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I INTRODUCTION

Mobile ad hoe networks (MANETS) are infrastructure-less
networks where nodes can move freely in the network. A
message traverses the network by being relayed from one node
to another node until it reaches its destination (multi-hop
‘communication). Opportunistic networks, on the other hand,
represent a natural evolution of MANETS (1], maintaining the
MANET basic features of _costefficiency and  self-
organization, as nodes still self-organize in order o build
multi-hop message transfers without requiring any pre-xisting
infrastructure. However, they  completely ~redesign  the
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eristics of networking protocols proposed in MANETS,
i them able to support the absence of a stable path
between pairs of nodes that wish to communicate.
Opportunistic networks are a class of delay-tolerant networks
(DTNs), where contacts between mobile nodes  oceur
unpredictably because the node’s movement is effect
random. Examples of opportunistic networks include
wildlife monitoring networks [2], vehicular networks (3] and
social opportunistic networks [4].

In recent years, social opportunistic networks (SONs) have

opportunistic networks thatexploit unpredictable._contacts
between mobile devices (nodes) carried by individuals to
enable message transfers between disconnected parts of the
network. SON are therefore human-centric because the node
contacts reflect the way human come into contact, The authors
in [6.7] have shown that humans tend to move in way that is
influenced by their social relations. Consequently, SONs are
tightly coupled with social (relations) networks. and knowledge
of human relationships can be used to build more efficient
routing protocols. Social-aware routing protocols, such as
SimBet [8] and BubbleRap (9], exploit social properties of
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which in tum reflects the topolog
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Abstract—Social opportunistic networks (SONs) are del
tolerant mobile ad hoc networks that exploit human mobility to
carry messages between disconnected parts of the network.
Humans tend to move in a way that is influenced by their social
relations and social-aware routing protocols therefore use social
properties of nodes, eg. social ranking (popularity), as the
routing metrics. These protocols favour more popular nodes as
better relays for message transfers. Due to the non-uniform
distrihutd of node popularity in SONs, this forwarding
heuristic leads the routing to direct most of the traffic through a
few most-popular nodes. ic congestion therefore results in
these hub nodes. To date, a set of congestion control strategies
have been proposed in opportunistic networks and most of them
were developed by assuming that traffic congestion is distributed
randomly in the network. In SONs, however, traffic congestion is
most likely to oceur in a few hub nodes. In this paper, we present
an analysis of I'I'ic congestion distribution in SONs. We
initially survey state-of-the-art congestion control strategies in
opportunistic networks. Subsequently, we investigate traffic
congestion distribution in a real-life SON when a social-aware
routing algorithm is applied in the network. We first discuss node
popularity distribution in this human network. Using simulation,
we furthermore show that node traffic congestion, identified with
buffer/storage saturation leading to message drops, occurs
frequently in the hub nodes. We also identify that node’s total
received traffic increases exponentially with the linear increase of
the node popularity. We finally discuss a strategy for designing a
congestion control algorithm in SONs,
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I INTRODUCTION

Mobile ad hoc networks (MANETS) are infrastructurc-lca
networks where nodes can move freely in the network. A
message traverses the network by being relayed from one node
to another node until it reaches its destination (multi-hop
communication). Opportunistic networks, on other hand,
represent a natural evolution of MANETSs [1], maintaining the
MANET basic features of cost-efficiency and self-
organization, as nodes still self-organize in order to build
multi-hop message transfers without requiring any pre-exisiffiz
infrastructure.  However, they completely redesign the

EBtween pairs

characteristics of networking protocols proposed in MANETS,
making them able to support the absence of a stable path
of nodes that wish to communicate.
Opportunistic networks are a class of delay-tolerant networks
(DTNs), where contacts between mobile nodes occur
unpredictably because the node’s movement is effectively
random. Examples of opportunistic networks include animal
wildlife monitoring networks [2], vehicular networks [3] and
S()Ca opportunistic networks [4].

