

Source details

Journal of Physics: Conference Series Scopus coverage years: from 2005 to Present	CiteScore 2021 0.8	(j
ISSN: 1742-6588 E-ISSN: 1742-6596 Subject area: (Physics and Astronomy: General Physics and Astronomy) Source type: Conference Proceeding	SJR 2021 0.210	Û
View all documents > Set document alert Save to source list Source Homepage	SNIP 2021 0.395	Ū

CiteScore CiteScore rank & trend Scopus content coverage

i	Improved CiteScore methodology CiteScore 2021 counts the citations received in 2018-2021 to articles, reviews, conference papers, book chapters and data	×
	papers published in 2018-2021, and divides this by the number of publications published in 2018-2021. Learn more >	

CiteSco	re 2021 ~	CiteSco	reTracker 2022 🛈
<u>^ 0</u>	74,925 Citations 2018 - 2021	0.0	88,857 Citations to date
0. 0 ⁼	96,702 Documents 2018 - 2021	0.9 =	95,386 Documents to date
Calculated on 0	5 May, 2022	Last updated on	05 March, 2023 • Updated monthly
CiteScore	rank 2021 🛈		

Category	Rank	Percentile
Physics and Astronomy General Physics and Astronomy	#195/240	18th

View CiteScore methodology > CiteScore FAQ > Add CiteScore to your site c°

Q

About Scopus

- What is Scopus
- Content coverage
- Scopus blog
- Scopus API
- Privacy matters

Language

日本語版を表示する 查看简体中文版本 查看繁體中文版本 Просмотр версии на русском языке

Customer Service

Help Tutorials Contact us

ELSEVIER

Terms and conditions \neg Privacy policy \neg

RELX

			also develope	d by scimago:	<u> </u>	SCIMAGO INSTITUTIONS	RANKINGS
SJR	Scimago	Journal & Country Ra	ank	Enter Journal	Title, ISSN	or Publisher Name	Q
	Home	Journal Rankings	Country Rankings	Viz Tools	Help	About Us	

Journal of Physics: Conference Series 8

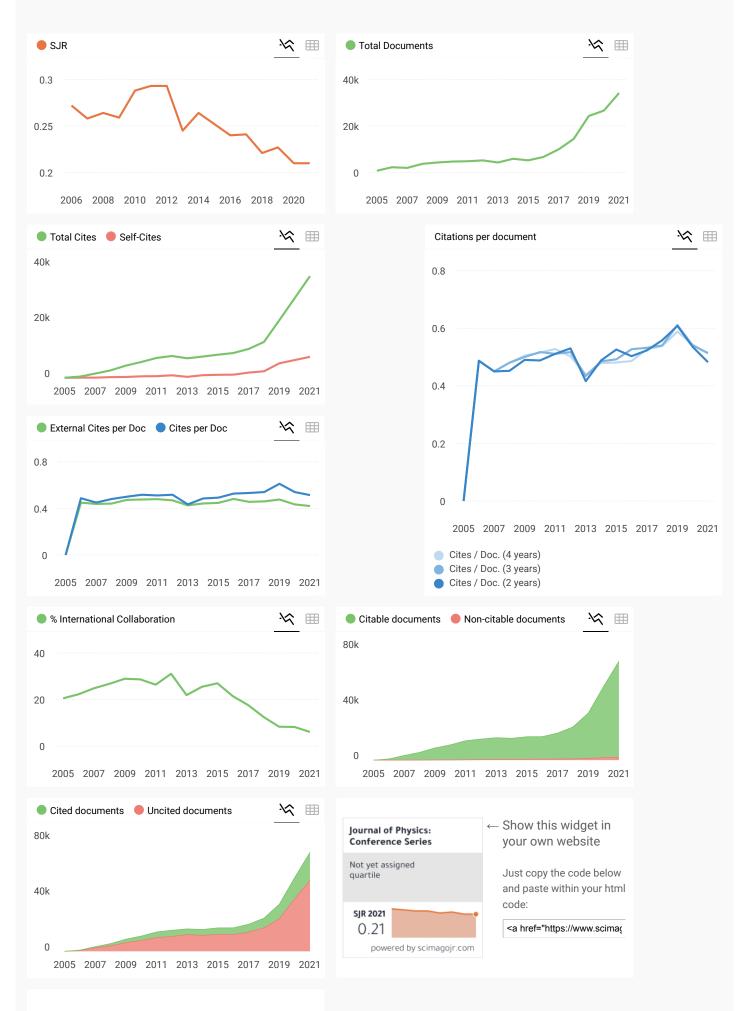
COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
United Kingdom Universities and research institutions in United Kingdom	Physics and Astronomy Physics and Astronomy (miscellaneous)	IOP Publishing Ltd.	85
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Conferences and Proceedings	17426588, 17426596	2005-2021	Homepage How to publish in this journal jpcs@ioppublishing.org

SCOPE

The open access Journal of Physics: Conference Series (JPCS) provides a fast, versatile and cost-effective proceedings publication service.

 \bigcirc Join the conversation about this journal

Quartiles



The 5th International Conference on Research, Implementation, and **Education of Mathematics and Science (ICRIEMS)**

Yogyakarta, Indonesia

7-8 May 2018

Editors:

Agung Wijaya Subiantoro, Ed. D.

Fakultas Matematika dan Ilmu Pengetahuan Alam,

Universitas Negeri Yogyakarta, Indonesia

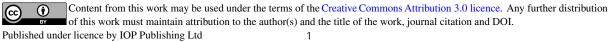
agung_wijaya@uny.ac.id

Dr. Slamet Suyanto

Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta, Indonesia slamet_suyanto@uny.ac.id

Prof. Ferry Butar Butar, Ph. D.

