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Abstract This paper deals with an Indonesian option
pricing using mixed fractional Brownian motion to model
the underlying stock price. There have been researched
on the Indonesian option pricing by using Brownian
motion. Another research states that logarithmic returns
of the Jakarta composite index have long-range depen-
dence. Motivated by the fact that there is long-range
dependence on logarithmic returns of Indonesian stock
prices, we use mixed fractional Brownian motion to model
on logarithmic returns of stock prices. The Indonesian
option is different from other options in terms of its
exercise time. The option can be exercised at maturity
or at any time before maturity with profit less than
ten percent of the strike price. Also, the option will be
exercised automatically if the stock price hits a barrier
price. Therefore, the mathematical model is unique, and
we apply the method of the partial differential equation
to study it. An implicit finite difference scheme has
been developed to solve the partial differential equation
that is used to obtain Indonesian option prices. We
study the stability and convergence of the implicit finite
difference scheme. We also present several examples of
numerical solutions. Based on theoretical analysis and
the numerical solutions, the scheme proposed in this
paper is efficient and reliable.

Keywords Indonesian option pricing, mixed frac-
tional Brownian motion, Finite Difference

1 Introduction

The Jakarta Stock Exchange, currently called the
Indonesia Stock Exchange after merging with the
Surabaya Stock Exchange, launched an option on October
6, 2004. The option traded in Indonesia is different to the
usual options. An Indonesia option [1] is an American op-
tion that is given a barrier, but the Indonesian option only
has maximum gain of 10% of a strike price. The option
price depends on the weighted moving average (WMA)
price of the underlying stock price. The WMA price is

a ratio of the total value of all transactions to the total
volume of the stock traded in the last 30 minutes. Cal-
culating the Indonesia option by using the WMA price is
not easy due to model complexity. The WMA price is cal-
culated during the last 30 minutes, then the WMA price
and the stock price do not differ in terms of value. This
study assumed the WMA price is equal to the stock price.

In Indonesian options, if a stock price hits the barrier
value, then the option will be exercised automatically with
a gain of 10% of a strike price. On the contrary, if the
stock price does not hit the barrier, then the option can be
exercised any time before or at the maturity date. When
the stock price does not hit the barrier, option buyers
tend to wait until maturity. This is due to the fact that
the barrier value is close enough to the strike price and
the maximum duration of the contract is only 3 months.
Therefore, we are interested in studying the pricing of
Indonesian options that can be exercised at maturity or
when the stock prices hit the barrier.

Gunardi et al. [2] introduced pricing of Indonesian op-
tions. The pricing of Indonesian options in [2, 3, 4] used
Black-Scholes and variance gamma models. The Black-
Scholes model used geometric Brownian motion to model
logarithmic returns of stock prices. This model assumes
that logarithmic returns of stock prices ware normally and
independent identically distributed (iid). However, empir-
ical studies have shown that logarithmic returns of stock
prices usually exhibit properties of self-similarity, heavy
tails, and long-range dependence [5, 6, 8]. Even Cajueiro
[5] and Fakhriyana [8] stated that returns of the Jakarta
Composite Index have long-range dependence properties.
In this situation, it is suitable to model the stock price
using a fractional Brownian motion (FBM).

To use a FBM in option pricing, we must define a
risk-neutral measure and the Itô formula, with analog
in Brownian motion. Hu and Øksendal [9] contributed
to finding the Itô formula that can be used in the FBM
model. However, the determination of option prices still
had an arbitrage opportunity. Cheridito [10] proposed
a mixed fractional Brownian motion (MFBM) to reduce
an arbitrage opportunity. In this paper, we employ the
MFBM on the Indonesian option pricing to reduce the
arbitrage opportunity.
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In the stock market, there are many types of options
traded. European and American options are standard or
vanilla options. European options can be exercised at ma-
turity, whereas American options can be exercised at any
time during the contract. Pricing of European options us-
ing MFBM has been studied in [11, 12]. Chen et al. [13]
investigated numerically pricing of American options un-
der the generalization of MFBM. Options that have more
complicated rules than vanilla options are called exotic
options. Examples of exotic options are Asian options,
rainbow options, currency options, barrier options, and
also Indonesian options. Rao [14] and Zang et al. [15] dis-
cussed the pricing of Asian power options under MFBM.
Wang [16] explored the pricing of Asian rainbow options
under FBM. Currency options pricing under FBM and
MFBM has been studied in [17, 18, 19]. Numerical so-
lution of barrier options pricing under MFBM have been
evaluated by Ballestra et al. [20].

