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ABSTRACT This article proposes FRIMF, a fuzzy routing scheme for opportunistic mobile networks
(OMNs). In FRIME, we exploit the pairwise intercontact times to evaluate the connection strength between
two nodes. Instcad of assuming a random movement model, in the present case we consider node contact
processes in OMNs as bursty events. Consequently, we introduce a burstiness parameter to characterize the
variability in the dynamics of pairwise interactions. This variance metric, along with the s
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ABSTRACT This article proposes FRIMF, a fuzzy %ﬂng scheme for opportunistic mobile networks
(OMNSs). In FRIME, we exploit the pairwise intercontact times to evaluate the connection strength between
two nodes. Instead of assuming a random movement model, in the present case we consider node contact
processes in OMNSs as bursty events. Consequently, we introduce a burstiness parameter to characterize the
variability in the dynamics of pairwise interactions. This variance metric, along with the slalislicgnean
of pairwise intercontact times, is used to define a single FRIMF routing metric called closeness through
a fuzzy inference system. This reflects the tie strength of pair nodes. To improve the transmission
environment, we further propose a method to develop optimal membership functions for the FRIMF’s fuzzy
parameters based on the contact information. Particularly, we leverage the membership function elicitation
techniques commonly used in collective opinion aggregations based on a direct rating process to establish the
relevancy between vagueness estimates of the routing parameters and statistical distributions of the pairwise
intercontact times in a way that eventually presents asymmetric triangular fuzzy numbers. In turn, these TFNs
are used to properly define the fuzzy sets of the FRIMF’s parameters. Through simulations in the real human
mobility environments, we show that FRIMF utilizing the enhanced asymmetric TFNs can outperform that
using the typical symmetric TFNs developed based on our subjective preferences. Lastly, comparing with
several algorithm benchmarks, we confirm the efficiency of FRIMF in transmission cost and delay.

INDEX TERMS Asymmetric triangular fuzzy numbers, bursty contacts, opportunistic mobile networks, pair
connection strength.

L. INTR CTION

To date, opportunistic mobile networks (OMNs) [1] have
attracted great attention from researchers for an alterna-
tive communication system in challenging environments; for
example, in rural or disaster regions where the communica-
tion infrastructures are unavailable or damaged, respectively,
or in areas with the communication infrastructures, but the
network connections are'naccessible due to restricted or
full of capacity. OMNs are an extension @@mobile ad-hoc
networks (MANETSs). While in MANETSs end-to-end paths
from sources and destinations are assumed to exist at all the
time, in OMNs links intermittently occur created by pairwise

i!e associate editor coordinating the review of this manuscript and
approving it for publication was Hosam El-Ocla
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stochastic contacts, and consequently instantaneous end-to-
end paths cannot be guaranteed. To share information or

rvices, these networks rely on probabilistic encounters,
g:liding to a considerably higher delivery latency than that
of MANETSs. Being inherently delay-tol in message
dissemination, OMNs are thus an instance of delay tolerant
networks (DTNs) [2]. Nowadays, OMNs have been realized
in a variety of applications, including vehicular networks [3],
emergency and disaster scengggl [4]., and human contact
networks [5]. The fast growing use of mobile devices, such as
gadgets, smart phones, and laptops, has greatly contributed to
the development of these systems.

Routing in Ns is more challenging than that in
MANETS, and routing algorithms proposed foi ETs
would fail in this setting. OMN routing algorithms
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completely modify the paradigm of routing in MANETS
to enable message delivery with the nonexistence of sta-
ble paths between sources and destinations. The algorithms
deliver messages to the destinations over a sequence of
contact events. Nonetheless, the multi-hop forwarding over
such intermittently-c@@nected networks possesses some chal-
lenges: the dynamic gﬂngcs of the network’s topology, the
long delay to obtain the network’s state data, and the cost
of flooding of this global information, imply that routing
algorithms for conventional networks, e.g., the Internet and
MANETS, that rely on global knowledge are suboptimal and
costly. Instead, routing algorithms for OMNs may use either a
naive approach (by increasing message replicas distributed in
the network) or a heugigtic approach (by estimating a pairwise
contact pr()balbilitylgsed on the node’s locally available
information). 19

OMNSs are commonly modelled as a time-varying graph
G = (V, E), since both the edges E and the states of vertices
V continuously vary in time. When two nodes come into con-
tact, the link is established between them, and they are able to
exchange messages. Understanding the characteristics of pair
connections is therefore beneficial for message transfers in
OMNSs. A link prediction between OMN nodes is commonly
calculated based on various contact metrics, such as contact
times, contact frequency, or intercontact times. The study in
[6]. [7] revealed that real objects” meetings exhibit a repetitive
pattern to some extent. Yet, some studies simply assumed a
random ii.d. (independent-identically-distributed) model for
contact processes in OMNs [8]. However, [9], [10] showed
that the pairwise intermeeting time patterns in real human
mobility cases fit power-law distributions better than expo-
nential ones. Goh and Barabdsi [11] argued that the dynamics
of real systems, such as earthquake patterns, gene expression,
and human behaviours, exhibit a bursty, intermittent nature.
The authors furthermore identified two distinct processes that
lead to the burstiness, namely memory and interevent time
distribution. While the memory has a substantial impact on
the burstiness of natural events, e.g., earthquakes and weather
patterns, the burstiness of human dynamics is mostly caused
by changes in the interevent time distribution.

In this research, we focus on human-centric OMNs, E}
referred to as mobile social networks (MSNs) [12], where
people’s mobility is impacted by their social relationships,
such as in daily activities at campus or the workplace, or in
temporary events, e.g., conferences or seminars. From [11],
we can assume that the contact patterns in such OMNSs pos-
sess a bursty nature. We characterize the burstiness of node
meetings based on the dynamics in pairwise intercontact time
distribution. The distribution of pairwise intercontact times
has been thoroughly studied under different mobility models
in several papers [13]. [14]. Moreover, the authors of [15]
argued that the statistical mean and variance of pairwise
intercontact times can comprehensively measure the ability
of a link to exchange information between nodes. In this
paper, we introduce a burstiness parameter [11] to measure
the variation of pairwise intercontact times between OMN
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nodes. Using this variance metric along with the mean of pair-
wise intercontact times, we develop a single routing metric
called closeness through a fuzzy inference system [16]. This
parameter weighs the connection strength between a pair of
nodes. According to the hill-climbing heuristic search [17],
the proposed routing algorithm FRIMF suggests that a mes-
sage willgys transmitted to future relays with the closeness
value to the destination is higher than that of the current
node.

To improve the transmission environment, we further pro-
pose a method to construct optimal membership functions
for the FRIMF’s fuzzy parameters. Defining membership
functions is one of the most essential tasks when evaluating
systems or solving problems using fuzzy logic. Member-
ship functions are used to define fuzzy $gf§ of the inputs
of a fuzzy inference system. Obviously, a more precisely
defined membership function leads to a more accurate output
or a more efficient fuzzy analysis system. From the litera-
ture, methodologies to develop membership functions can be
based on subjective or objective information [18], [19]. In the
former case, the subjective opinion of experts is commonly
used in the analysis of uncertainty of events. In the latter
case, membership functions are defined based on statistical
distributions of the observed data.