Departement of Mathematics and Statistics, Sam Houston State University, USA butar@shsu.edu



List of Committees

International Advisory Committee

1. Prof. Dr. Wim T van Horssen (Applied Mathematics, TU Delft, Netherland)

2. Prof. (Assoc.) Dr. Nor'ashiqin Mohd Idrus (Mathematics Education, Universiti Pendidikan Sultan Idris, Malaysia)

- 3. Dr. Emeterio Franco Perez (Mathematics Education, University of Colima, Mexico)
- 4. Osval Antonio Montesinos Lopez, Ph.D (Biostatistics, University of Colima, Mexico)
- 5. Dr. Herni Utami, M.Si. (Statistics, Universitas Gadjah Mada, Indonesia)
- 6. Dr. Hasih Pratiwi (Statistics, Universitas Sebelas Maret, Indonesia)
- 7. Dr.Eng. Liem Peng Hong (Physics, Nippon Advanced Information Service Co., Inc (NAIS
- Co., Inc) Japan, Visiting Professor at Tokyo City University, Japan)
- 8. Allen Price, Ph.D (Physics Education, Emmanuel College Boston, USA)
- 9. Prof. Dr. Mudasir, M.Eng. (Chemistry, Universitas Gadjah Mada, Indonesia)
- 10. Hasan Daupor, Ph.D (Chemistry, Yala Rajabhat University, Thailand)
- 11. Dr. Muhd Ibrahim (Chemistry Education, Universiti Pendidikan Sultan Idris, Malaysia)
- 12. Prof. Saberi Bin Othman (Biology, Universiti Pendidikan Sultan Idris, Malaysia)
- 13. Ana Otero, Ph.D (Biology/Biology Education, Emmanuel College, Boston, USA)
- 14. Prof. Dr. Yoshisuke Kumano (Science Education, Shizuoka University, Japan)

Organizing Committee

- 1. Dr. Hartono
- 2. Dr. rer.nat Senam
- 3. Dr. Slamet Suyanto
- 4. Agung Wijaya Subiantoro, Ed.D.
- 5. Kismiantini, Ph.D.
- 6. Nur Aeni Ariyanti, Ph.D
- 7. Dr. Sri Andayani
- 8. Dr. Rida Siti Nur'aini Mahmudah
- 9. Dr. Ixora Sartika Mercuriani
- 10. Dr. Antuni Wiyarsi
- 11. Dr. Karyati
- 12. Wahyu Setyaningrum, Ph.D
- 13. Dr. Pujianto
- 14. Dr. Supardi
- 15. Ilham Rizkianto, M. Sc.

Table of contents

Volume 1097

2018

Previous issue
 Next issue

The 5th International Conference on Research, Implementation, & Education of Mathematics and Sciences 7–8 May 2018, Yogyakarta, Indonesia

Accepted papers received: 03 September 2018 Published online: 12 October 2018

Open all abstracts

Preface	
OPEN ACCESS The 5th International Conference on Research, Implementation, & Education of Mathematics and Sciences	011001
+ Open abstract	
OPEN ACCESS Peer review statement	011002
+ Open abstract	
Papers	
OPEN ACCESS Using Video Integrated with Local Potentiality to Improve Students' Concept Mastery in Natural Science Learning	012001
E C Dewi, I G P Suryadarma and I Wilujeng	
+ Open abstract 🔄 View article 📂 PDF	
OPEN ACCESS Gender Differences in Students' Science Literacy towards Learning on Integrated Science Subject	012002
M L Kristyasari, S Yamtinah, S B Utomo, Ashadi and N Y Indriyanti	
+ Open abstract 🔄 View article 📂 PDF	
OPEN ACCESS The Analysis of High School Students' Science Literacy Based on Nature of Science Literacy Test (NOSLiT)	012003
P R Murti, N S Aminah and Harjana	
+ Open abstract	
OPEN ACCESS The Development of Science Worksheet Based on Inquiry Science Issues to Improve Critical Thinkiteguand Societ is Attituding to use this site you agree to our use of cookies. To find out more, see our	012004

Optimization of fuzzy inference system by using table look-up method to predict white sugar 012074 price in the international market N Azizah, K A'yun, T W Septiarini, D U Wutsqa and A M Abadi View article 🔁 PDF + Open abstract **OPEN ACCESS** 012075 Simulation Study to Evaluate Full Information Maximum Likelihood as Parameter Estimation Methods for Spatial Vector Autoregressive Model with Calendar Variation E Sumarminingsih, Setiawan, A Suharsono and B N Ruchjana 🔁 PDF + Open abstract View article **OPEN ACCESS** 012076 GSTARIX Model for Forecasting Spatio-Temporal Data with Trend, Seasonal and Intervention M A Novianto, Suhartono, D D Prastyo, A Suharsono and Setiawan + Open abstract View article 🔁 PDF **OPEN ACCESS** 012077 Preliminary Results: Simple Model of Evolutionary Dynamic on Insecticide Resistance in Mosquitoes D Suandi, E S Nugraha, K A Sidarto and E Soewono View article 🔁 PDF + Open abstract **OPEN ACCESS** 012078 Injectivity and Projectivity Properties of The Category of Representation Modules of Rings N Hijriati, S Wahyuni and I E Wijayanti View article 🔁 PDF + Open abstract **OPEN ACCESS** 012079 n-Normed Spaces with Norms of Its Quotient Spaces H Batkunde, H Gunawan and O Neswan 🔁 PDF + Open abstract View article OPEN ACCESS 012080 Complete stabilizability and stability radius of time-varying Sturm-Liouville systems Sutrima, C R Indrati and L Aryati + Open abstract View article 🔁 PDF **OPEN ACCESS** 012081 European option pricing by using a mixed fractional Brownian motion C E Murwaningtyas, S H Kartiko, Gunardi and H P Suryawan 🔁 PDF + Open abstract View article OPEN ACCESS 012082 Review on Clustering Algorithms Based on Data Type: Towards the Method for Data Combined of Numeric-Fuzzy Linguistics L A Rasyid and S Andayani + Open abstract View article 🔁 PDF This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our ω Privacy and Cookies policy.