Indonesian option is one type of barrier options. Be-
cause analytic solutions for barrier options are not easy
to find [20], we determine Indonesian options using nu-
merical solutions. One numerical solution that can be
used is the finite difference method discussed in [21]. The
purpose of this paper is to determine Indonesian option
prices under the MFBM model using the finite difference
method. In this article, we also show that the resulting
finite difference scheme is stable and convergent.

2 Preliminaries

We first recall some definitions, and lemma which are
used in this paper.

Definition 1. [22] Let H ∈ (0, 1) be given. A fractional
Brownian motion BH = (BHt )t≥0 of Hurst index H is a
continuous and centered Gaussian process with covariance
function

E
[
BHt , B

H
u

]
= 1

2

(
|t|2H + |u|2H − |t− u|2H

)
,

for all t, u > 0.

A FBM is a generalization of the standard Brownian
motion. To see this take H = 1

2 in the Definition 1.
Standard Brownian motion has been employed to model
stock prices in the Black-Scholes model. However, it can-
not model time series with long-range dependence (long
memory). It is known that a FBM is able to model time
series with long-range dependence for 1

2 < H < 1 .
One main problem of using a FBM in financial models is

that it exhibits arbitrage which is usually excluded in the
modeling. To avoid the possibility of arbitrage, Cheridito
[23] introduced an MFBM.

Definition 2. [23, 24] A mixed fractional Brownian mo-
tion of parameters α, β and H is a process MH =(
MH,α,β
t

)
t≥0

, defined on a probability space (Ω,F ,PH)

by
MH,α,β
t = αBt + βBHt , t ≥ 0,

where (Bt)t≥0 is a Brownian motion and (BHt )t≥0 is an
independent FBM of Hurst index H.

We rewrite the following lemma which is derived from
the Ito formula [22, 25] and properties of an MFBM. The

lemma will be used later in option pricing based on stock
price modeled by an MFBM.

Lemma 3. [26] Let f = f(t, St) is a differentiable func-
tion. Let (St)t≥0 be a stochastic process given by

dSt = µStdt+ σ1StdBt + σ2StdB
H
t ,

where Bt is a Brownian motion, BHt is a FBM, and as-
sume that Bt and BHt are independent, then we have

df=

(
∂f

∂t
+µSt

∂f

∂St
+
σ2

1S
2
t

2

∂2f

∂S2
t

+Hσ2
2S

2
t t

2H−1 ∂
2f

∂S2
t

)
dt

+ σ1St
∂f

∂St
dBt+σ2St

∂f

∂St
dBHt .

3 An option pricing model by us-
ing MFBM

A mixed fractional Black Scholes market is a model con-
sisting of two assets, one riskless asset (bank account) and
one risky asset (stock). A bank account satisfies

dAt = rAtdt, A0 = 1,

where At denotes a bank account at time t, t ∈ [0, T ], with
an interest rate r. Meanwhile, a stock price is modeled by
using an MFBM defined in Definition 2. The stock price
satisfies

dSt = µStdt+ ασStdB̂t + βσStdB̂
H
t , S0 > 0,

where St denotes a stock price at time t, t ∈ [0, T ], with
an expected return µ and a volatility σ, B̂t is a Brownian
motion, B̂Ht is an independent FBM of Hurst index H
with respect to a probability measure P̂H .

According to the fractional Girsanov theorem [22], it is
known that there is a risk-neutral measure PH , so that if
ασB̂t + βσB̂Ht = ασBt + βσBHt − µ+ r is

dSt = rStdt+ ασStdBt + βσStdB
H
t , S0 > 0. (1)

The following lemma shows the solution of (1).

Lemma 4. The stochastic differential equation (1) admits
a solution

St=S0 exp
(
rt− 1

2 (ασ)2t− 1
2 (βσ)2t2H+ασBt+βσB

H
t

)
.