To date, numerous fuzzy routing schemes have been pro-
posed for OMNSs [20], [21], [22],[23], [24]. However, none of
them considers statistical distributions of the routing param-
eters when defining the membership functions. Instead, the
algorithms typically rely on the authors™ assumptions or esti-
mations when analyzing the vagueness of the routing metrics.
This paper, in contrast, discusses a method to develop mem-
bership functions of the FRIMF’s routing parameters based
on statistical distributions of the pairwise intercontact times.
To our best knowledge, FRIMF is the first OMN fuzzy routing
algorithm that takes into account the encounter information
when determining the membership functions of the routing
metrics. Furthermore, we leverage the membership function
elicitation methods typically used in collective opinion aggre-
gations based on a direct rating process, e.g., in [25] and [26],
to establish the relevancy between vagueness estimates of the
routing parameters and statistical distributions of the pair-
wise intercontact times. This eventually results in asymmetric
triangular fuzzy numbers (TFNs), which in turn are used to
properly define thgfezzy sets of the FRIMF's routing param-
eters. Finally, our contributions in this paper are summarized
as follows:

« We introduce a concise, yet comprehensive closeness
metric to abstract the relationship between a pair of
nodes. This measure is derived from the burstiness varia-
tion and the mean of pairwise intercontact times through
a fuzzy inference system.

« To impr the transmission environment, we develop
optimal membership functions for FRIMF’s fuzzy
parameters based on the statistical distributions of pair-
wise intercontact times. We leverage the membership
function elicitation strategies employed in group opinion
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aggregations based on a grading process in [25] and [26]
to produce asymmetric TFNs.

« According to the hill-climbing heuristic search [17],
the proposed algorithm FRIMF (Fuzzy Routing with
Improved Membership Functions) forwards messages
to future relays with a higher closeness value to the
gslinali(m than that of the current carrier.

« In accordance with the simulation results in the ONE
environment [27] and real human mobility scenarios,
FRIMF using the improved asymmetric TFNs can out-
perform that utilizing the typical symmetric ones defined
based on our subjective preferences. Finally, FRIMF
enhances performances on delivery cost and latency of
some given algorithm benchmarks.

e rest of the paper is structured as follows: a brief
introduction to the related literatu is given in Section II;
FRIMF is proposed and analyzed m Section III; simulation
results are presented and discussed in Section I'V; and finally,
Section V concludes the paper.

Il. RELATED WORKS

A. PAIRWISE INTERCONTACT TIME DISTRIBUTIONS IN
OMNs

Early works in OMNSs used a simple random walk model to
define node movements [8]. However, recent studies reveal
that this random model is not realistic in real mobility cases.
The authors of [6] and [7] argued that real object movements
show a repetitive pattern to some extent. On the other hand,
the authors of [11] and [28] observed that the dynamics of
most real systems, such as weather and earthquake patterns,
human sziours, and user queries to a web search engine,
exhibit a bursty, intermittent nature, characterized by intense
activities over short periods of time followed by reduced or
no activity over long periods of time. Two different pro-
cesses lead to burstiness in the real-life settings: memory
and interevent time distribution [11]. While memory is more
dominant § e burstiness in natural phenomena, for human
dynamics the bursty character is mainly due to the varia-
tions in the distribution of interevent ti@@. Furthermore,
the authors of [9] and [10] revealed that Bl pairwise inter-
contact time distributions in human contact networks tend
to fit log-normal distributions better than exponential ones,
asserting the heterogeneity of contacts across any pair of
nodes.

il now, there has been a growing interest in understand-
ing the distribution of pairwise intercontact times in OMNs.
The distribution of pairwise intercontact times have been
thoroughly studied under different realistic mobility models
[13], [14]. Several routing algorithms proposed for OMNs
have exploited pairwise intercontact time distributions when
choosing better message carriers [15], [29], [30]. The authors
of [15] argued that properly identifying the distribution of
pairwise intercontact times can help to improve message
transfers between a pair of nodes. In addition, [29] and [30]
showed that intercontact times can outperform both duration

128500

and frequency of contacts in identifying the dynamics of
node encounters in human contact networks. Furthermore,
[15] and [29] proposed the mean of intercontact times as a
comprehensive metric to evaluate a pair connection strength,
since jg=an reflect both the duration and frequency of the con-
tacts. In this paper, we introduce a closeness metric derived
from thg@nean and variance of pairwise intercontact times
through a fuzzy inference system to evaluate the connection
strength between OMN nodes. Here, a burstiness metric [11]
is considered to assess the variation of pairwise intercontact
time distributions.

B. PROBABILISTIC ROUTING VS. FUZZY ROUTING
ALGORITHMS

In typical probabilistic routing schemes, a delivery pre-
dictability metric is established based on the historical
encounters between a pair of nodes to indicate h(qmely
a future contact will occur between them. Clearly, a higher
delivery predictability of the two nodes indicates a bet-
tergiance between them to meet and exchange messages.
A message is replicated to the encountered node whenever
the node’s delivery predictability to the destination is higher
than that of the camier node (Prophet [31]), or when it is
higher than a ggzEp threshold (FairRoute [32]). By doing so,
the algorithms can achieve a high delivery ratio as well as
satisfying a low delivery cost. Nonetheless, such forwarding
strategies may impose two potential issues, as follows. Firstly,
the algorithms may result in a high message redundancy. For
instance, Prophet always transfers a replica to the encoun-
tered node even though its delivery predictability (to the
destination D) is only slightly higher than that of the current
carrier. Secondly, on the contrary, the algorithms may cause
the diffusion speed of replicas in the network relatively slow.
For example, FairRoute suggests that the nodes having a
delivery predictability higher than 0.5 are considered as good
relays. Consequently, node A with the delivery predictability
Pap = 0.53 will be chosen as a good relay, but not for the case
of node B with Pgp = 0.48. The decision-making problems
emerge in these two cases that because node preferences (as
optimal relays) are defined by utilizing either exact numbers
or crisp thresholds. Due to the uncertainty of information or
lack of complete knowledge, it is hard for the OMN routing
algorithms to express their preferences towards the encoun-
tered nodes based on precise values or crisp boundaries.
Alternatively, it is easier for the algorithms to use fuzzy terms
(linguistic Is) to describe node preferences.

