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Abstract—Opportunistic mobile social networks (OMSNs) exploit
human mobility to physically carry messages to the destinations.
Routing algorithms in these networks typically favour the most
popular individuals (nodes) as optimal carriers for message
transfers to achieve high delivery performance. The state-of-the-
art routing protocol BubbleRap uses a cumulative moving
average technique (called C-Window) to identify a node’s
popularity level, measured in node degree, in a time window.
However, our study found that node degree in real-life OMSNs
varies quickly and significantly in time, and C-Window moreover
slowly adapts to this node degree changes. To tackle this
problem, we propose a new method of node degree computation
based on the Kalman-filter theory. Using simulation, driven by
real human contact @ , we showed that our approach can
increase BubbleRap’s performance, in terms of delivery ratio
and traffic (load) distribution fairness.

Keywords: node degree, cumulative moving average, Kalman-filter
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In recent years, opportunistic mobile networks (OMNs)
have gained popularity in research and industry as a natural
evolution from mobile aahoc networks (MANETs). OMNs
maintain the MANET’s basic features of cost-efficiency and
self-organization, as nodes still self-organize in order to build
multi-hop message transfers without requiring any pre-existing
infrastructure. However, they completely redesign the
characteristics of networking protocols proposed in MANETS,
making them able to support the absence of a stable path
between pairs of nodes that wish to commuilifite. In these
networks, forwarding is not “on the fly” since the relay nodes
store the messages when no forwarding opportunity exits and
explof#l their mobility to increase message delivery probability.
This forwarding paradigiid is known as store-carry-forward,
and in OMNs node mobility creates opportunities for
communication; in contrast, in MANETs node mobility is
viewed as a potential disrupn. Morcover, OMNs are delay-
tolerant in nature since contacts between nodes occur
unprediclébly because the node’s movement is effectively
random. Technological advances are leading to a world replete
with moac devices, such as cellular phones, notebooks and
gadgets, thus paving the way for a multitude of opportunities
for device contacts. Examples of OMNs include animal
wildlife monitoring networks [1], vehicular networks [2], and
mobile human (social) networks [3].

INTRODUCTION
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This paper focuses on opportunistic mobile social networks
(OMSNSs) (called social pocket switched networks in [3]), a
specific scenario of OMNs that exploits contact between
mobile devififs carried by individuals to enable message
forwarding. As the mobile devices are carried by humans,
knowledge of social behaviour and structure can be one of the
key information sources for designing and providing efficient
and effective routing protocols. Moreover, the authors in
[4,5,6] showed that humans tend to move in a way that is
influenced by their social relations. Consequently, social-based
routing algorithms, e.g. [7,8,9], use structural information of
individuals in the social network to select optimal carriers for
message transfers. In general, we can identify two main
properties involved when social-aware routing algorithms
make forwarding decisions, namely social closeness and global
popularity. Social closeness exploits a strong (social) relation
between two nodes to increase message delivery probability:
during a node contact, if either the current node or the
contacted node has knowledge of the message destination, the
algorithlmlects the encountered node as a carrier of the
message if it is socially closer to the destination, ¢.g. the node
is in the same community (social clique) with the destination.
However, when the destination is unknown to both nodes, the
routing algorithm routes the message to a more globally
popular node.

This paper aims at improving node (global) popularity
calculation in OMSNs. Our contribution in this paper is
twofold: first, we confirm that in a real scenario of OMSNs,
node popularity varies rapidly and significantly in time.
Therefore, detecting a node’s popularity level at a time is a
non-trivial task in this setting. Indeed, properly identify an
instantancous node popularity is required to keep the routing
algorithms’ performances high. A prominent social-based
routing algorithm in the literature, BubbleRap [7], uses a
cumulative moving average technique (called C-window) to
calculate a node’s popularity level (measured in node degree)
in a time interval (or time window). However, we show that the
C-Window calculation slowly adapts to the node popularity
changes and hence disregards the existence of the fast,
significant variations of node popularity in real-life OMSNs.
Our second contribution is therefore we propose a new method
of OMSN node popularity computation based on the Kalman-
filter theory [10]. In mobile communication networks, Kalman-
filter has been used in [11,12] to achieve a more accurate




prediction of the evolution of the context of a host (mobile
device), such as battery level, storage space and connectivity
change rate. Our work, to the best of our knowledge, is the first
one that applies Kalman-filf@Jon node popularity calculation in
OMSNs. Using simulation driven by real human contact traces,
we furtherm@s show that our approach can increase
BubbleRap’s performance, in terms of delivery success ratio
an ffic (load) distribution fairness.