(2)

Proof. Using Lemma 3 with µ = r, σ1 = ασ and σ2 = βσ
and taking f(St) = ln(St), be obtained:

d ln(St) =
(
r − 1

2 (ασ)2 − (βσ)2Ht2H−1
)
dt

+ ασdBt + βσdBHt ,

and hence,

ln

(
St
S0

)
= rt− 1

2 (ασ)2t− 1
2 (βσ)2t2H + ασBt + βσBHt ,

which can be related as (2).

In mathematical finance, the Black-Scholes equation is
a partial differential equation (PDE) which is used to de-
termine the price of an option based on the Black-Scholes
model. The Black-Scholes type differential equation based
on an MFBM is constructed in the following theorem.
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Theorem 5. Let V (t, S) be an option value that depends
on a time t and a stock price S. Then, under an MFBM
model, V (t, S) satisfies

∂V

∂t
+ rS

∂V

∂S
+

1

2
(ασS)2 ∂

2V

∂S2

+ (βσS)2Ht2H−1 ∂
2V

∂S2
− rV = 0. (3)

Proof. To prove the statement, a portfolio consisting an
option V (t, S) and a quantity q of stock, will be first set,
i.e.

Π = V (t, S)− qS. (4)

Thus, changes in portfolio value in a short time can be
written as

dΠ = dV (t, S)− qdS. (5)

Now, applying Lemma 3 and f(t, St) = V (t, S), we obtain

dV =
(
∂V
∂t +rS ∂V∂S + 1

2 (ασS)2 ∂2V
∂S2 +(βσS)2Ht2H−1 ∂2V

∂S2

)
dt

+ ασS ∂V∂S dBt + βσS ∂V∂S dB
H
t . (6)

Substituting (6) and (1) into (5), we have

dΠ =
(
∂V
∂t + rS

(
∂V
∂S − q

)
+ 1

2 (ασS)2 ∂2V
∂S2

+(βσS)2Ht2H−1 ∂2V
∂S2

)
dt+ ασS

(
∂V
∂S − q

)
dBt

+ βσS
(
∂V
∂S − q

)
dBHt .

Further, we choose q = ∂V
∂S to eliminate the random noise.

Then we get

dΠ=
(
∂V
∂t + 1

2 (ασS)2 ∂2V
∂S2 +(βσS)2Ht2H−1 ∂2V

∂S2

)
dt. (7)

On the other hand, the portfolio becomes riskless if the
portfolio yield is only determined by the risk-free interest
rate r, which satisfies dΠ = rΠdt. From (4), we have

rΠdt = r(V − qS)dt =
(
rV − rS ∂V∂S

)
dt, (8)

and also from (7) and (8), we get(
∂V
∂t + 1

2 (ασS)2 ∂2V
∂S2 +(βσS)2Ht2H−1 ∂2V

∂S2

)
dt

=
(
rV − rS ∂V∂S

)
dt,

which yields (3).

4 A Finite Difference Method for
Indonesian option pricing

An Indonesian option is an option that can be exercised
at maturity or at any time before maturity but the profit
does not exceed 10 percent of the strike price. The option
will be exercised automatically if the stock price hits a
barrier price. The barrier price in an Indonesian option
is 110% of the strike price for a call option and 90% of
the strike price for a put option. Because the benefits of
an Indonesian option is very small, more option contract
holders often choose to exercise their contracts at matu-
rity. In other words, an Indonesian option is an option
that can be exercised at maturity or when the stock hits
the barrier price.

Let L is a barrier of an Indonesian option and tL is the
first time of the stock price hitting the barrier;

tL = min { t| t ∈ [0, T ], St ≥ L} . (9)

An Indonesian call option with a strike price K can be
exercised at maturity T or until the stock price of St hits
the barrier at L = 1.1K. The payoff function at time T
of the call option can be expressed as follows :

f(ST ) =

{
ST −K if tL > T,
(L−K)er(T−tL) if tL ≤ T .

(10)

Similarly, the payoff function at time T of an Indonesian
put option with barrier price L = 0.9K can be expressed
as follows :

f(ST ) =

{
K − ST if tL > T,
(K − L)er(T−tL) if tL ≤ T .