PAPER • OPEN ACCESS

European option pricing by using a mixed fractional Brownian motion

To cite this article: C E Murwaningtyas et al 2018 J. Phys.: Conf. Ser. 1097 012081

View the article online for updates and enhancements.

You may also like

- Inhibitory effect induced by fractional Gaussian noise in neuronal system Zhi-Kun Li, , Dong-Xi Li et al.
- <u>Spectral content of fractional Brownian</u> motion with stochastic reset Satya N Majumdar and Gleb Oshanin
- THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

Antonio Parravano, Néstor Sánchez and Emilio J. Alfaro

This content was downloaded from IP address 202.94.83.202 on 13/03/2023 at 03:04

IOP Publishing

European option pricing by using a mixed fractional **Brownian motion**

C E Murwaningtyas ^{1,2)}, S H Kartiko ¹⁾, Gunardi ¹⁾ and H P Suryawan ³⁾

¹⁾ Department of Mathematics, Universitas Gadjah Mada, Indonesia,

²⁾ Department of Mathematics Education, Universitas Sanata Dharma, Indonesia,

³⁾ Department of Mathematics, Universitas Sanata Dharma, Indonesia.

Corresponding author: enny@usd.ac.id

Abstract. Financial modeling is conventionally based on a Brownian motion (Bm). A Bm is a semimartingale process with independent and stationary increments. However, some financial data do not support this assumption. One of the models that can overcome this problem is a fractional Brownian motion (fBm). In fact, the main problem in option pricing by implementing an fBm is not arbitrage-free. This problem can be handled by using a mixed fBm (mfBm) to model stock prices. The mfBm is a linear combination of an fBm and an independent Bm. The aim of this paper is to find European option pricing by using the mfBm based on Fourier transform method and quasi-conditional expectations. The main result of this research is a closed form formula for calculating the price of European call options.

1. Introduction

The Black-Scholes formula is a formula for calculating option prices based on geometric Bm. A Bm is a centered and continuous Gaussian process with independent and stationary increments. The existence of long-range dependence in stock returns has been an essential topic of both empirical and theoretical research. If stock returns show long-range dependence, the time series is said to depend on time to time for a long lag. This is the case of an fBm. Long-range dependence in stock returns has been tested in a number of studies, for example [1-6].

Kolmogorov introduced an fBm in 1940. Mandelbrot and Van Ness gave a representation theorem for Kolmogorov's process and introduced the name of fBm in [7]. The fBm has further been developed by Hurst in [8]. Currently, an fBm has an important part in assorted fields of study such as hydrology [8,9], insurance [10,11] and finance [12–14].

The stochastic integral in an fBm is different from the classical Itô integral because the fBm is not a martingale. Duncan et al [15] introduced a Wick product for the fractional Itô's formula. They also introduced Girsanov's theorem under the fBm. The option model under the fBm is arbitrage-free [16,17], if the Wick product is applied on the definition of stochastic integration. Hu and Oksendal [16] obtain a pricing formula for a European call option at t = 0. Necula [18] extended the formula in [16] to $t \in [0,T]$. Moreover, Necula proved some results regarding quasi-conditional expectations by using Fourier transform.

The European call option pricing formula obtained in [16] is an arbitrage-free and complete market. However, Bender and Elliott [19] and Bjork and Hult [20] still saw a possibility of arbitrage

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

opportunities in the resulting model in [16]. Cheridito [21] and Bender et al. [22] proposed an mfBm to reduce arbitrage opportunities. An mfBm is a linear combination of an fBm and an independent BM. Cheridito [23] has proven that an mfBm is equivalent to a Bm for $H \in (\frac{3}{4}, 1)$, therefore it can be said that the option model under an mfBm is an arbitrage-free. The aim of this paper is to obtain the pricing formula for European call options where a stock return is modeled an mfBm.

2. Mixed fractional Brownian motions

Let *H* be a constant belonging to (0, 1). An fBm $B^H = (B_t^H; t \ge 0)$ of Hurst index *H* is a continuous and centered Gaussian process with covariance function,

$$\mathbb{E}\Big[B_{t}^{H}B_{s}^{H}\Big] = \frac{1}{2}\Big(\left|t\right|^{2H} + \left|s\right|^{2H} - \left|t-s\right|^{2H}\Big),\tag{1}$$

IOP Publishing

for all $t, s \ge 0$, see [24]. Here $\mathbb{E}[\cdot]$ denotes an expectation with respect to a probability measure \mathbb{P}^{H} . Properties of fBm, see [24], are

- mean of an fBm is 0;
- variance of an fBm is t^{2H} for $t \ge 0$;
- an fBm has stationary increments, i.e., $B_{t+s}^H B_s^H \stackrel{d}{=} B_t^H$ for all $t, s \ge 0$;
- an fBm is *H*-self similar, i.e., $B_{\alpha t}^{H} \stackrel{d}{=} \alpha^{H} B_{t}^{H}$ for $t \ge 0$;
- an fBm has continuous trajectories.