To date, a number of routing algorithms based on fuzzy
logic have been proposed for OMNs [20], [21], [22], [23],
[24]. In [23], routing metrics, namely distance, neighbour
quantity, and relative velocity, were evaluated in four lin-
guistic variables (TFNs) to select good relays in VDTNs.
PaSS [24] uses node similarity metrics, both position and
social similarities, and applies a fuzzy inference system to
choose optimal message carriers. Similarly, FCNS [22] deter-
mines node preferences through fuzzy inference of social
and mobile similarities. Wu et al. [20] proposed FDQLR
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ﬂl combines fuzzy logic with the Q-learning algorithm to
search the best route to the destination. Here, we introduce
a closeness metric deduced from the fuzzy sets of the mean
and variance of pairwise intercontact times to select optimal
relays to the message desggmtion. Furthermore, to enhance
the routing performance, we propose a method to properly
define the membership functions of the FRIQ‘S routing
parameters based on statistical distributions of the inter-
contact times. Nevertheless, none of the abovementioned
fuzzy routing schemes considered statistical distributions of
the routing parameters when constructing the membership
functions. Instead, the related works typically relied on the
authors’ subjectivities when performing such tasks.

C. MEMBERSHIP FUNCTION ELICITATION METHODS
Since the introduction of fuzzy sets [16], one of the main
issues has been with the determination of membership func-
tions. While in classical sets category membership is merely a
yes-or-no choice, in fuzzy sets the idea of graded membership
is considered wheng#sfining membership in a set. A mem-
bership function is used to assign a membership value to a
fuzzy variable. The membership function essen ; captures
all fuzziness for a fuzzy set, and consequently a fuzzy set is
entirely characterized by the membership function. Bec:

of their importance, the development of these funcli()nsg
received a lot of attention from the researchers. A number of
methods for eliciting membership functions have been put out
so far. Ross [18] introduced direct methods to construct mem-
bership functions, such as those based on intuition, inference,
rank ordering, and inductive reasoning. The authors of [19],
[33] discussed several practical techniques used in experi-
ments with the aim of developing membership functions, e.g.,
polling, direct rating, interval estimation, and pairwise com-
parison. However, Dykhta et al. [34] proposed a method to
build membership functions based on mathematical analysis
in the fuzzy set theory.

In general, methodologies to elicit membership functions
can be based on either subjective or objective information
[18], [35], [36]. In the former case, experts’ judgement is
used in the analysis of uncertainty of an event. While this
heuristic approach is simple, but it needs more knowledge or
expertise in the particular area to produce optimal member-
ship functions. On the other hand, a more rigorous technique
to construct membership functions is based on statistical

methods. This objective approach develops @mcmbcrship
function of a fuzzy set whose elements’ features are sta-
tistically known. Specifically, this strategy transforms the
probability distribution function into a possibility distribution
function, which in turn is used to determine a fuzzy set of the
objective information. The relations between possibility and
probability theories have been broadly discussedin [37], [38],
and [39]. Civanlar and Trussell [40] described the techniques
for deriving optimal membership functions for some common
probability density functions, such as uniform and Gaussian
distribution functions. Yet, Pedrycz and Vukovich [36] com-
bined the subjectivegmminions and the associated objective
(experimental) data @Lonslrucl the membership function
@ﬂ fuzzy set. Tamaki et al. [41] proposed a strategy for
identifying membership functions based on the fuzzy obser-
vation data. Methods for develtg membership functions
commonly used in the case of group opinion aggregations
based on a direct rating process have been proposed in [25],
[26], and [42]. In [42] the method generates a symmetric
triangular fuzzy number (TFN), whose mode is given by the
average opinion scores and the spread is determined by the
maximum deviation of various scores from the mean point.
In contrast, the strategies in [25] and [26] build an asym-
metric TFN whose spread is calculated separately for the left
and right sides based on the left and right score deviations
from the average value, respectively. Finally, the studies in
[43] and [44] emphasized the effectiveness of asymmetric
TFNs compared with symmetric TFNs in fuzzy decision trees
and fuzzy regression methods, respectively, for classification
problems. In this paper, we utilize the strategies in [25] and
[26] to develop asymmetric TFNs for the fuzzy sets of the
FRIMF’s routing parameters with reference to the statistical
distributions of pairwise intercontact times.

1ll. SYSTEM MODEL DESIGN

Designing FRIMF comprises three main tasks: calculation of
a closeness metric by the fuzzy inference system, develop-
ment of a method to create optimal membership functions
for the FRIMF's fuzzy parameters based on statistical contact
data, and construction of the forwarding strategy of FRIMF.

A. CALCULATION OF A CLOSENESS METRIC USING THE
FUZZY INFERENCE SYSTEM

One of the main issues of routing in OMNs is how to
evaluate a link between a pair of nodes with intermittent

Fuzzy Rules

Normalized mean
Guy —*

Fuzzification

Burstiness variation

Fuzzy
Inference

Defuzzification | Node closeness
Cu,v

Bu,v

FIGURE 1. Block diagram of the fuzzy inference system of FRIMF routing.
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FIGURE 2. Symmetric TFNs of the FRIMF's fuzzy parameters: normalized mean (G) and burstiness variation (B).

connections. Possible candidates to measure the strength of
a pair connection include contact times, contact frequency,
and intercontact times. Classical routing algorithms typically
rely on a single contact metric when selecting candidate
relays [31], [32]. However, a contact metric may be ineffec-
tive to thoroughly describe the relations between two nodes.
Recent routing schemes exploit several contact metrics when
determining optimal relays [21], [22], [23]. Yet, consider-
ing multiple contact metrics on the routing decisions clearly
increases the algorithm’s complexity. In FRIMF, we condense
the contact information between nodes u and v into a sin-
gle closeness metric Cy,, to comprehensively describe the
connection strength between them. This metric is calculated
based on the mean and variance of pairwise intercontact
times. Furthermore, we hypothesize the contact processes in
social-based OMNSs possess a bursty nature. We introduce
a burstiness parameter [11] to characterize the variation of
pairwise intercontact time distributions, calculated as follows

B =mmt_1)_(at_mt)

T (oo fme +1)  (0r +mp)

(H

where m, and o, are the average and st d deviation of
intercontact times t, respectively. By, has a value in the
bounded range of [1, —1], for 17" is the most bursty contact
event, and **—17" is a perfectly regular contact event between
the two nodes. Clearly, a lower B, ,, is desirable since the two
nodes can meet at a more regular interval, leading to a lower
delay variation of information exchanges between them.

In addition to the burstiness metric, the second parameter
required in the calculation of Cy v is the mean of pairwise
intercontact times, m,. Thigggtatistical parameter represents
the average waiting time of nodes u and v to meet in the
future. We further normalize m; using the Gaussian similarity
function [45] as follows

()
Guy=e \* @)
where s is a scaling parameter for intercontact times, and
Gy, has a value in the range of [0, 1]. Obviously, a higher
G,y 1s more preferable for meggge delivery, since it indi-
cates a higher probability that %cs u and v encounter in
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the near future, leading to a lower average transfer delay
between them. Finally, we employ a fuzzy inference system
to determine the degree of closeness between nodes 1 and
v, Cy v, based on two distinct input variables, namely the
normalized mean G, , and the burstiness vargpon B, , of
the pairwise intercontact times. Furthermore, we adopt the
Mamdani fuzzy system [46] in this fuzzy system due to its
widespread use in various fields. The FRIMF's fuzzy infer-
ence system consists of #free main process blocks (as shown
in Fig. 1): fuzzification, fuzzy inference, and defuzzification.
In the following, we discuss the implementation of each
component of the fuzzy evaluation system in detail.