(11)

The partial differential equation used in the Indonesian
option pricing is a PDE with a final time condition. Be-
cause finite difference methods usually use an initial time
condition, we make changes on variable τ i.e. τ = T − t.
Under this transformation, PDE (3) becomes,

∂V

∂τ
− rS ∂V

∂S
− 1

2
(ασS)2 ∂

2V

∂S2

− (βσS)2H(T − τ)2H−1 ∂
2V

∂S2
+ rV = 0. (12)

We must set up a discrete grid in this case with respect
to stock prices and time to solve the PDE by finite dif-
ference methods. Suppose Smax is a suitably large stock
price and in this case Smax = L. We need Smax since the
domain for the PDE is unbounded with respect to stock
prices, but we must bound it in some ways for comput-
ing purposes. The grid consists of points (τk, Sj) such
that Sj = j∆S and τk = k∆τ with j = 0, 1, . . . ,M and
k = 0, 1, . . . , N .

Using Taylor series expansion, we have

V kj − V
k−1
j

∆τ
=
∂V

∂τ
+O(∆τ), (13)

V kj+1 − V kj−1

2∆S
=
∂V

∂S
+O

(
(∆S)

2
)
, (14)

and

V kj+1 − 2V kj + V kj−1

(∆S)
2 =

∂2V

∂S2
+O

(
(∆S)

2
)
. (15)

Substitution of (13), (14) and (15) in (12) yields

V k
j −V

k−1
j

∆τ −rj∆S V
k
j+1−V

k
j−1

2∆S −(ασ)2

2 (j∆S)
2 V

k
j+1−2V k

j +V k
j−1

(∆S)2

−(βσ)2(j∆S)2H(T−k∆τ)2H−1 V
k
j+1−2V k

j +V k
j−1

(∆S)2

+ rV kj = 0, (16)

where the local truncation error is O
(

∆τ + (∆S)
2
)

.

Rewriting (16), we get an implicit scheme as follows

V k−1
j = ajV

k
j−1 + bjV

k
j + cjV

k
j+1, (17)
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where

aj =
(
− 1

2 (ασj)
2 − (βσj)

2
H(T − k∆τ)

2H−1
+ 1

2rj
)

∆τ,

(18)

bj =
(

1 +
(

(ασj)
2

+ 2(βσj)
2
H(T − k∆τ)

2H−1
+ r
)

∆τ
)
,

(19)

cj =
(
− 1

2 (ασj)
2 − (βσj)

2
H(T − k∆τ)

2H−1 − 1
2rj,

)
∆τ.

(20)
Using (9) and (10), we can write an initial condition of

the Indonesian call option as follows:

V 0
j =

{
j∆S −K if L > j∆S,
L−K if L ≤ j∆S, (21)

and boundary conditions of the call option as follows:

V k0 = 0 and V kM = (L−K)e−rk∆τ . (22)

In another case, using (9) and (11), we get an initial condi-
tion and boundary conditions of the Indonesian put option
shown below respectively:

V 0
j =

{
K − j∆S if L < j∆S,
K − L if L ≥ j∆S,

and
V k0 = 0 and V kM = (K − L)e−rk∆τ .

5 Stability and Convergence of
the Implicit Finite Difference
Scheme

We analyze the stability and convergence of the implicit
finite difference scheme using Fourier analysis in this sec-
tion. Firstly, we discuss the stability of the implicit finite
difference scheme. Let V kj be difference solution of (17)

and Ukj be another approximate solution of (17), we de-

fine a roundoff error εkj = V kj − Ukj . Next, we obtain a
following roundoff error equation

εk−1
j = ajε

k
j−1 + bjε

k
j + cjε

k
j+1. (23)

Furthermore, we define a grid function as follows:

εk(S) =

{
εkj if Sj−∆S

2 < S ≤ Sj+ ∆S
2 , j = 1, ...,M−1,

0 if 0 ≤ S ≤ ∆S
2 or Smax−∆S

2 < S ≤ Smax.