If $H = \frac{1}{2}$, then an fBm coincides with a standard Bm. The Hurst index *H* determines the sign of the covariance of the future and past increments. This covariance is negative when $H \in (0, \frac{1}{2})$, zero when $H = \frac{1}{2}$, and positive when $H \in (\frac{1}{2}, 1)$. As a consequence, for $H \in (0, \frac{1}{2})$ it has short-range dependence and for $H \in (\frac{1}{2}, 1)$ it has long-range dependence.

An fBm is neither a semimartingale nor a Markov process unless $H = \frac{1}{2}$. When *H* is not equal to $\frac{1}{2}$, the option model has arbitrage opportunities. An mfBm is introduced by Cheridito [23], to avoid arbitrage opportunities. An mfBm of parameter *H*, *a*, and *b* is a stochastic process $M^{H} = (M_{t}^{H}; t \ge 0)$ defined in [25] as follows

$$M_t^H = aB_t^H + bB_t$$

where B_t^H is an fBm with Hurst index H and B_t is an independent BM.

3. Quasi-conditional expectations

We will present some results regarding a quasi-conditional expectation in this section which is needed for the rest of this paper. These results were introduced by Necula [18] and then developed by Sun [14] and Xiao et al [13] for an mfBm. The proofs of theorems in this section can be seen in [13]. Let $(\Omega, \mathcal{F}^H, \mathbb{P}^H)$ be a probability space such that B_t^H is an fBm with respect to \mathbb{P}^H and B_t is an independent BM.

Theorem 1 [13]. For every $t \in (0,T)$ and $\lambda, \varepsilon \in \mathbb{C}$ we have

$$\tilde{\mathbb{E}}\left[\exp\left(\lambda\varepsilon B_{T}^{H}+\lambda B_{T}\right)\middle|\mathcal{F}_{t}^{H}\right]=\exp\left(\lambda\varepsilon B_{T}^{H}+\lambda B_{T}+\frac{1}{2}\lambda^{2}\varepsilon^{2}\left(T^{2H}-t^{2H}\right)+\frac{1}{2}\lambda^{2}\left(T-t\right)\right),$$

where \mathcal{F}_{t}^{H} is a σ -algebra generated by $\left(B_{s}^{H}; 0 \leq s \leq t\right)$ and $\mathbb{\tilde{E}}\left[\cdot |\mathcal{F}_{t}^{H}\right]$ denotes a quasi-conditional expectation with respect to \mathcal{F}_{t}^{H} under a probability measure \mathbb{P}^{H} .

Using Theorem 1, one can determine a quasi-conditional expectation of a function of an mfBm as shown in the theorem below.

Theorem 2 [13]. Let f be a function such that $\tilde{\mathbb{E}}\left[f\left(B_{T}^{H}, B_{T}\right)\right] < \infty$. Then, for every $t \in (0,T)$ and $\lambda, \varepsilon \in \mathbb{R}$ we have

$$\widetilde{\mathbb{E}}\left[f\left(\lambda\varepsilon B_{T}^{H}+\lambda B_{T}\right)\middle|\mathcal{F}_{t}^{H}\right]=\int_{\mathbb{R}}\frac{\exp\left(\frac{-\left(y-\lambda\varepsilon B_{t}^{H}-\lambda B_{t}\right)^{2}}{2\left(\lambda^{2}\varepsilon^{2}\left(T^{2H}-t^{2H}\right)+\lambda^{2}\left(T-t\right)\right)}\right)}{\sqrt{2\pi\left(\lambda^{2}\varepsilon^{2}\left(T^{2H}-t^{2H}\right)+\lambda^{2}\left(T-t\right)\right)}}f(y)dy.$$

If f is an indicator function, $f(y) = 1_A(y)$, then we can easily obtain a corollary below. **Corollary** 3 [13]. Let $A \in \mathcal{B}(\mathbb{R})$. Then,

$$\widetilde{\mathbb{E}}\Big[\mathbf{1}_{A}\Big(\lambda\varepsilon B_{T}^{H}+\lambda B_{T}\Big)\Big|\mathcal{F}_{t}^{H}\Big]=\int_{A}\frac{\exp\left(\frac{-\Big(y-\lambda\varepsilon B_{t}^{H}-\lambda B_{t}\Big)^{2}}{2\Big(\lambda^{2}\varepsilon^{2}\big(T^{2H}-t^{2H}\big)+\lambda^{2}\big(T-t\big)\Big)}\right)}{\sqrt{2\pi\Big(\lambda^{2}\varepsilon^{2}\big(T^{2H}-t^{2H}\big)+\lambda^{2}\big(T-t\big)\Big)}}dy.$$

Let $\theta, \theta \in \mathbb{R}$ and $t \in [0,T]$, consider the process,

$$\mathcal{P}B_t^{H^*} + \mathcal{P}B_t^* = \mathcal{P}B_t^H + \mathcal{P}^2 t^{2H} + \mathcal{P}B_t + \mathcal{P}^2 t.$$
(2)

From a fractional Girsanov theorem in [24], there exists a probability measure \mathbb{P}^{H^*} such that $\partial B_t^{H^*} + \partial B_t^*$ is a new MFBM. We will denote $\mathbb{\tilde{E}}^* \left[\cdot | \mathcal{F}_t^H \right]$ as a quasi-conditional expectation under the probability measure \mathbb{P}^{H^*} . Now, we have defined the process

$$Z(t) = \exp\left(-\theta B_t^H - \frac{1}{2}\theta^2 t^{2H} - \theta B_t - \frac{1}{2}\theta^2 t\right),$$
(3)

where $t \in [0,T]$.