In recent years, social opportunistic networks (SONs) have
been investigated as a promising approach for data
communications (e.g. the Haggle project [5]). SONs are
opportunistic networks that exploit unpredictable contacts
between mobile devices (nodes) carried by individuals to
enable message transfers between disconnected parts of the
network. SONs are therefore human-centric because the node
contacts reflect the way human come into contact. The authors
in [6,7] have shown that humans tend to move in way that is
influenced by their social relations. Consequently, SONs are
tightly coupled with social (relations) networks, and knowledge
of human relationships can be used to build more efficient
routing protocols. Social-aware routing protocols, such as
SimBet [8] and BubbleRap [9], exploit social properties of
nodes (humans), e.g. social ranking (popularity) as the routing
metrics. These protocols typically favour more popular nodes
as better relays for message transfers. On the other hand, the
authors in [10,11] show that the topology of social networks,
which in turn reflects the topology of SONs, exhibits a
heterogeneous connectivity structure, with the existence of a
few nodes that possess many connections to other nodes. These
nodes are therefore much popular in the network and can act as
communication hubs in the network. The combination o
SON’s topology and the social-aware routing heuristic leads
the routing to direct most of the traffic through a few most-
popular nodes. Traffic congestion therefore results in these hub
nodes, quickly depleting the nodes’ buffers/storages and
leading to ex(wivc message drops.

To date, several congestion control strategies have been
proposed in opportunistic networks [12]. They E®end to
improve the poor performance of TCP’s end-to-end congestion
control in opportunistic networks, due to the long transfer




delays that occur in these networks. Moreover, most of the
congestion control strategies were developed by assuming that
traffic congestion is randomly distributed in the network. In
SONs, however, traffic congestion is most likely to occur in a
few hub nodes. As far as we know, the non-random traffic
congestion distribution mONs has not been investigated
before. The contribution of this paper is therefore §EJollows.
First, we perform a brief survey on state-of-the-art congestion
control strategies in opportunistic networks and identify their
potential issues when applied in SONs. Second, we investigate
traffic congestion in SONs using real human contact traces and
confirm the n()n-utmm congestion distribution in the human
networks. Finally, we propose a new approach in designing
congestion control algorithms in SONs that considers node’s
p()lﬁarity in the algorithm’s decision.

The remaiffifr of the paper is organized as follows. Section
Il discusses congestion control strategies in opportunistic
networks. Section I describes node popularity (social ranking)
distribution in SONs. In Section IV, we discuss the simulation
results of traffic congestion distribution when a social-aware
routing algorithm is applied on a real-life SON. Finally, we
discus§Etrategy in designing congestion control algorithms in
SONSs in Section V, which is followed by conclusion and future
work in Section V1.

II. CONGESTION CONTROL STRATEGIES IN OPPORTUNISTIC
NETWORKS

TCP’s end-to-end congestion control is ineffective against
the impamrment of opportunistic networks, namely long
propagation delays or round-trip time: TCP has no explicit
knowledge of congestion state in the network and instead relies
on packet drop events which are signaled to the source through
TCP’s acknowledgment mechanism. Therefore, congestion
control In opportunistic networks camncly on end-to-end
acknowledgements and instead should be implemented on a
per-hop basis, based on node’s locally available information.
Congestion C()IB)I strategies in opportunistic networks are
closely related to the number of message copies distributed
throughout the network. Routing pr()uﬁtmaly use a multiple-
copy (replication) strategy to increase the delivery ratio and/or

to reduce delivery latency. In this paper, we C()l‘ISi(.m

congestion control strategies in a multiple-copy case. A
comprehensive survey of congestion control strategies in
opportunistic networks can be found in [12]. We furthermore
divide the strategies into two approaches as follows:

a) Replication control: While message replication can be
used as a forwarding mechanism to increase message
delivery probability, it can easily overwhelm node
storage, e.g. Epidemic muting [13]. A dynamic
ic;lti()n control strategy is therefore required to
adaptively adjust the message replication rate to the
network congestion level. Since network (global)
congestion information is not available in an opportunistic
network node, the replication control strategy instead uses
either the node’s own knowledge or local knowledge to
determine the network conges level. For example,
Retiring Replicant [14] uses the ratio of message drop rate
to the rate of receiving message at a node as a local metric
to control message replication in the network. RRFS [15],

on the other hand ,()ntr()ls message replication by
prioritising messages according to the number of message
copies already distributed in the netwof The algorithm
uses a local estimate of total copies of the messages in a
node’s buffer and favours the messages with the lowest
values of total copies to replicate first during node
contact. Finally, CAFRep [16] uses node’s buffer
statistics, i.e. buffer free space, buffer queuing delay and
buffer congestion rate, to determine global congestion
level. To improve the congestion detection, the algorithm
also considers local congestion information supplied by
neighbouring nodes.