The grid function can be expanded in a Fourier series
below:

εk(S) =

∞∑
l=−∞

ξk(l) exp
(
i2πlS
Smax

)
, k = 1, 2, . . . , N,

where

ξk(l) = 1
Smax

Smax∫
0

εk(S) exp
(
−i2πlS
Smax

)
dS.

Moreover, we let

εk =
[
εk1 , ε

k
2 , . . . , ε

k
N−1

]T
.

And we introduce a norm,

∥∥εk∥∥
2

=

M−1∑
j=1

∣∣εkj ∣∣2∆S


1
2

=

 Smax∫
0

∣∣εk(S)
∣∣2dS


1
2

.

Further, by using Parseval equality,

Smax∫
0

∣∣εk(S)
∣∣2dS =

∞∑
l=−∞

∣∣ξk(l)
∣∣2,

we obtain ∥∥εk∥∥2

2
=

∞∑
l=−∞

∣∣ξk(l)
∣∣2.

At the moment, we assume that the solution of equation
(23) has the following form

εkj = ξkeiωj∆S , (24)

where ω = 2πl
Smax

and i =
√
−1. Substituting (24) into

(23), we obtain

ξk−1eiωj∆S=ajξ
keiω(j−1)∆S+bjξ

keiωj∆S+cjξ
keiω(j+1)∆S

=ξkeiωj∆S
(
aje
−iω∆S+bj+cje

iω∆S
)
. (25)

Equation (25) can be rewritten as follows,

ξk−1 = ξk
(
aje
−iω∆S + bj + cje

iω∆S
)
, (26)

ξk−1 = ξkϑj , (27)

where

ϑj = aje
−iω∆S + bj + cje

iω∆S . (28)

By substituting (18), (19) and (20) into (28), we obtain

ϑj =
(
−(ασj)2−2(βσj)2H(T−k∆τ)2H−1

)
∆τ cos(ω∆S)

+
(
(ασj)2+2(βσj)2H(T−k∆τ)2H−1+r

)
∆τ

− rji∆τ sin(ω∆S) + 1. (29)

Proposition 6. If ξk, k ∈ N, is a solution of (26), then
|ξk| ≤ |ξ0|.

Proof. Since |ϑj | ≥ 1 and using (27) for k = 1, we have

∣∣ξ1
∣∣ =

1

|ϑj |
∣∣ξ0
∣∣ ≤ ∣∣ξ0

∣∣ .
If |ξk−1| ≤ |ξ0|, then using (27), we obtain∣∣ξk∣∣ =

1

|ϑj |
∣∣ξk−1

∣∣ ≤ 1

|ϑj |
∣∣ξ0
∣∣ ≤ ∣∣ξ0

∣∣ .
This completes the proof.

Theorem 7. The difference scheme (17) is uncondition-
ally stable.

Proof. Using Proposition 6 and (24), we obtain∥∥εk∥∥
2
≤
∥∥ε0
∥∥

2
, k = 1, 2, ..., N,

which means that the difference scheme (17) is uncondi-
tionally stable.
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Now we analyze the convergence of implicit finite dif-
ference scheme. Let V (τk, Sj) is exact solution of (12) at
a point (τk, Sj) and

Rkj =
V (τk,Sj)−V (τk−1,Sj)

∆τ −rj∆S V (τk,Sj+1)−V (τk,Sj−1)
2∆S

− 1
2 (ασ)2(j∆S)

2 V (τk,Sj+1)−2V (τk,Sj)+V (τk,Sj−1)

(∆S)2

−
(
(βσ)2(j∆S)2H(T − k∆τ)2H−1

)
× V (τk,Sj+1)−2V (τk,Sj)+V (τk,Sj−1)

(∆S)2

+ rV (τk, Sj), (30)

where k = 1, 2, . . . , N and j = 1, 2, . . . ,M − 1. Conse-
quently, there is a positive constant Ck,j1 , so as∣∣Rkj ∣∣ ≤ Ck,j1

(
∆τ + (∆S)2

)
,

then, we have ∣∣Rkj ∣∣ ≤ C1

(
∆τ + (∆S)2

)
, (31)

where

C1 = max
{
Ck,j1

∣∣∣ k = 1, 2, . . . , N ; j = 1, 2, . . . ,M − 1
}
.