Theorem 4 [13]. Let *f* be a function such that $\mathbb{E}\left[f\left(B_T^H, B_T\right)\right] < \infty$. Then, for every $t \in [0,T]$ we have

$$\tilde{\mathbb{E}}^{*}\left[f\left(\theta B_{T}^{H}+\vartheta B_{T}\right)\middle|\mathcal{F}_{t}^{H}\right]=\frac{1}{Z(t)}\tilde{\mathbb{E}}\left[f\left(\theta B_{T}^{H}+\vartheta B_{T}\right)Z(T)\middle|\mathcal{F}_{t}^{H}\right].$$
(4)

Theorem 4 illustrates a relationship between a quasi-conditional expectation $\tilde{\mathbb{E}}\left[\cdot | \mathcal{F}_t^H\right]$ with respect to \mathbb{P}^H and a quasi-conditional expectation $\tilde{\mathbb{E}}^*\left[\cdot | \mathcal{F}_t^H\right]$ with respect to \mathbb{P}^{H^*} . Based on Theorem 4, a discounted expectation of a function of an mfBm is calculated in the theorem below.

Theorem 5 [13]. The price at time $t \in [0,T]$ of a bounded \mathcal{F}_t^H - measurable claim $V \in L^2(\mathbb{P}^H)$ is given by

$$V_{t} = e^{-r(T-t)} \tilde{\mathbb{E}} \bigg[V_{T} \big| \mathcal{F}_{t}^{H} \bigg],$$
(5)

where r is a constant riskless interest rate.

4. Results and discussion

The aim of this section is to determine a formula for calculating European call option prices. Now let us consider a mixed fractional Black-Scholes market with two investment possibilities:

• A bank account which satisfies a differential equation below

$$dA_t = rA_t dt, \qquad A_0 = 1, \qquad t \in [0, T],$$
 (6)

٠

IOP Conf. Series: Journal of Physics: Conf. Series 1097 (2018) 012081 doi:10.1088/1742-6596/1097/1/012081

where *r* is a constant riskless interest rate.

$$dS_t = \sigma S_t d\hat{B}_t^H + \sigma S_t d\hat{B}_t + \mu S_t dt, \qquad S_0 > 0, \qquad t \in [0, T], \tag{7}$$

where B_t^H is an fBm and B_t is a Bm with respect to $\hat{\mathbb{P}}^H$, μ is an appreciation rate, and σ is a volatility coefficient.

By using change of variable $\sigma B_t + \sigma B_t^H = \mu - r + \sigma \hat{B}_t + \sigma \hat{B}_t^H$, then under a risk-neutral measure, we have

$$dS_t = \sigma S_t dB_t^H + \sigma S_t dB_t + rS_t dt, \qquad S_0 > 0, \qquad t \in [0,T].$$
Furthermore by using a Itô formula in [24], we obtain a solution of (8) as
$$(8)$$

$$S_{t} = S_{0} \exp\left(\sigma B_{t}^{H} + \sigma B_{t} - \frac{1}{2}\sigma^{2}t^{2H} - \frac{1}{2}\sigma^{2}t + rt\right).$$
(9)

The price of a European option at time t with an expire date T and a strike price K is denoted $C(t, S_t)$. We present a formula for a call option pricing under MFBM in the theorem below.

Theorem 6. Suppose a stock price S_t defined by (9), then the price at time $t \in [0,T]$ of a European call option with an expire date T and a strike price K is given by

$$C(t, S_t) = S_t N(d_1) - K e^{-r(T-t)} N(d_2),$$
(10)

where

$$d_{1} = \frac{\frac{1}{2}\sigma^{2}(T^{2H} - t^{2H}) + \frac{1}{2}\sigma^{2}(T - t) + \ln\left(\frac{S_{t}}{K}\right) + r(T - t)}{\sqrt{\sigma^{2}(T^{2H} - t^{2H}) + \sigma^{2}(T - t)}},$$
(11)

$$d_{2} = \frac{-\frac{1}{2}\sigma^{2}\left(T^{2H} - t^{2H}\right) - \frac{1}{2}\sigma^{2}\left(T - t\right) + \ln\left(\frac{S_{t}}{K}\right) + r(T - t)}{\sqrt{\sigma^{2}\left(T^{2H} - t^{2H}\right) + \sigma^{2}\left(T - t\right)}},$$
(12)

 $N(\cdot)$ is a cumulative probability function of a standard normal distribution. Proof: Motivated from Theorem 5, the call option with an expire date T and a strike price K is theoretically equivalent to

$$C(t, S_t) = \tilde{\mathbb{E}} \left[e^{-r(T-t)} \max\{S_T - K, 0\} \middle| \mathcal{F}_t^H \right]$$
$$= e^{-r(T-t)} \tilde{\mathbb{E}} \left[S_T \mathbf{1}_{\{S_T > K\}} \middle| \mathcal{F}_t^H \right] - K e^{-r(T-t)} \tilde{\mathbb{E}} \left[\mathbf{1}_{\{S_T > K\}} \middle| \mathcal{F}_t^H \right].$$
(13)