b) Message drop strategy: With the existence of message
redundancy in the network due to the replication strategy,
a node can now drop messages from its buffer when
congestion occurs without causing loss of the messages
from the network. We categorize message drop strategies
based on the information required as follows:

e Single-message statistics: a simple drop strategy that
only needs the attributes of a message in the node
buffer, such as message forwarding or armrival
statistics, or message TTL. For example, the authors
in [17,18] investigated the performances of several
simple drop strategies, namely FIFO (first in first out),
MOFO (drop most forwarded first) and SHLI (drop
shortest lifetime first), in term of delivery ratio and
delay.

o Network-wide message statistics: a complex drop
strategy that needs message attributes collected from
the entire network. For eplc, when the node’s
buffer is full, AFNER [19] randomly drops a message
with the forwarding number larger than the network’s
average forwarding number. GBSD [20], on the other
hand, requia global information concerning the
distribution of a message, such as umber of
copies of a message and the number of nodes that
have seen the message, to decide whether to drop the
message when the buffer is full.

Congestion control strategies in opportunistic network
nodes in general use either the nodes’ own information or the
nodes’ locally available information to estimate network
congestion level. However, when the network traffic changes
dynamically over time, the strategies will slowly respond to the
dynamic changes of congestion level in the network: due to the
long transfer delays in opportunistic networks, node’s local
information may not properly identify the recent network
congestion state. Furthermore, we note that most of the
congestion strategies in opportunistic networks were developed
by assuming that traffic congestion is distributed randomly in
the network. As we will show in Section IV, this assumption
however does not hold in SONs since traffic congestion is most
likely to occur in a few most popular nodes. We identify that
the total received traffic of a SON node increases with the
increasing of its (social) popularity. Moreover, in Section IIT
we note that node’s social network properties, e.g. node
popularity, are less volatile than node’s physical network
properties, e.g. node contact information, i.e. contact duration
and frequency. Hence, we see a potential improvement in




calculating node’s buffer congestion probability based on the
node’s locally available information, i.e. by considering node
popularity into the congestion control algorithm’s decision (we
will discuss it in Section V).

II. NODEPOPULARITY DISTRIBUTION IN SONS

The knowledge of human mobility is important to identify
the delivery performance of SONs. The mobility patterns of
humans tend to be influenced by their social relationships.
Human mobility characteristics discussed in [6,7] show that
there exists a virtual social (relations) network that drives
human to move, and that this graph is less volatile than SON’s
physical networks. The overlay graph represents a macroscopic
property of human mobility. We illustrate the structural
topology of a SON in Fig. 1.

Topology
Volatility
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Fig. 1. The structural topology of a SON

The authors in [10,11] studied the topology of a SON by
aggregating mm contact data traces to form a contact graph.
Each mobile device is a node of this graph and a link represents
the social relationship between two nodes. Conti and KZthar
[21] identified this human contact graph as an electronic social
network. In the electronic social network, links (human
relations) can be Chill’ilClCd based on node contact
information, such as contact frequency, duration and recency.
In order to discover the topology characteristics of SONs, the
authors in [10,11] subsequently performed an off-line analysis
on the contact graphs of several real-life SONs. They found
that the derived graphs possess a strong non-random
connectivity structure amé:nibi[ a power-law node degree
distribution, where a few nodes have a very large degree of
comnections to other nodes, but most of the network nodes have
few ones. The largest degree nodes are therefore (socially) very
popular in the network and can act as communication hubs in
the network.

We, on the other hand, perform an online analysis of node
popularity in SONs. In self-organizing networks, such as
opportunistic networks, a node should be able to autonomously
identify its (social) popularity in the network. Node popularity
in a social network can be measured by alccnly metric, e.g.
the Freeman’s centrality metrics [22], ie. degree cerzzlity,
betweeness centrality and closeness centrality. Node degree
centrality is total number of links that a node has. The
betweeness centrality of a node is the number of shortest-paths

that pass through the node[{@ided by the number of shortest-
paths in the network. Node closeness centrality is the reciprocal
of the mean the shortest-paths between a node and all other
re;lmale nodes. In our analysis, node populanty is quantified
by the number of distinct nodes encountered in a given time
mterval. In the literature [9,11], this is equal to the node degree
(or degree centrality) in an aggregated contact graph. We
furthermore use the C-Window technique of BubbleRap [9] to
calculate node degree (popularity) in a time interval (or time
window). This technique 1s a cumulative moving average that
determines degree of a node in a ime window by calculating
the node degree value averaged over all previous time
windows. For simulation, we use the ONE simulator [23], an
event-driven simulator for opportunistic networks. For the
simulation’s node mobility scenario, use a real human
contact dataset, namely Reality [24]. In Reality, 100 smart
phones were deployed among student and staff of MIT over
period of 9 months.
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From the simulation results, we depict the node degree
distribution and its cumulative distribution function (CDF) in
Reality in Fig. 2 and 3, respectively. The time window used for
calculating node degree is set to 24 hours. Fig. 2 clearly shows
that the human network in Reality exhibits a heterogeneous
degree distributi()mherc some nodes have degrees that are
much higher than the average degree in the network (the mean
degree is 2.12) and hence are much popular in the network.