1) FUZZIFICATION
In fuzzification, the values of inputs of the fuzzy system
are converted to membership degrees of fuzzy sets using the
membership functions. A membership function for a fuzzy
lable x denoted pt(x) maps x to a value that quantifies
gm rship degree of x in a fuzzy set. In our fuzzifi-
cation component, there are gfyo distinct input variables: G
and B, and for each variable we define three differgm fuzzy
sets: low, medium, and high. As a consequence, we need
to develop three distinct membership functions for these
fuzzy sets. In the present case, we select triangular mem-
bership functions due to their low computation in mobile
nodes. Additionally, we consider two different strategies to
create the membership functions, namely a subjective and an
objective method. In the former case, the triangular mem-
bership functions are developed based on our own prefer-
es. For instance, in Fig. 2 (left) and (right) we show
@ membership functions that translate the values of the
normalized mean G and the burstiness variation B, respec-
tively, to membership degrees in three different classes of
symmetric triangular fuzzy numbers (TFNs). Indeed, these
membership functions are simple and straightforward, as they
are defined without taking into account the statistical distribu-
tions of G and B. In the latter case, however, the membership
functions of the FRIMF’s fuzzy parameters are developed
based on contact data (an objective approach). Particularly,
we establish the relevancy between vagueness estimates of
the FRIMF" parameters and statistical distributions of the

VOLUME 10, 2022
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TABLE 1. Fuzzy inference rules.

Rules

SN NNREEE S

IV [
e SRR

It i I hl Fd e e 1]

E=1 E--0 B L = RV B = VR R e

pairwise Intercontact times in a way that finally presents
asymmetric triangular membership functions (we give the
detail discussion of the proposed method in Section IIL.B).

2) FUZZY INFEREMNCE

The essence of fuzzy inference is determined by the fuzzy
rules. We assume that a (encountered) node having a high
normalized mean (G) and a low burstiness vangpion (B) with
the destination is the best message carrier. Based on this
assumption, the fuzzy if-and-then rules are developed, such
as:

« [F normalized mean G is high AND burstiness variation

Bis low, THEN node closeness C is high.

« [F normalized mean G is medium AND burstiness vari-

ation B 1s medium, THEN node closeness C 1s medium.

« [F normalized mean G is low AND burstiness variation

B is high, THEN node closeness C is low.

‘We list all 9 rules to enumerate gl possible FRIMF’s input
conditions in Table 1. This rule set complies with our intuition
towards the node closeness concept in OMNs when the mean
and variance of pairwise intercontact times are considered.
In the fuzzy inference process, we deduce all the rules in par-
allel and then combine all terms in premise to determine
the resulting membership. We use in-max inference of
the Mamdani fuzzy system, where the AND (minimization)
and OR (maximization) operations are applied. In each rule,
we use the fuzzy operator AND between two input variables
(G, B), and the minimum of the two inputs” fuzzy weights
is taken to define the support degree of the given rule in the
cumulative fuzzy set. Subsequently, the aggregate operator
(OR) is used that combines the results of all the rules into
a single fuzzy set. Finally, the aggregated result is ready for
defuzzification.

@DEFUZZIFICATION
e final step of the fuzzy inference system is defuzzification.
Defuzzi@lion is a process of deducing the membership
degrees of afuzzy set into a crisp value. In this case, closeness
C as the output of the FRIMF’s fuzzy evaluation system
s three grades: low, medium, and high. We use triangular
membership functions for the fuzzy outputs as shown in
. 3. The final fuzzy output of closeness C is generated
y defuzzifying from the aggregated result, taking the centre
of area (centroid) of the superimposed membership curve.
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The final (crisp) value of C# is computed as follows
o _ I C-trouput (€) dC
f”()“fp“f (C) AdC

where [Loygpy (C) represents a cumulative membership func-
tion aggregated from the outputs of the associated rules.

c (3)

08 Low
— eiam
osf ——High

o
o

Mambership degree
= =
= o

0 01 02 03 04 05 06 07 08 08 1
Mode closeness (C)

FIGURE 3. Membership functions of the FRIMF's fuzzy inference system
output: node closeness (C).

B. DEVELOPMENT OF MEMBERSHIP%C’HONS BASED
ON STATISTICAL DISTRIBUTIONS OF THE FUZZY
VARIABLES
In this section, we discuss a technique to improve the typical
symmetric triangular membership functions of the FRIMF's
fuzzy parameters in Fig. 2. The identification of member-
ship functions in this section is performed by the mathe-
matical procedure that establishes the relations between a
possibility distribution and a statistical distribution of the
observed parameter. Wjgan both a probability and a possi-
bility distribution deal with some kind of uncertainty and
use the bounded interval of [0, 1] for their measures, they
differ from each other in some sense. For instance, given the
statement “*Michael drinks X cups of coffee f his break-
fast”, a variable X can be related with both a probability
and a bility distribution in dissimilar interpretations as
follows. The possibility distribution function m, () can be
deduced as the degree of ease of Michael is able to drink
x cups of coffee during his breakfast, but the probability
distribution function p, (1) can be interpreted as the likelihood
that he drinks x cups of coffee at breakfast by observing him
for 100 days. Furthermore, from the possibility-probggility
consistency principle by Zadeh [16], an event that has a high
degree of possibility does not necessarily have a high degree
of probability as well, and an event that is impossible to occur
certainly also improbable. Nevertheless, the consistency
principle is not intended as an exact principle where the
conversion between possibility and probability can be calcu-
lated precisely, but rather is a heuristic one thagpfescribes the
principle relations between them. In geneq}ec possibility
distribution function s, (u) is determined to be numerically
equal to the membership function por(u) as

e () = pp(u) 4
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In the present case, the (graded) possibility distribution of
crisp values of agmriable is represented by a triangular fuzzy
number (TFN). fuzzy number F is a fuzz t defined
on the real number and is characterized by a membership
function pup : N — [0, 1]. It satisfies that F is normal,
convex, and piecewise GEtinuous. TFNs are a class of L-R
fuzzy numbers with the membership function has a triangular
form as follows

m—x

1-— L o d=x=m
3 m—a
r(x;a,m,b) = 1_;‘"’, m<x<bh (5)
—m
0, elsewhere

A TFN is generally r sented as (a, m, b), where m denotes
the mode, which is the most possible value of the fuzzy
number (pg (m) = 1), and a and # are the left and right
endpoints, which indicate the left and right distances to the
m@ respectively (pp (@) = pp (b) = 0).

e now propose a method to construct a TFN based on
the strategies in [25] and [26] that aggregated the opinions
of group members in a grading process. In those decision-
making strategies, each individual in a group assessed a
(surveyed) object in a predefined scale, and the collective
opinion was finally obtained gregating the scores of
all the group members. Due to the subjective divergence in
the grading pr , the individuals® opinions were therefore
represented b;}gﬁzy number. Chang et al. [42] utilized a
TFN in a grading process to study an ergonomic issue related
to a video display terminal. A group of individuals were
asked to observe the impacts of character size against viewing
distance by proofreading passages displayed on the screen.
The judgement scores were given by the participants, and
eventually all the scores were converted to a TEN. In that case,
the TFN was assumed to have a symmetric form, whose mode
(m) was given by the mcau?lll the scores, and spreads (a, b)
were simply defined by the maximum deviation from the
mean value. However, the authors of [25] and [26] argued that
the symmetric TFN is ineffective to detect the distribution of
the judgement scores. Alternatively, an asymmetric TFN was
chosen to improve the detection of the observed parameter
distribution in the grading process.

