the first time, we have se-
lected DLA-Clique for comparison because the algorithm uses
a learning mechanism to find the solution in addition to LAs.
The results are shown in Fig. 9 in terms of the maximum and
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Figure 9: The comparison between different algorithms with the CGG-Clique algorithm for finding a maximum clique.

the average size of the clique. It is necessary to point out that in networks, the size of the clique is considered zero. For other
some networks, the size of the clique is not reported for some algorithms, we may conclude that the CGG-Clique algorithm
algorithms because the problem is hard to solve, and the struc- in four networks such as Brock400-1, Brock400-2, Brock400-3,
ture of these networks is complex. Hence, for these types of and P-hat1500-1 outperforms IGFTT, GENE, FGA, and MAXCLQ,
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Figure 10: Comparison of the CGG-Clique with other algorithms in terms of the Dolan-Moré criteria.

due to the CGG_Clique is a distributed algorithm and run lo-
cally for finding the solution. The obtained results are similar
for other datasets such as Brock200_1, P_hat300-3, and P_hat700-
2. Therefore, the CGG-Clique algorithm, due to using distributed
computing and considering the local neighborhood structure for
finding a maximum clique, outperforms competitive algorithms
in some cases, and the results are competitive in terms of aver-
age and best results.

5.5. Experiment V

This experiment is done to compare the running time spent by
the CGG-Clique for finding the maximum clique; we have used
the corresponding Dolan-Moré performance profile. The Dolan-
Moré performance criteria were first introduced in Dolan & Moré
(2002) as an appropriate method to analyse different algorithms
in solving specific test problems based on proper criteria such
as time, the number of iterations, and the size of a maximum
clique. To perform a Dolan-Moré time profile for solving test
problems p € P using different solvers s € S, we first calculate
the ratio
— tps
"Ps= Hin {tps.s€ S}’ (43)
where t, s indicates the running time for solving the test prob-
lem p using solver s. To obtain a total evaluation of the perfor-
mance of each solver, we compute

pS(T):i{pEP,Yp,sff}, (44)
My

which is, in fact, equal to the proportion of test problems solved
by s in at most 7 times the minimum running time among all
solvers. Now, to sketch the Dolan-Moré profile, it is sufficient to

plot ps(zr) versus r. The obtained result is depicted in Fig. 10.
The result in Fig. 10 confirms that the execution time of the
CGG-Clique algorithm is less than other algorithms in terms of

the number of test problems. We note that the obtained result
of the CGG-Clique algorithm in the network is similar in DLA-
Clique due to both algorithms using the learning mechanisms to
find the solution, but the CGG-Clique is running in a distributed
and parallel manner to find a solution. Hence, the CGG-Clique
reaches the solution significantly faster. Moreover, compared to
SBTS, FGA, and IGFTT, due to using different strategies in design-
ing the algorithm, including random selection, heuristic search,
and the optimizing technique, the SBTS, FGA, and IGFTT algo-
rithms consume more time than the proposed method algo-
rithm. For other algorithms in the same way.

6. Conclusion

In this paper, we proposed a new model of GG called CGG. Each
node plays the rule of referees in this model, each participating
in a GG with its neighboring players. In contrast to GG, the CGG is
a network of GGs that is needed for modeling network problems
in some domains such as computer networks, grid computing,
and social networks. To show the potential of this new model, a
CGG-based algorithm called CGG-Clique has been proposed for
finding a maximum clique in the networks. In the CGG-Clique
algorithm, each cell plays GG with its adjacent player and se-
lects its optimal action between two available actions based on
their gains and losses received from its adjacent referee. We also
provide the complexity analysis of the CGG-Clique algorithm for
finding the maximum clique.

Moreover, to show the effectiveness of the CGG-Clique, sev-
eral experiments have been designed on the well-known DI-
MACS benchmarks, and the proposed algorithm is compared
with seven different algorithms. The experimental result con-
firms the superiority of the CGG-based algorithm for finding a
maximum clique in the networks effectively in terms of size.
As future works, we plan to define new metrics to evaluate the
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behavior of the CGG and apply the CGG model for finding a max-
imum clique in multilayer social networks.
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