The rest of the paper is organized as follows. In Section II,
we discuss OMSN node popularity change characteristics. Our
proposed method of node popula computation based on the
Kalman-filter theory is given in Section III. Section IV
describes the performance improvement of BubbleRap when it
applying our method in real-life OMSNs. Finally, Section V
concludes the paper.

II. NODE POPULARITY CHANGE CHARACTERISTICS

In social network analysis (SNA), node popularity in a
(social) neffllork can be evaluated by a centrality metric.
Centrality can be seen as a quantitative measure of the
structural importance of a given node withinfflje graph, c.g. the
Freeman’s centrality metrics [13], ie degree centrality,
betweeness centrality and closeness centrality. Degree
Bntrality, the simplest one, is defined as the number of links
incident upon a given node. It is a locfmetric as it is only
determined by the number of neighbours of the node. The other
two are based on measuring shortest paths to quantify the
relevance of a node. On the one hand, there is closeness
centrality, which can be defined as the total geodesic (i.c.
shortest path) distance from a given node to all other nofs. On
the other hand, there is betweeness centrality that can be
defined as the number of shortesE}ths passing through a given
node. Both centrality metrics take into account the global
Bucture of the network; therefore, their computations require
complete network information, which is not normally available
in the networks with very long transfer delays, such as

OMSNSs.

In OMSNs, the most popular individuals (hub nodes) can
be seen as good candidates to be relay nodes for message
transfers. In these networks, node popularity depends on a
node’s own social behaviour, which in turn depends on its
sociability level or mobility pattern in the network. A higher
sociability level or mobility rate results in a node that is more
popular in the network and hence is a better candidate to act as
an information carrier. In practice, this measure can be
quantified by 1§Eling at metrics such as connectivity change
rate [11,14] or the number of distinct nodes encountered in a
given time interval [7]. In the literature, the latter is equal to the
node degree centrality (or node degree in the graph theory) in
an aggregated contact graph. Moreover, BubbleRap [7] uses
the C-window technique for determining node degree in a time
interval (or time window). This technique is a cumulative
moving average that determines node i’s degree value in a time
window ¢, denoted d,(t), by calculating the node degree value
averaged over all previous time windows as follows

d(t) = avg(dy(t = 1), di(t—2),.., d;(0)) (1)
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Fig. 1. The changes of popularity level (measured in node degree) of an
illustrative hub node (upper) and non-hub node (lower) in Reality

However, our following investigation shows that node
popularity in real-life OMSNs varies rapidly and significantly
in time; it is therefore important to consider these
characteristics when calculating a node’s popularity level at a
time.

In this study, we use a real human contact dataset, namely
Reality [15]. This dataset captured academic activities of the
students and staffs of Massachusetts Institute of Technology
(MIT) over an academic year. In Fig. 1, we depict the changes
of node popularity level, measured in node degree, of an
illustrative hub node and non-hub node in Reality. | a
node’s degree value in a time window is calculated as the
number of distinct nodes encountered aggregated in a 6-hour
time interval: we choose this calculation since we agree with
the authdBJof BubbleRap in that human daily life intuitively
can be divided into 4 main periods: morning, afternoon,
evening and night - each almost 6 hours.

Fig. 1 shows that the popularities of both nodes wvary
rapidly in time, with the significant changes mainly occur in
the hub node. Furthermore, as we show later in Section IV.B,
the C-window calculation (1) fails to capture this such changes
of node degree in OMSNs. This therefore motivates us to
improve the C-window method of BubbleRap, and eventually
we propose the Kalman-filter prediction technique [10] used to
estimate a node’s degree value at a given time interval.
Kalman-filter was origglally developed in the control systems
theory. The technique is the minimum-variance state estimator




for linecar dynamic systems with Gaussian noise. Even if the
noise is non-Gaussian, Kalman-filter is the best linear estimator

[16].

[1I. NODE POPULARITY CALCULATION USING KALMAN-FILTER

We now discuss a new approach of OMSN node degree
computation using the Kalman-filter prediction technique. In
this method, node degree values in all previous time windows
are considered as a discrete time series. SubsequerfEl) they are
treated as inputs to the Kalman-filter system in order to
estimate a node’s degree value in the current time window. We
now show oufffiftimation model derived based on the Kalman-
filter thed€). We use a state space model [17] to describe our
problem. A state space model for a time series ¥; is composed
of the following two scalar equations. The first one is the
observation equation as follows

=X+ W, =12, ...
with W, = WN(0,Q,) isEhhite noise with zero mean and

variance @;. The second one called the state equation is the
following

Xepp= X, 4+ V,, =12, ...