From (17), (18), (19) and (20) and definition Rkj in (30),
we have

V (τk−1, Sj) = ajV (τk, Sj−1) + bjV (τk, Sj)

+ cjV (τk, Sj+1)−∆τRkj . (32)

By subtracting (17) from (32), we obtain

εk−1
j = ajε

k
j−1 + bjε

k
j + cjε

k
j+1 −∆τRkj , (33)

where an error εkj = V (τk, Sj) − V kj . The error equation
satisfies a boundary conditions,

εk0 = εkM = 0, k = 1, 2, ..., N,

and an initial condition,

ε0j = 0, j = 1, 2, ...,M. (34)

Next, we define the following grid functions,

εk(S) =

{
εkj if Sj−∆S

2 < S ≤ Sj+ ∆S
2 , j = 1, ...,M−1,

0 if 0 ≤ S ≤ ∆S
2 or Smax−∆S

2 < S ≤ Smax,

and

Rk(S) =

{
Rkj if Sj−∆S

2 < S ≤ Sj+ ∆S
2 , j = 1, ...,M−1,

0 if 0 ≤ S ≤ ∆S
2 or Smax−∆S

2 < S ≤ Smax.

The grid functions can be expanded in a Fourier series
respectively as follows

εk(S) =

∞∑
l=−∞

%k(l) exp
(
i2πlS
Smax

)
, k = 1, 2, . . . , N,

and

Rk(S) =

∞∑
l=−∞

ρk(l) exp
(
i2πlS
Smax

)
, k = 1, 2, . . . , N,

where

%k(l) = 1
Smax

Smax∫
0

εk(S) exp
(
−i2πlS
Smax

)
dS,

and

ρk(l) = 1
Smax

Smax∫
0

Rk(S) exp
(
−i2πlS
Smax

)
dS.

Thus, we let

εk =
[
εk1 , ε

k
2 , . . . , ε

k
N−1

]T
and

Rk =
[
Rk1 , R

k
2 , . . . , R

k
N−1

]T
,

and we define their corresponding norms

∥∥εk∥∥
2

=

M−1∑
j=1

∣∣εkj ∣∣2∆S


1
2

=

 Smax∫
0

∣∣εk(S)
∣∣2dS


1
2

,

and

∥∥Rk
∥∥

2
=

M−1∑
j=1

∣∣Rkj ∣∣2∆S


1
2

=

 Smax∫
0

∣∣Rk(S)
∣∣2dS


1
2

,

(35)
respectively. By using Parseval equality, we get

Smax∫
0

∣∣εk(S)
∣∣2dS =

∞∑
l=−∞

∣∣%k(l)
∣∣2

and
Smax∫
0

∣∣Rk(S)
∣∣2dS =

∞∑
l=−∞

∣∣ρk(l)
∣∣2,

respectively. As a consequence, we can show that∥∥εk∥∥2

2
=

∞∑
l=−∞

∣∣%k(l)
∣∣2 (36)

and ∥∥Rk
∥∥2

2
=

∞∑
l=−∞

∣∣ρk(l)
∣∣2. (37)

Further, we assume that the solution of (33) has the fol-
lowing form

εkj = %keiωj∆S (38)

and
Rkj = ρkeiωj∆S . (39)

Substituting (38) and (39) into (33), we obtain

%k−1eiωj∆S=eiωj∆S
(
%k
(
aje
−iω∆S+bj+cje

iω∆S
)
−∆τρk

)
.

(40)
Equation (40) can be simply rewritten as follows

%k−1 = %k
(
aje
−iω∆S + bj + cje

iω∆S
)
−∆τρk. (41)

By using equations (18), (19), (20) and (41), we obtain

%k−1 =
[(
−(ασj)2−2(βσj)2H(T−k∆τ)2H−1

)
∆τ cos(ω∆S)

+
(
(ασj)2+2(βσj)2H(T−k∆τ)2H−1+r

)
∆τ

−rji∆τ sin (ω∆S) + 1] %k −∆τρk. (42)

Equation (42) can be effectively expressed as follows

%k = 1
ϑj
%k−1 + 1

ϑj
∆τρk, (43)

where ϑj is defined in (29).
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Figure 1. Indonesian option prices on H and σ for values T = 1
12

,

T = 2
12

and T = 3
12

.