Meanwhile option holders would exercise the option only when $S_T > K$. Solving (9) on this boundary, we have

$$\sigma B_T^H + \sigma B_T > \frac{1}{2}\sigma^2 T^{2H} + \frac{1}{2}\sigma^2 T + \ln\left(\frac{K}{S_0}\right) - rT.$$

Let

$$d_{2}^{*} = \frac{1}{2}\sigma^{2}T^{2H} + \frac{1}{2}\sigma^{2}T + \ln\left(\frac{K}{S_{0}}\right) - rT.$$
 (14)

Using Corollary 3 and applying (14) on the second of the RHS in (13), we have

$$\begin{split} \tilde{\mathbb{E}}\Big[\mathbf{1}_{\{S_{T}>K\}}\Big|\mathcal{F}_{t}^{H}\Big] &= \tilde{\mathbb{E}}\Big[\mathbf{1}_{\{x>d_{2}^{*}\}}\Big(\sigma B_{T}^{H} + \sigma B_{T}\Big)\Big|\mathcal{F}_{t}^{H}\Big] \\ &= \int_{d_{2}^{*}}^{\infty} \frac{1}{\sqrt{2\pi\left(\sigma^{2}\left(T^{2H} - t^{2H}\right) + \sigma^{2}\left(T - t\right)\right)}} \exp\left(-\frac{\left(y - \sigma B_{t}^{H} - \sigma B_{t}\right)^{2}}{2\left(\sigma^{2}\left(T^{2H} - t^{2H}\right) + \sigma^{2}\left(T - t\right)\right)}\right) dy \end{split}$$

$$\widetilde{\mathbb{E}}\left[1_{\{S_{T}>K\}}\left|\mathcal{F}_{t}^{H}\right.\right] = \int_{-\infty}^{\frac{\sigma B_{t}^{H} + \sigma B_{t} - d_{2}^{*}}{\sqrt{\left(\sigma^{2}\left(T^{2H} - t^{2H}\right) + \sigma^{2}\left(T - t\right)\right)}}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^{2}}{2}\right) dz$$

$$= N(d_{2}), \qquad (15)$$

where
$$d_2 = \frac{\sigma B_T^H + \sigma B_T - d_2^*}{\sqrt{\left(\sigma^2 \left(T^{2H} - t^{2H}\right) + \sigma^2 \left(T - t\right)\right)}}$$
. Furthermore, (9) can be written as
 $\sigma B_t^H + \sigma B_t = \frac{1}{2}\sigma^2 t^{2H} + \frac{1}{2}\sigma^2 t + \ln\left(\frac{S_t}{S_0}\right) - rt.$

Hence, using (14) and (16) on d_2 , we have

$$d_{2} = \frac{-\frac{1}{2}\sigma^{2}(T^{2H} - t^{2H}) - \frac{1}{2}\sigma^{2}(T - t) + \ln\left(\frac{S_{t}}{K}\right) + r(T - t)}{\sqrt{\sigma^{2}(T^{2H} - t^{2H}) + \sigma^{2}(T - t)}}.$$
ess

Let us consider a process

$$\sigma B_t^{H*} + \sigma B_t^* = \sigma B_t^H - \sigma^2 t^{2H} + \sigma B_t - \sigma^2 t, \qquad (17)$$

for $t \in [0,T]$. The fractional Girsanov theorem assures us that there is a probability measure \mathbb{P}^{H^*} such that $\sigma B_t^{H^*} + \sigma B_t^*$ is an new mfBm under \mathbb{P}^{H^*} . We will denote

$$Z_{t} = \exp\left(\sigma B_{t}^{H} - \frac{1}{2}\sigma^{2}t^{2H} + \sigma B_{t} - \frac{1}{2}\sigma^{2}t\right)$$

$$(18)$$

By using Theorem 4 and (18) on the first of the RHS in (13), we have

$$\widetilde{\mathbb{E}}\left[S_{T}\mathbf{1}_{\{S_{T}>K\}}\left|\mathcal{F}_{t}^{H}\right] = \widetilde{\mathbb{E}}\left[S_{0} e^{rT} e^{\left(\sigma B_{T}^{H} - \frac{1}{2}\sigma^{2}T^{2H} + \sigma B_{T} - \frac{1}{2}\sigma^{2}T\right)}\mathbf{1}_{\{S_{T}>K\}}\left|\mathcal{F}_{t}^{H}\right] \\
= S_{0} e^{rT}\widetilde{\mathbb{E}}\left[Z_{T}\mathbf{1}_{\{S_{T}>K\}}\left|\mathcal{F}_{t}^{H}\right] \\
= S_{0} e^{rT}\widetilde{\mathbb{E}}\left[Z_{T}\mathbf{1}_{\{y>d_{2}^{*}\}}\left(\sigma B_{T}^{H} + \sigma B_{T}\right)\right|\mathcal{F}_{t}^{H}\right] \\
= S_{0} e^{rT}Z_{t}\widetilde{\mathbb{E}}^{*}\left[\mathbf{1}_{\{y>d_{2}^{*}\}}\left(\sigma B_{T}^{H} + \sigma B_{T}\right)\right|\mathcal{F}_{t}^{H}\right] \\
= S_{0} e^{rT}Z_{t}\widetilde{\mathbb{E}}^{*}\left[\mathbf{1}_{\{S_{T}>K\}}\left|\mathcal{F}_{t}^{H}\right]$$
(19)

By substituting (17) into (9), we obtain

$$S_{t} = S_{0} \exp\left(\sigma B_{t}^{H^{*}} + \sigma B_{t}^{*} + \frac{1}{2}\sigma^{2}t^{2H} + \frac{1}{2}\sigma^{2}t + rt\right).$$
(20)