In light of this, for each FRIMF’s fuzzy system input we
build an asymmetric TFN based on the strategies in [25] and
[26] as follows. Initially, we transform the statistical distribu-
tion of (continuous) values of the FRIMF’s input (G and B)
into the frequency distribution of (discrete) crisp scores of a
(surveyed) parameter in a predefined scale. As an example,
in Table 2 we show a chart of the frequency distribution
of the normalized mean G of a hypothetical contact dataset

within a bounded range of [0, 1]. We initially define the
range of values in each bin (in this case, of 0.1), and then
count how many values fall into each interval. Subsequently,
a crisp value x; in each bin is determined that represents all the
values within the given interval. Ultimately, we calculate the
parameters required to construct an asymmetric TFN, namely
mode (m), left spread (a), and right spread (b), based on the
given frequency distribution of the crisp scores x;, as follows.

At first, we discuss how to determine the mode of the
TFN. Calculating the mode of a TFN involves finding the
centre around which all x; gather. Moreover, the ordinary
methods, e.g., in [26] and [42], that consider statistical data
to generate TFNs simply use the average value to define the
mode value. Alternatively, we use the weight determination
technique of [25] in the estimation process and take into
account the frequency distribution of scores x; to calculate
the mode of the TEN, as follows. To estimate the centre of x;,
the pairwise relative distances between any values of x; are
calculated. Afterwards, the pairwise relative distance matrix
D = [d,-).-]ﬂx” is established with d;; = }x,— —_r),-}, and thus
djj = djj and djj = (. The mean of relative distances for each
x; to all other scores x; is calculated as

d; = Z:izl d'-”"‘f’l"/ (z:izlff) -1 ©

This average of relative distance d; measures the proximity
of x; to the centre of the values. Clearly, a smaller d; implies
x; 1s closer to the centre, and thus x; will be assigned with a
higher weight during the calculation of mode m. To define
the weight of x;, a pairwise comparison between x; and x; is
computed based on their average distances as

rij = ai;']&j (7

Next, a pairwise comparison matrix R = [r,-),-] 1s defined,
. ; . . nxn
where r;; is the relative importance of x; compared to x;,
and this implies rjj = 1/rji and rj = 1. We now need to
calculate the weight of x; based on its pairwise comparison
to any other score xj. Since R is achieved from pairwise
gelamce comparison calculations, it is truly consistent, that is,
ere exists a coherent judgement in determining the pairwise
comparison of the weight of x;. Suppose w; be the actual
weight of x; and has a value of [0,1]. Due to the consistency
of R, we are able to define rij in (7) as
wi ..
rij=—, Vij (8)
wj
Further, we establish w as a column vector of w;, and from (8)
we can define

Rw = nw (9

TABLE 2. An illustrative of a frequency distrit of the lized mean (G) of a hypothetical contact dataset.
Interval (G) 0.0-0.1 | 0.1-0.2 | 0.2-0.3 | 0.3-0.4 | 0.4-0.5 | 0.5-0.6 | 0.6-0.7 | 0.7-0.8 | 0.8-0.9 | 0.9-1.0
Crisp value (x;) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Freg. (f;) 39 19 35 47 10 75 45 83 106 191
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where n and w are an eigenvalue and eigenve@ of R,

respectively. Moreover, given that "7 w; = 1, w is then
solved, where the weight of x; is calculated as follows
1
Wi = i=1.....n (10)

] Lt
D T
with w; represents the significant degree of x; in t nlcula-
tion of the mode m. Finally, the mode m of the TFN 1s defined

as
n
m= Z:‘:l WiX; (11)

After obtaining the mode m, we ngggneed to compute E
spreads of the fuzzy number, that is the left (a) and right (b)
endpoints of the TEN. The calculation initially requires the
E()wledge of deviation (o) of the fuzzy number. From [25],

e mean deviation of a TFN (a, m, b) is typically calculated
as

fb |x —m| .pp (x) dx
o= 3 (12)
o 1F (x) dx

For pr(x) be a triangular membership function, (12) can be
solved as

E}
(m—a)? + (b —m)*
= 13
7 30 —a) 13
Let ¢ be the fraction between the left and right spreads as
m—a
= 14
= (14)

From (13) and (14),
TFN are solved as

e left (a) and right (/) endpoints of the

3(1
a=m_(+7(ﬁ'):ﬂf (15)
1+ p=
3(1 + ¢)o
b=ﬂI+W (16)

To calculate a and b, both o and ¢ are required to be known
at first. An approximation strategy is then used to solve these
parameters. Firstly, to approximate o, a mean deviation s
is computed from the given scores x; and their respective

weights w; as
n
g 5= E ) 11;\",-|Jr,-—ﬂ'1'|
I=

(17)
Secondly, ¢ is calculated as follows: to ;lppr()ximalleg left
(a) and rig (b) endpoints of the TFN, we initially define
x' and x" be the weighted mean of the scores x; that are
below and above m, respectively, at the a— cut (see Fig. 4).
Moreover, let

36
M~ ={ilx;=m, 1 €I}
and
MT ={ilx; =m,iel}

for I = {1, ..., n}, the computation of x' and x" are given as

I _ ZI"GM’_ WiXi (18)
Diem- Wi

X
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FIGURE 4. The left and right spreads of a TFN (a, m, b) at «-level.

o Diem+ Wiki
Diem+ Wi

since x' and x” are defined at the same a—level, from (14) el
can be approximated as

X (19)

m — .‘({

= (20)
X —m

Finally, we apply the proposed membership function elic-
itation melh()can realistic node mobility scenarios. In the
present study, we consider two real human contact datasets,
namely Haggle [47] and Reality [48], which represent the
short-term and long-term human behaviours in their social
environments, respectively. The Haggle dataset reggrded the
contact events of 41 participants of the 2005 Infocomm
conference lasted for 3 days in Miami, USA. However, the
Reality trace captured the mobility of 97 students and staffs
in the MIT campus during an academic year. In general, our
proposed method works in any human mobility model as
long as the node contacts follow certain probability distribu-
tions reflecting their social relationships. However, this is not
the case for catastrophe or disaster scenarios, where human
movements are sporadic and frequently random [49].