with v, BJWN(0, R,). We assume that V, is uncomrelated with
W, and the initial state X; is uncorrelated with all of the noise
terms V, and W,. We now briefly describe the derivat{Eh of the
Kalman-filter prediction for this state space model. With the
notation of P, (X), we refer to the best linear predictor of X in
term of ¥ at time ¢ as follows

P(X)= P(X| Yy Y, Yy, Y,)
From [18], it is possible to prove that the one step predi

X, =P,_,(X,) and its covariance (I, = E[(X[— Xt)z] are
determined by these initial conditions

Xl = P(X1|Yy)
0,=E [(X1 - Xl)z]

and this recursive equation

~ -~ n -~
Xy =X + ﬂt‘:Rt ¥ —Xp) (2)
with
1‘2
244 =ﬂt+Qt_m
3 t

We eventually use (2) to calculate a node’s popularity value at
time window t as follows: given the previous observed node
degree value at time window t— 1, denoted d;_;, and the
predicted node degree value at time window t — 1, denoted
d,_1. the node degree value at time window t, d,, is estimated
using (2).

TABLE L. The simulation main parameters

Simulation Parameters

Mobility scenario Reality Sassy
Number of nodes 100 25
Simulation time 16981816 sec 6413284 sec

(~ 196 days) (~ T4 days)
Msg. creation interval ~ 12 msgs/'h ~ 6 msgsh
Node buffer size 20 MB
Message TTL 7 days
Message size 10kB

IV. PERFORMANCE EVALUATION

A. Simulation Setup

To investigate the performance of our proposed method of
node degree computation, we cuns BubbleRap routing [7].
BubbleRap was developed based on two aspects of society:
EEdumunity and popularity. Community is defined as a subset
of nodes with stronger connections among themselves than
towards other nodes. It usually implies a social group, e.g.
friends, familyB8-workers etc. Consequently, in this algorithm
cach node has global popularity in the entire network and also
local popularity within its community. When either a node or
its contact is in the message destination’s community, local
popularity is considered in the forwarding decision. However,
when the destination is unknown to both nodes, the algorithm
selects the contacted node as a carrier of the message if its
global popularity is higher than the current node’s. BubbleRap
uses node degree to quantify both node global and local
popularities. Here, node degree is determined as a count of the
unique nodes seen by the node durif{Eh certain time window. A
cumulative moving average (C-window) technique 18
subsequently used to smoothing the value of node degree.

In this paper, we only focus on improving node global
popularity caleulation in OMSNs: we improve BubbleRap by
applying Kalman-prediction on the computation of node global
popularity (hereafter, we call this improved algorithm Bubble-
Kalman). In consequence, to calculate node local popularity in
a given community we follow BubbleRap that uses C-window.
Finally, we compare the delivery performance of BubbleRap
with that of Bubble-Kalman in real-lifg.OMSNs.

We implement both algorithms using the ONE simuf§f
[19], an event-driven simulator for opportunistic networks. The
main simulation parameters for the evaluation are given in
TABLE 1. The number of nodes and the length of simulation
time vary depending on the node mobility scenario. For the
simulation’s node mobility scenario, we use realf@iman contact
data traces, namely Reality [15] and Sassy [20]. In Reality, 100
smart phones were deployed among the students and staffs of
MIT over period of 9 months. It captured academic activities in
the campus over an academic year. In contrast, the Sassy trace
was collected using a mobile sensor network with TMote
invent devices carried by 25 participants f@m the University of
St. Andrews for period of 74 days. For community detection,
we use the k-clique distributed community detection algorithm
proposed by Hui etal [21] for both BubbleRap and Bubble-
Kalman. For the k-clique parameters, we choose k=5 and a
familiar threshold Ty, =250ks for Reality, and k=3 and T;,=3ks
for Sassy.
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Fig. 2. Time series for node degree values of an illustrative hub node (upper)
and non-hub node (lower) in Reality, comparing the measured value, the C-
window estimate, and the Kalman prediction values

For performance analysis, we use several evaluation
metrics as follows:

a) Delivery ratio: the ratio of the number of messages
successfully delivered divided by the total number of
message created.

b) Delivery delay: the time between the creation of a
message and the delivery of the message to its final
destination.

c) Message overhead ratio: the ratio of the number of
overhead messages to the number of messages
successfully delivered. The total number of overhead
[EEDssages is calculated as the total forwarded (copy)
messages minus the total number of messages
successfully delivered.