Solving (20) in time T for the boundary $S_T > K$, we have

$$\sigma B_T^{H^*} + \sigma B_T^* > -\frac{1}{2}\sigma^2 T^{2H} - \frac{1}{2}\sigma^2 T + \ln\left(\frac{K}{S_0}\right) - rT.$$

If we denote

$$d_1^* = -\frac{1}{2}\sigma^2 T^{2H} - \frac{1}{2}\sigma^2 T + \ln\left(\frac{K}{S_0}\right) - rT,$$
(21)

we get

$$\tilde{\mathbb{E}}^* \left[\mathbb{1}_{\{S_T > K\}} \left| \mathcal{F}_t^H \right] = \tilde{\mathbb{E}}^* \left[\mathbb{1}_{\{y > d_1^*\}} \left(\sigma B_T^{H^*} + \sigma B_T^* \right) \right| \mathcal{F}_t^H \right]$$

(16)

$$\tilde{\mathbb{E}}^{*}\left[1_{\{S_{T}>K\}}\left|\mathcal{F}_{t}^{H}\right] = \int_{d_{1}^{*}}^{\infty} \frac{1}{\sqrt{2\pi\left(\sigma^{2}\left(T^{2H}-t^{2H}\right)+\sigma^{2}\left(T-t\right)\right)}} \exp\left(-\frac{\left(y-\sigma B_{t}^{H^{*}}-\sigma B_{t}^{*}\right)^{2}}{2\left(\sigma^{2}\left(T^{2H}-t^{2H}\right)+\sigma^{2}\left(T-t\right)\right)}\right) dy$$

$$= \int_{-\infty}^{\frac{\sigma B_{t}^{H^{*}}+\sigma B_{t}^{*}-d_{1}^{*}}{\sqrt{\sigma^{2}\left(T^{2H}-t^{2H}\right)+\sigma^{2}\left(T-t\right)}}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^{2}}{2}\right) dz$$

$$= N(d_{1}), \qquad (22)$$

where $d_1 = \frac{\sigma B_t^{H^*} + \sigma B_t^* - d_1^*}{\sqrt{\sigma^2 (T^{2H} - t^{2H}) + \sigma^2 (T - t)}}$. Subsequently, (20) can be written as

$$\sigma B_t^{H^*} + \sigma B_t^* = -\frac{1}{2}\sigma^2 t^{2H} - \frac{1}{2}\sigma^2 t + \ln\left(\frac{S_t}{S_0}\right) - rt.$$
(23)

Substituting (21) and (23) on d_1 , we get

$$d_{1} = \frac{\frac{1}{2}\sigma^{2}(T^{2H} - t^{2H}) + \frac{1}{2}\sigma^{2}(T - t) + \ln\left(\frac{S_{t}}{K}\right) + r(T - t)}{\sqrt{\sigma^{2}(T^{2H} - t^{2H}) + \sigma^{2}(T - t)}}$$
(10)

Substitution of (22) into (19) yields

$$\begin{bmatrix} S_T 1_{\{S_T > K\}} \middle| \mathcal{F}_t^H \end{bmatrix} = S_0 e^{rT} Z_t N(d_1)$$

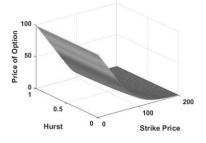
= $S_0 e^{rT} \exp \Bigl(\sigma B_t^H + \sigma B_t - \frac{1}{2} \sigma^2 t^{2H} - \frac{1}{2} \sigma^2 t \Bigr) N(d_1)$
= $e^{r(T-t)} S_t N(d_1).$ (24)

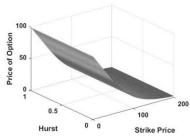
Finally, from (13), (15) and (24) we obtain

Ĩ

$$C(t, S_t) = e^{-r(T-t)} e^{r(T-t)} S_t N(d_1) - K e^{-r(T-t)} N(d_2)$$

= $S_t N(d_1) - K e^{-r(T-t)} N(d_2).$





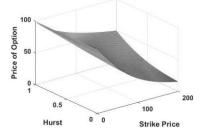


FIGURE 1. Price of option on Hurst vs strike price at *T*=0.25.

FIGURE 2. Price of option on Hurst vs strike price at *T*=1.

FIGURE 3. Price of option on Hurst vs strike price at *T*=5.

The formula in Theorem 6 allows us to determine a fair price for a European call option in terms of an expire date T, a strike price K, an initial stock price S_0 , a risk-free interest rest r, and a stock volatility σ . Let S = 100, $K \in (0,200)$, $H \in (0,1)$, r = 0.05, and $\sigma = 0.3$. When T = 0.25, T = 1, and T = 5, we get Figure 1, 2 and 3 respectively. We see that when $K \rightarrow 200$ and $H \rightarrow 0$ the price decreases significantly in Figure 3.

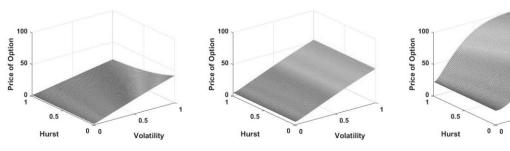


FIGURE 4. Price of option on Hurst vs volatility at *T*=0.25.

FIGURE 5. Price of option on Hurst vs volatility at *T*=1.

FIGURE 6. Price of option on Hurst vs volatility at *T*=5.