To build TENs for the FRIMF's fuzzy parameters (G and
B), we firstly need to know the frequency distributions of the
normalized mean and burstiness variation of pairwise inter-
contact times, respectively, for each contact dataset. Using
a data mining technique, we gather information of pairwise
intercontact times from all nodes across the given dataset.
Using this knowledge, we calculate the burstiness metric
(B) and the normalized mean (G) for each pair of nodes
in the dataset using (1) and (2), respectively. Afterwards,
we construct Table 2 for each parameter by initially defining
the bin interval and next counting how many values fall into
each bin. After the binning process, we portray the frequency
distributions of the discrete (crisp) values of G; and B; for
Haggle and Reality in Figs. 5 and 6, respectively (in this case,
we use the bin interval of 0.1 for both G and B distributions).

From Figs. 5 (left) and 6 (left), we notice that both the
datasets exhibit almost a similar characteristic in terms of
the statistical mean distribution. Particularly, the number of
nodes having a high normalized mean of intercontact times
with their peers is large in both the datasets. In other words,

128505




IEEE Access

1
B. Soelistijanto: Construction of Optimal Membership Functions for a Fuzzy Routing Scheme in Opportunistic Mobile Networks

Haggle

Freg. Norm. Mean E{GI:

mmﬂﬁﬂﬂ

ol 02 03 04 06 06 07 08 08 1

G

0

Haggle
—

18 T T T T

Freq. Burstiness ﬂBil

|- .—..—.|—||_||—||_|H H m.. |

<1 05080 060504030201 0 01 0203 0405 0E0TOR0E 1

[

FIGURE 5. Frequency distributions of the discrete (crisp) values of the normalized mean (G) and burstiness
parameter (B) of pairwise intercontact times in the Haggle dataset.
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FIGURE 6. Frequency distributions of the discrete (crisp) values of the nommalized mean (G) and burstiness
parameter (B) of pairwise intercontact times in the Reality dataset.
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FIGURE 7. Asymmetric TFNs of the FRIMF's fuzzy parameters: normalized mean (G) and burstiness variation

(B) in the Haggle dataset.

in both the mobility scenarios many individuals have very
close relationships with their mates/colleagues (shown by a
high value of G or alow average intercontact time). However,
if we notice the frequency distributions of the burstiness
variation in Haggle and Reality in Figs. 5 (right) and 6 (right),
respectively, it is clear that the contact events possess a bursty
nature, indicated by the majority of B values are larger than
zero. This also agrees with the work in [11] that confirmed the
bursty characteristic in the interevent distribution in human
dynamics.

Based on the frequency distributions of the normalized
mean and the burstiness variation of pairwise intercontact
times in Figs. 5 and 6, we construct TFNs for both G and
B in Haggle and Reality, respectively. We use the estimation
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method that exploits the weight determination technique
of (6)-(20) to calculate the mode (m) and the spreads (a, b)
of the TFN for G and B for each contact dataset. Finally,
we show the obtained asymmetric TFNs (in solid black lines)
for G and B in Figs. 7 and 8 for Haggle and Reality, respec-
tively. These TFNs are fuzzy sets that represent the (graded)
possibility distributions of G and B in the given dataset.
We next categorize these TFNs as the fuzzy set of a medium
(or ordinary) class. Given that we defined three classes for
each FRIMF’s fuzzy system input (low, medium, and high)
in the previous section, we now need to create the remaining
ones. We determine the fuzzy sets for the low and high classes
using the definition in [41], as follows. Let §; and §;4, be
adjoining two fuzzy sets with an overlapped area (where S;
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FIGURE 8. Asymmetric TFNs of the FRIMF's fuzzy parameters: normalized mean (G) and burstiness variation (B) in the

Reality dataset.
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FIGURE 9. A brief sc io of delegation forwardi

and Sy are defined in the real number M). Therefore, for
Vx € §iNSiyy,

pi (x) + pigy (1) =1 (21)

holds, where p; (x) and gy {g represents the membership
degree of a variable x in the fuzzy sets i and i+ 1, respectively.
Since the fuzzy set of the medium class has already been
known, we can easily define the fuzzy sets of the low and high
classes using (21). As a result, we show the attained fuzzy
sets of the low (in green dashed lines) and high (in red dotted
lines) classes for both G and B in Figs. 7 and § for Haggle and
Reality, respectively. In Section IV.1., we will examine the
delivery performance of FRIMF using the typical symmetric
TFNs in Fig. 2 compared to that of FRIMF utilizing the
enhanced asymmetric TFNs in Figs. 7 and 8 for Haggle and
Reality, respectively.

C. CONSTRUCTION OF THE FRIMF FORWARDING
STRATEGY

We now arrive at the final part of desi]g the FRIMF
routing algorithm. Here, we discuss how a message is relayed
hop-by-hop from the source to the destination effectively.
To achieve this goal, a hill-climbing heuristic search is
applied, where in each hop the ing algorithm greedily
maximizes the utility function (1.e., the closeness to the
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destination) based on the node’s local knowledge. That is,
when a contact occurs, the current node A calculates its
closeness value to the destination D, and forwards its (copy)
message to the peer B only when the B’s closeness value is
higher than A’s (Cp.p = Cj4_p). Furthermore, to improve
the heuristic routing performance, we add two properties in
the forwarding decisions, namely social transitivity [50] and
delegation forwarding [51].

Firstly, we exploit the transitive property ofgfigial networks
to increase the message delivery likelihood 1n the network.
When node A has a strong relationship with node B, and B
has a high correlation with D, then A is more likely to be a
good relay of messages destined for D. Equation (22) below
shows how the transitivity now affecting the calculation of the
closeness of A towards D, with g € [0, 1] controls the impact
of transitivity in the overall computation.

Cap=Cap+(1—-Cap).CapCppp (22

Secondly, to decrease @numbcr of message copies dis-
tributed in the network, we apply the delegation forwarding

F) [51] on the FRIMF’s routing decisions. DF implements

e optimal stopping theorem from the probability theory.
‘We briefly discuss how DF works based on a simple sc@rio
in Fig. 9, as follows. Node § (source) initially pl‘oducesﬂ]cw
message M with the forwarding threshold (FT) is set to ©0”.
During its mobility, § meets node (. Since the G’s closeness
value (Cg. p = 0.5) is higher than (Cs.p = 0.3), § then
updates the M’s FT value the G's closeness value and
promptly sends a copy of M to G. In the subsequent contact,
S encounters A whose closeness value (Cq_p €JP.4) is higher
than that of §. However, S does not forward the message to
A, since the A’s closeness value is lower than the FT value
of M. Lastly, S has a contact with node K whose closeness
value (Cg p = 0.6) is higher than both the §'s closeness
value and the M’s forwarding threshold. S then updates the
M’s FT value with the K’s closeness value and transfers the
message to K.