d) GINI ind@this measure [22] of statistical dispersion
calculates the inequality among values of a frequency
distribution. In this paper, the GINI index gauges the
traffic distribution fairness level if@@e network, i.c. an
index of 0 means that the traffic is distributed evenly,
and a value of | indicates only a single node processes
all the network traffic.
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Fig. 3. Delivery performances of BubbleRap and Bubble-Kalman in Reality
and Sassy

B. Simulation Results

We now discuss the simulation results of BubbleRap and
Bubble-Kalman in two node mobility scenarios, Reality and
Sassy. Initially, in Fig. 2 we depict the degree value of an
illustrative hub node and non-hub node in a time series in
Reality. For each time window (i.e. a 6-hour time interval), a
node degree level is calculated using real measurement (d,), C-
window (d;) and Kalman-prediction (dy). 1t is clear from the
figure that Kalman-prediction captures the variations of node
degree values and hence provides better estimates of the node
popularity in a given time window than C-window (i.c. d, is a
better estimator of d, than d,). C-window slowly adapts to the
node popularity changes and thus disregards the existence of
the rapid, significant variations of node degree, particularly in
the most popular node.

We next consider the delivery performance of BubbleRap
and Bubble-Kalman. In Fig. 3, we show the performance
evaluation results of BubbleRap and Bubble-Kalman in Reality
and Sassy. The evaluation metrics described in Section [V.A
are considered in this performance analysis.

In Fig. 3, we see that Bubble-Kalman produces in a better
message delivery ratio in both Reality and Sassy. Moreover,
the improvement in delivery ratio is not associated with an
increase in delivery cost (measured by the overhead ratio), and
Bubble-Kalman manages this cost as well as BubbleRap. On
the other hand, Bubble-Kalman can improve the BubbleRap's
traffic distribution fairness (measured by GINI index) in both
node mobility scenarios and the decrease in GINI index is more
obvious in Reality. However, Bubble-Kalman increases the
average delivery delay beyond that of BubbleRap in both
scenarios.  Bubble-Kalman’s  worse d@nj latency
performance is related to the reduced traffic at the most popular
node (hub nodes). As shown in Fig. 3 (GINI Index), Bubble-
Kalman has a lower GINI index than BubbleRap’s; hence it
produces a better traffic (load) distribution.
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Even though the decrease in GINI index seems insignificant in
both mobility scenarios, in fact the total traffic processed by
hub nodes is reduced considerably. For instance, in Fig. 4(a)
and 4(b) we show the total relay messages received by each
node in Reality for BubbleRap and Bubble-Kalman,
respectively. It is clear that Bubble-Kalman is able to
significantly reduce the total relay traffic in a few hub nodes.
However, when Bubble-Kalman successfully redirects much of
the traffic away from the hub nodes, this leads to a significant
increase of the delivery latency in the network (Fig. 3 (Delivery
Delay)). Since the message deliveries in the network now
prefer to use alternative paths (rather than shortest-paths via
hub nodes), this leads to the increase of the overall network
delivery latency. Thus we sec a trade-off between traffic (load)
distribution fairness and delivery delay performance.

In the literature, several papers highlight an important issue
of unbalanced traffic (load) distribution in OMSNSs: the works
in [2324.2526] have identified that favouring higher
popularity nodes contributes to the unfair traffic difibution in
the network. The authors of SimBet [8] found that use of (ego)
betweeness centrality alone as the routing metric yielded traffic
overloading at the central (hub) nodes. In this paper, on the
other hand, we show that Bubble-Kalman is able to reduce
traffic in a few hub nodes, leading to the increase in traffic
distribution fairmess in the network; however, this increases
delivery latency beyond that of BubbleRap. Given that OMSNs
are assumed to be delay-tolerant, this increase in delivery time
is not considered significant; instead, the reduced load on the
most popular nodes, reflected in the improved GINI index,
represents a substantial improvement in the performance of the
network.
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V. CONCLUSIONS

This paper presents two important contributions in the area
of node popularity computation in OMSNs: firstly, we
confirmed that in real-life OMSNs node popularity changes
rapidly and significantly in time. Moreover, the C-window
calculation of BubbleRap is insensitive to this such node
degree changes. Secondly, we therefore proposed the Kalman-
prediction technique used to identify a node’s global
popularity level at a time interval. We next applied our method
on BubbleRap (called Bubble-Kalman hereafter). We showed
that Bubble-Kalman achieves better delivery ratio and
increases traffic distribution fairness, reducing the GINI index
below that of BubbleRap, but at the cost of high delivery
latency beyond that of BubbleRap. Given that OMSNs are
assumed to be delay-tolerant, this increase in delivery time
represents an acceptable trade-off compared to the improved
fairness in the network and the reduced resource consumption
in the most popular nodes.
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