0.5

Volatility

Let S = 100; K = 100; r = 0.05, $\sigma \in (0, 1)$ and $H \in (0, 1)$. If T = 0.25 we obtain Figure 4 which is concave upward. The price increases significantly when $\sigma \rightarrow 1$ and $H \rightarrow 0$. If T = 1 we obtain Figure 5 which is more linear and as the volatility increases for all Hurst parameters the price increases. If T = 5 we obtain Figure 6 which is concave down and we see that the prices increase significantly with high Hurst index and high volatility. Overall, as T, σ and H increase, the price increase in rate and magnitude.

5. Conclusion

In this paper, to exclude arbitrage opportunities in an fBm model and to capture long-range dependence, stock returns are modeled with an mfBm. By using Fourier transformation method and quasi-conditional expectation theory, we get a formula for calculating a price of European call options. This formula can be used by investors to predict option prices for stocks that have long-range dependence.

Acknowledgments

The authors are grateful to the Directorate of Research and Community Service, the Republic of Indonesia, due to the funding of Doctoral Dissertation Research Grant 2018 funds with contract number 109 / SP2H / LT / DRPM / 2018 for this work.

References

- [1] Mills T C 1993 Is there long-term memory in UK stock returns? *Appl. Financ. Econ.* **3** 303–6
- [2] Cheung Y-W and Lai K S 1995 A search for long memory in international stock market returns *J. Int. Money Financ.* **14** 597–615
- [3] Necula C and Radu A-N 2012 Long memory in Eastern European financial markets returns *Econ. Res. - Ekon. Istraživanja* **25** 316–77
- [4] Goddard J and Onali E 2012 Short and long memory in stock returns data *Econ. Lett.* **117** 253–5
- [5] Cajueiro D O and Tabak B M 2008 Testing for long-range dependence in world stock markets *Chaos, Solitons and Fractals* **37** 918–27
- [6] Gyamfi E N, Kyei K and Gill R 2016 Long-memory persistence in African Stock Markets *EuroEconomica* **35** 83–91
- [7] Mandelbrot B B and Van Ness J W 1968 Fractional Brownian motions, fractional noises and applications *SIAM Rev.* **10** 422–37
- [8] Hurst H E 1956 Methods of using long-term storage in reservoirs. *Proc. Inst. Civ. Eng.* 5 519–43
- [9] Molz F J, Liu H H and Szulga J 1997 Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions *Water Resour. Res.* 33 2273–86
- [10] Zhang H Y, Bai L H and Zhou A M 2009 Insurance control for classical risk model with fractional Brownian motion perturbation *Stat. Probab. Lett.* **79** 473–80

- [11] Shokrollahi F and Kılıçman A 2015 Actuarial approach in a mixed fractional Brownian motion with jumps environment for pricing currency option *Adv. Differ. Equations* **2015** 257
- [12] Rostek S 2009 Option Pricing in Fractional Brownian Markets (Springer-Verlag Berlin)
- [13] Xiao W-L, Zhang W-G, Zhang X X and Zhang X X 2012 Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm *Phys. A Stat. Mech. its Appl.* 391 6418–31
- [14] Sun L 2013 Pricing currency options in the mixed fractional Brownian motion Phys. A Stat. Mech. its Appl. 392 3441–58
- [15] Duncan T E, Hu Y and Pasik-Duncan B 2000 Stochastic calculus for fractional Brownian motion I. Theory SIAM J. Control Optim. 38 582–612
- [16] Hu Y and Øksendal B 2003 Fractional white noise calculus and applications to finance *Infin. Dimens. Anal. Quantum Probab. Relat. Top.* **06** 1–32
- [17] Elliott R J and Van der Hoek J 2003 A general fractional white noise theory and applications to finance *Math. Financ.* 13 301–30
- [18] Necula C 2002 Option pricing in a fractional Brownian motion environment Adv. Econ. Financ. Res. - DOFIN Work. Pap. Ser. 1–18
- [19] Bender C and Elliott R J 2004 Arbitrage in a discrete version of the Wick-fractional Black-Scholes market *Math. Oper. Res.* **29** 935–45
- [20] Björk T and Hult H 2005 A note on Wick products and the fractional Black-Scholes model *Financ. Stochastics* **9** 197–209
- [21] Cheridito P 2003 Arbitrage in fractional Brownian motion models *Financ. Stochastics* 7 533–53
- [22] Bender C, Sottinen T and Valkeila E 2007 Arbitrage with fractional Brownian motion? *Theory Stoch. Process.* **13** 23–34
- [23] Cheridito P 2001 Mixed fractional Brownian motion Bernoulli 7 913-34
- [24] Biagini F, Hu Y, Øksendal B and Zhang T 2008 Stochastic Calculus for Fractional Brownian Motion and Applications (Springer)
- [25] Zili M 2006 On the mixed fractional Brownian motion *J. AppliedMathematics Stoch. Anal.* **2006** 1–9

Certificate

Ref: 1109/UN34.13/TU/2018

This is to certify that

Chatarina Enny Murwaningtyas

has participated in

The 5th International Conference on Research, Implementation and Education of Mathematics and Science

Organized by Faculty of Mathematics and Natural Science, Yogyakarta State University, Indonesia on May 7-8, 2018

as a

Presenter

with the paper entitled:

European Option Pricing by Using the Mixed Fractional Brownian Motion

Dean.

Dr. Hartono³ NIP.19620329 198702 1 002 Yogyakarta, May 8, 2018 The Head of Commitee

FMIPA

Dr. Agung W. Subiantoro NIP.19810127 200501 1 002