reover, Fig. 3 shows that the node degree in Reality is
power-law distributed, where the probability of finding high




degree node in the network is very low since the majority of
nodes have low degree. This is inline with the study in [25] that
confirms the feasibility of coupling between SONs and scale-
free graphs, those with the main characteristic of power-law
degree distribution. When social-aware routing algorithms that
implement a forwarding heuristic that biases towards more
popular nodes are applied in SONs, as we will show in the next
section, traffic congestion finally results in a few most popular
nodes (hub nodes).

IV. TRAFFIC CONGESTION DISTRIBUTION IN SONS

In this section, we discuss the analysis of traffic congestion
distribution when a social-aware routing protocol is apfded in
a real-life SON. Social-aware routing protocols, e.g. SimBet
[8] and BubbleRap [9], use social properties of nodes as the
routing metrics. In general, social-aware routing algorithms
involve two main properties when making forwarding
decisions as follows:

o Transifivity: during a node contact, if either the
forwarding node (a node that intends to transfer its
message) or its contact has knowledge of the message
picitination, the forwarding node selects the contacted
node as a relay of the message when the latter is closer to
the destination. A tie (connection) strength between two
nodes can be evaluated based on the metrics, such as
contact frequency and duration. SimBet includes tie
strength and neighbour similarity to measure the
closeness of a relay node to the destination. BubbleRap
uses community knowledge to identify the probability of
arelay node meeting with the destination.

o Global ranking: when the destination is unknown to both
the forwarding node and its contact, the routing protocol
routes the message to a structurally more popular node in
order to achieve the message delivery in a short delay.
Node popularity in a (social) network can be evaluated by
a centrality metric, e.g. Freeman centrality measures, i.e.
degree, closeness and betweeness centralities. SimBet
uses betweeness centrality calculated in an ego network to
measure node global popularity. BubbleRap, on the other
hand, uses degree centrality to calculate node’s popularity
in the entire network.

We now investigate traffic congestion in a SON when a
social-aware routing EBtocol is applied in the network. To be
specific, we intend to study the impact of the social-aware
routing heuristic that favours more (globally) popular nodes on
traffic congestion distribution in SONs. In this study, we
consider node degree (or node degree centrality) to measure
node popularity in the enljrmtwork. As in Section III, node
degree is calculated as the number of distinct nodes
encountered in a given time window. We again use the C-
Window technique of BubbleRap to calculate node degree in a
time interval. We use the ONE simulator [23] with the main
parameters are described in Table-1. The time window used for
calculating node degree is set to 24 hours. In this evaluation,
we consider a unicast message transmission, where the source
and destination of each new message is chosen randomly
during the simulation. For the simulatioff node mobility
scenario, we use the Reality dataset [24], since it contains a

reasonably large number of nodes and covers a long period of
time. We consider several evaluation metrics to investigate
traffic congestion as follows:

e Total processed traffic: the total number of relayed
messages received by a node throughout the simulation
time.

e Buffer occupancy (buffer queue length): the fraction of
node’s buffer spaces occupied by the relayed messages.

* Total message drops: the total number of messages in
the buffer dropped by a node when the buffer congestion
occurs during the simulation.

TABLE 2. The ONE prncipal simulation parameters

Simulation Parameters
Mobility scenario Reality
Number of nodes 97
Simulation time 196 days
Msg. generation interval ~ 12 msgsth
Node buffer size 20 MB
Message TTL 21 days
Message size 10kB