To summarize how FRIMF works, we construct
ggorithm-l to  describe our proposed scheme
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in detail.! During the warm-up time, each node in the network
records its contact history with its peer nodes. When the
training phase terminates, the node calculates the normalized
mean (() and the burstiness variation (8) for each previously
contacted node. Through the fuzzy evaluation system in
Fig. 1 and also considering the given TFNs for both FRIMF’s
parameters in the particular contact dataset, the node infers its
closeness degree to each peer. During the forwarding phase,
when a contact occurs, the node computes its closeness value
to the (message) destination using (22), and then exchanges
this value to the encountered node. When the peer’s closeness
value is higher than both the current node’s closeness value
and the message’s forwarding threshold value, the current
node promptly replicates the message to the peer.

Algorithm 1 The FRIMF Forwarding Scheme (Node A)

Input: TFNg, TFNg for the given contact dataset
The warm-up phase:
Begin
collect enough information about the pairwise intercontact
times with all peers;
For (each peer) do
compute Gr‘n.gwr and Br‘n.pﬂ‘r;
compute Cr‘n.gwr = fuzzy (Gf‘n.gwr‘ TFNG~Bf1.;wr~ TFNg):
End for
End
The message forwarding phase:
when a contact occurs with node B, and A decides to forward
a message M destined for D;
Begin
send Ca p:
receive Cp p:
update Cy ;, based on the knowledge of Cg p;
K ((Cpp > Cyp) A (Cpp = FTy)) then
update FTyy with Cg p:
sends a copy of M to the peer B;
End if
End

IV.g3IMULATION RESULTS AND DISCUSSION

A. PERFORMANCE EVALUATION OF THE FRIMF
ALGORITHM

This section focuses on comparing the delivery performance
of FRIMF when the routing parameters are fuzzified using
the symmetric TFNs in Fig. 2 to that when the parameters are
fuzzified using the asymmetric TFNs in Figs. 7 or 8, depend-
ing on the chosen contact dag@get. For simulations, we adopt
the ONE simulator [27] and real human mobilig@scenarios,
namely Haggle [47] and Reality [48]. In these simulations,
the number of nodes and the duration of simulation time gry
depending on the mobility settings: we use 41 nodes with
the simulation time of 3 days for Haggle, but for Reality we
consider 97 nodes with the simulation period of 16 weeks.
In order to provide an opportunity for nodes to gather the
information of pairwise intercontact times with all the peers

'For the detail implementation of FRIMF in the ONE simulator, please
refer to https://github.com/soelistijanto/FRIMF
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in @nctwm‘k, 30 per of the simulation time is used as
a warm-up phase. Thcm'cr size of nodes and the size of
messages are set to 20MB and 10kB, respectively. Each node
generates messages to uniformly, randomly chosen destina-
tions at a rate of 3 messages p@our for all scenarios, and
for each new created message the time-to-live (TTL) is set
to 6 hours and 1 week for Haggle and Reality, respectively.
Finally, we concentrate on the following evaluation metrics
for FRIMF’s performance analysis:

. |lclivcry ratio: the fraction of total delivered messages
to the number of messages created during the simulation

time.

« Average latency: the mean time from %crcation of
a message in the source until the forwarding it to the
destination.

o Overhead ratio: the cost to successfully transfer a mes-
sage to the destination, calculated as the total forwarded
(message) copies divided by the total delivered mes-
sages

« Total forwards: the total number of replicas created and
forwarded during the node contacts throughout the sim-
ulation time.

Before we investigate the delivery performance of FRIME,
we firstly discuss the characteristic of closeness (C) as the
output of the FRIMF's Mamdani fuzzy inference system
with two different input variables: normalized mean (G) and
burstiness variation (B). Using the MATLAB’s function gen-
surf, we portray the output surface of closeness in Fig. 10 for
two distinct cases: the first one is FRIMF when the input
parameters are fuzzified using the typical symmetric TFNs
in Fig. 2 (hereafter, we refer to this as symmetric-TFN), and
the other one is that when the fuzzification uses the improved
asymmetric TFNs in Figs. 7 and 8 for Haggle and Reality,
respectively (hereafter, we call this asymmetric—=TFN). From
Fig. 10, we notice that in the case of asymmetric—TFNs, the
closeness (C) is very low and is insensitive with the change
of burstiness variation (B) when the normalized mean (G)
is less than 0.4 in both mobility scenarios. However, for all
the cases (both symmetric-TFN and asymmetric-TFN), the
closeness reaches its highest value when the normalized mean
is high and the burstiness varial is low (B < 0). In other
words, the tie strength between two nodes is high whenever
the average separation time between consecutive contacts
is low (indicated by a high value of G) and the contacts
follow a more regular pattern (represented by a negative value
of B). Subsequently, the impact of considering symmetric
and asymmetric TFNs in the calculation of closeness (C) is
investigated in terms of FRIMF's delivery performances, as
follows.

We discuss the performance of FRIMF according to the
provided evaluation metrics. In Figs. 11 and 12, we plot
the delivery performance changes of symmetric-TFN versus
asymmetric-TFN as the number of node contacts increase
in Haggle and Reality, respectively. From the figures,
we observe almost similar performances of both schemes
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FIGURE 10. Output surfaces of closeness (C) derived from the FRIMF's Mamdani fuzzy inference system with
two input variables: normalized mean (G) and burstiness variation (B), for two different cases: symmetric

and asymmetric TFNs (Haggle and Reality).
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FIGURE 11. Delivery performances of FRIMF, comparing symmetric-TFN and asymmetric-TFN in four

evaluation metrics in Haggle.

44
i terms of delivery ratio and average latency in the given

mobility scenarios. qaggle, both symmetric-TFN and
asymmetric—TFN are able to deliver the messages to the desti-
nations in about the same success rate; yet, asymmetric-TFN
performs somewhat better in Reality. Additionally, we also
see slight variations in the delivery latency of the two schemes
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in both mobility schemes, suggesting that both of them are
able to maintain roughly a similar delivery time. In contrast,
we notice clear performance differences between symmetric—
TFN and asymmetric-TFN in terms of delivery cost, eval-
uated in overhead ratio and total forwards, in both Haggle
and Reality. In this case, asymmetric-TFN can significantly
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FIGURE 12. Delivery performances of FRIMF, comparing symmetric-TFN and asymmetric-TFN in four

evaluation metrics in Reality.

reduce the number of copies forwarded during the node con-
tacts, indicated by a lower total forwards. With the low num-
ber of forwards combined with a delivery ratio that is as high
as that of symmetric—TFN, asymmetric—TFN is thus superior
to symmetric-TFN in the overhead ratio performance. This
demonstrates the effectiveness of FRIMF with asymmetric
TFNs in transmitting messages to the intended recipients.
Thanks to the improved asymmetric TFNs, the routing algo-
rithm carefully selects a small number of optimal carriers
that can quickly transfer the messages to the final targets.
To sum up the discussion, Table 3 compares the benefits
and drawbacks of the subjective approach with those of the
objective technique for developing membership functions for
the FRIMF fuzzy parameters.