Total received memages
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Fig.4. Node degree vs. total processed traffic in Reality
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From the simulation results, we depict the node degree vs.
total processed traffic and the node degree vs. avg. buffer
occupancy in Fig. 4 and 5, respectively, when a routing
algorithm that favours higher degree (more popular) nodes is
applied in Reality. Fig. 4 shows that a few nodes, ie. the
highest degree nodes (hub nodes), process a large fraction of
network traffic, but majority of the network nodes only
receives few relay messages. Furthermore, by applying the
curve-fitting function of MATLAB on Fig. 4, the fitted curve
that relates the node degree (k) with total processed traffic (/) is
plotted (the blue line in Fig. 4), giving the scaling relation
between them as [ ~ k**87 This agrees with the investigation
in [26] that in complex networks (ie. scale-free networks),
when a shortest-path forwarding strategy is applied, the
network traffic is power-law distributed. This unbalanced of
traffic distribution in the human network therefore results in
traffic congestion in a few hub nodes. Fig. 5 clearly shows that
higher degree nodes typically have higher buffer occupancy
(buffer queue length) and buffer congestion is consequently
more likely o occur in these nodes, particularly in the highest
degree nodes (hub nodes).
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Fig. 6. Buffer occupancy as a function of time for the nodes in Reality

Moreover, in Fig. 6(a) and 6(b) we depict the change over time
of buffer occupancy of the highest degree node (node 95) and a
low degree node (node 1), respectively, in Reality. Fig. 6(a)
shows that in the highest degree node (hub node) the buffer
queue length increases rapidly during initial period of the
simulation and then fluctuates between 90%-100% during the

simulation. In other words, the hub node’s buffer is frequently
saturated throughout the simulation. Only in the inactive period
of the Reality trace (i.e. holiday terngEithe hub node’s buffer
occupancy significantly decreases. In contrast, in the low
degree node, as depicted in Fig. 6(b), the buffer occupancy is
typically low and slightly fluctuates during the simulation. As a
result, buffer congestion leading to message drops is less likely
to occur in this low degree node. Indeed, Fig. 7 clearly shows
that the majonty of message drop events occur in high degree
nodes, particularly hub nodes.
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Fig. 7. Total received messages vs. dropped message for the nodes in Reality

V.  STRATEGY IN DESIGNING CONGESTION CONTROL
ALGORITHMS IN SONS

We have shown in Section IV that traffic congestion 1s not
randomly distributed in SONs, but is most likely to oceur in a
few most popular nodes. However, we have noted in Section 11
that most of the existing congestion control strategies in
opportunistic networks were developed by assuming that traffic
congestion 1s distributed evenly in the network. The strategies
rely on either node’s own knowledge or node’s locally
available knowledge when calculating network congestion
level. When the network traffic changes dynamically, the local
knowledge may not properly identify global congestion state.
As a result, the congestion control strategy in a SON node is
not able to accurately calculate the node’s buffer congestion
probability. In Section 1V, we have identified that the total
number of received relay traffic of a node is closely related
with the node degree (popularity). Moreover, in Section III we
have noted that node’s social properties, e.g. node popularity,
are less volatile than node’s physical properties in SONs. We
therefore argue that calculating node’s buffer congestion
probability based on the node’s local information can be
improved by considering the node popularity into the
computation. This relatively stable metric, node popularity, can
help the congestion control algorithm in a SON node to
identify the future node’s buffer congestion probability more
accuratel y.

In Fig. 8, we show a design architecture of a forwarding
strategy in a SON node, which consist of two components:
routing and congestion control modules. The routing module
consists of a social-awareElibuting algorithm, which is
responsible to select relay nodes that are able to deliver
messages to the destinations in short delays. The congestion




control module, on the other hand, consists of a congestion

rol algorithm that controls the node’s buffer congestion.
During a node contact, each module separately exchanges its
information with its peer’s module: the routing modules
exchange routing metrics, such as node popularity and social
community, and the congestion control module requires
information of both nodes’ buffer statistics, such as buffer
queue length and total drop messages, as well as nodes’
popularities (from the routing modules). The forwarding
decision 1s eventually made by considering both the routing
and congestion control calculations.

VI.

In this paper, we have investigdl®l traffic congestion
distribution in a real-life SON when a social-aware routing
protocol is applied in the network. We identify that traffic
congestion is not randomly distributed in the network, but is
most likely to occur in a few most popular nodes (hub nodes).
We also have proposed a new protocol design of congestion
control in a SON node that considers node popularity in the
algorithm’s decision.

CONCLUSIONS AND FUTURE WORK

In the future, we will developed a new computation of SON
node buffer congestion probability based on the node’s local
information, namely buffer statistics and social popularity, in
the congestion control algorithm to minimize buffer congestion
events and message drops, particularly in the most popular
nodes (hub nodes).
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Fig. 8. The design architecture of social-aware forwarding strategy with
congestion control in a SON node
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