B. COMPARING FRIMF WITH OTHER ALGORITHMS

In this section, we benchmark FRIMF against other OMN
routing schemes. For this purpose, we consider Prophet [31],
FuzzyCom [52] and Epidemic [53]. We choose Prophet
because of several reasons, as follows: first, Prophet is a clas-
sical, but prominent probabilistic routing scheme for OMNs;
second, both Prophet and FRIMF @gga single routing met-
ric derived from contact statistics to define the connection
strength between a pair of nodes; finally, we need a fair
performance comparison between routing decisions based
on probability measures (Prophet) and those based on fuzzy
terms (FRIMF). Subsequently, to have a reasonable bench-
mark with other fuzzy routing algorithms, we select Fuzzy-
Com for the following reasons: figgglike FRIME FuzzyCom
merely uses encounter data as @ input variables of the
fuzzy inference system: second, while FRIMF only takes
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into account a single contact metric, namely intercontact
times, to determine the closeness degree of a pair of nodes,
FuzzyCom considers a number of contact metrics, including
frequency contact, intercontact times, and longest contact
separation; thus, we can investigate the performance differ-
ences of utilizing one contact metric against using numerous
contact metrics; third, FuzzyCom ignores the contact infor-
mation when defining the membership functions and sim-
ply uses symmetric TFNs for its routing metrics (subjective
approach), while FRIMF uses asymmetric TFNs derived from
the statistical distributions of intercontact times (objective
method); finally, both FuzzyCom and FRIMF apply delega-
tion forwarding (DF) in order to reduce the replicas forwarded
during the node contacts. Lag#ly, in addition to Prophet and
FuzzyCom, we also consider the flooding-based strategy Epi-
demic as lheqnchmm‘k, since theoretically it has the best
performance 1t terms of delivery ratio and latency when the
network re@furces are supposed to be unlimited.

We now discuss the delivery performance of FRIMF com-
pared with that of the given benchmarks in the Haggle and
Reality scenarios. For FRIMF, we only consider in the case
of asymmetric-TFN. For simulations, we use the ONE sim-
ulator with the simulation settings similar to those in the

1ous section. For each algorithm, we run the simulations
times with different random seeds for both mobility sce-
narios. We eventually present in Figs. 13 and 14, for Hag-
gle and Reality, respectively, the delivery performances of
FRIMF and its benchmarks evaluated in the given evaluation
metrics. rms of delivery ratio, we see that FRIMF can
maintain performance levels that are fairly comparable to
those of Prophet and FuzzyCom in both scenarios, whereas
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1
B. Scelistijanto: Construction of Optimal Membership Functions for a Fuzzy Routing Scheme In” Opportunistic Mobile Networks

IEEE Access

TABLE 3. Pros and cons of the subjective approach vs. the objective approach of the membership function elicitation methods in FRIMF.

Subjective approach
(sy ic-TFN)

Objective approach
(asymmetrie-TFN)

Methods

sin‘JpIc, straightﬁ.}m'ard

using mathematical procedures

Required prior knowledge

our assumptions/subjective preferences

statistical distributions of the pairwise intercontact
times

Challenges in real-life OMN no/less effort

settings

a non-trivial task in collecting pairwise contact data
from all the mobile nodes

Routing performances

less efficient (a larger number of forwards)

more efficient (fewer created replicas)

Hagghe
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FIGURE 13. Delivery performances of FRIMF compared with those of the given benchmarks in four

evaluation metrics in Haggle.

Epidemic excels in this performance metric (yet, Epidemic
as a flooding-based strategy never achieves its ideal
formance of 100% success rate in these circumslamces@c
to the restricted resources of the network nodes). However,
heuristic-based routing techniques, such as Prophet, Fuzzy-
Com, and FRIME are capable of successfully delivering the
messages with a probability that is H to that of Epidemic.
Furthermore, FRIMF performs er than Prophet and
FuzzyCom in terms of delivery delay in Haggle: yet, in Real-
ity FRIMF slightly increases the delivery times beyond those
of Epidemic and Prophet. However, FRIMF outperforms all
the benchmarks in terms of delivery cost, as determined
by the overhead ratio and total forwards. FRIMF produces
the fewest total copies forwarded during node interactions
while maintaining the delivery success rate at levels that are
somewhat similar to the benchmarks. As a result, FRIMF
retains the lowest overhead ratio in both scenarios. In par-
ticular, when contrasted with Prophet, this shows that the
fuzzy-based routing decisions of FRIMF are superior to the
probabilistic routing decisions made by Prophet. This implies
that the FRIMF's fuzzy inferences are more effective than the
Prophet’s probabilistic estimates at determining the strength
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of pair connections, thus enabling FRIMF to choose fewer
optimal carrigeeafor a given destination. Finally, the use of
DF to lt)werg number of replicas has a little impact on
the FRIMF’s overall delivery performances, as it can keep
both the delivery ratio and delay that are on par with those of
Prophet.

Finally, when compared to FuzzyCom, the superior per-
formance of FRIMF can be analyzed in several viewpoints,
as follows. First, it demonstrates that a single contact metric,
namely intercontact times, which is used by FRIMEF, can
outperform multiple encounter metrics used by FuzzyCom in
defining the connection strength between a pair of nodes. This
is further supported by the findings in [29] and [30] which
showed that intercontact times can surpass both duration
and frequency contacts in assessing the dynamics of human
relations in OMNs. Second, opposed to FuzzyCom, which
uses the symmetric TFNs to fuzzify its routing parameters,
FRIMF can more effectively transport the messages to the
destinations thanks to the use of the asymmetric TFNs devel-
oped based on the contact information. This again verifies
that the objective strategy of developing membership func-
tions for the routing parameters indeed improves the delivery
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FIGURE 14. Delivery performances of FRIMF compared with those of the given benchmarks in four

evaluation metrics in Reality.

performance of OMN fuzzy routing algorithms. Lastly, it is
evident that the usage of delegation forwarding (DF) in
FuzzyCom and FRIMF can reduce the total forwards below
those of Epidemic and Prophet. Nevertheless, this consider-
able drop in delivery cost has less of an impact on FRIME
allowing it to rise the delivery ratio and latency performances
beyond those of FuzzyCom.

V. CONCLUSION

The fuzzy routing scheme called FRIMF was proposed in this
paper. It takes advantage of node closeness to select the most
suitable message carriers for a particular destination. A fuzzy
inference system was used to determine the strength of a pair
connection based on the normalized mean and the burstiness
variation of pairwise intercontact times. In order to enhance
the transmission en@ronment, we further developed a method
to create optimal Embcrship functions for the FRIMF's
fuzzy parameters based on the statistical distributions of pair-
wise intercontact times. Eventually, asymmetric TFNs were
obtained, and these functions were then employed to properly
characterize the fuzzy sets of the FRIMFjgggarameters. Sim-
ulation results, which were based on the re: man contact
traces, showed that the asymmetric TFNs can improve the
delivery performance of FRIMF with the typical symmetric
TFNs defined based on our subjective preferences. Finally,
FRIMF outperformed all the given algorithm benchmarks,
in terms of delivery cost and latency.
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