Proposition 8. Assuming that %k(k = 1, 2, . . . , N) is a
solution of (42), then there exist a positive constant C2,
so that

|%k| ≤ C2k∆τ |ρ1|.

Proof. From (31) and (35), we have

∥∥Rk
∥∥

2
≤

M−1∑
j=1

C1

(
∆τ + (∆S)2

)2
∆S


1
2

≤ C1

(
∆τ + (∆S)2

)√
M∆S

≤ C1

√
Smax

(
∆τ + (∆S)2

)
(44)

where k = 1, 2, . . . , N . If the series of the right hand side
of (37) convergent, then there is a positive constant Ck2 ,
such that

|ρk| ≡ |ρk(l)| ≤ Ck2 |ρ1| ≡ Ck2 |ρ1(l)|

Then, we have

|ρk| ≤ C2|ρ1|, (45)

where C2 = max
{
Ck2
∣∣ k = 1, 2, . . . , N

}
. By using (34)

and (36), we have %0 = 0. For k = 1, from (43) and (45),
we get

|%1| = ∆τ |ρ1| ≤ C2∆τ |ρ1|

Suppose now that |%n| ≤ C2n∆τ |ρ1|, n = 1, 2, . . . , k − 1,

Figure 2. Indonesian option prices on H and K for values σ = 0.05,
σ = 0.1 and σ = 0.1.

then by using 43 and 45, we obtain

|%k| ≤ 1
|ϑj |C2(k − 1)∆τ |ρ1|+ 1

|ϑj |C2∆τ |ρ1|

≤
(

(k−1)
k|ϑj | + 1

k|ϑj |

)
C2k∆τ |ρ1|

≤ C2k∆τ |ρ1|

This completes the proof.

Theorem 9. The difference scheme (17) is L2-
convergent, and the convergence order is O(∆τ + (∆S)2).

Proof. By using Proposition and (36), (37) and (44), we
obtain ∥∥εk∥∥

2
≤ C2k∆τ

∥∥R1
∥∥

2

≤ C1C2k∆τ
√
Smax(∆τ + (∆S)2)

Because k∆τ ≤ T , we have∥∥εk∥∥
2
≤ C(∆τ + (∆S)2) (46)

where C = C1C2T
√
Smax

6 Numerical examples and discus-
sions

An Indonesian option pricing based on an MFBM has
been studied. An implicit difference scheme of (12) is
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given in (17) and initial and boundary conditions of an
Indonesian call option is given in (21) and (22), respec-
tively. We provide several numerical results that illus-
trate the stability and convergence of the finite difference
method in calculating an Indonesian call option price us-
ing Matlab in this section. In Examples 1 and 2, we show
that the scheme is stable. We also show that the scheme is
convergent in Example 3. Furthermore, Example 4 com-
pares the option price generated by the scheme with the
exact solution in [2] when α = 0 , β = 1, H = 1

2 .

Example 1. An Indonesian call option pricing model
is based on (17) where α = β = 1, an initial condition
(21) and boundary conditions (22) under the following
parameters,

S0 = 1000,K = 1000, r = 0.05,∆S = 1,∆τ = 0.0001,

and various values of parameters,

H ∈ (0.5, 1), σ ∈ (0, 0.5), T ∈
{

1
12 ,

2
12 ,

3
12

}
Figure 1 exhibits the price surface of an Indonesian call
option with a change of the Hurst index (H) and a change
of stock price volatility (σ) for difference maturity time
(T ). The Hurst Index, stock price volatility and maturity
time affect option prices. As the Hurst index decreases
and the stock price volatility and maturity time increase,
we see that the price of Indonesian options increase.

Example 2. Consider an Indonesian call option pricing
at (17), (21) and (22) with α = β = 1 and parameters,

S0 = 1000, r = 0.05, T = 3
12 ,∆S = 1,∆τ = 0.0001,

and various values of parameters,

H ∈ (0.5, 1),K ∈ (900, 1100), σ ∈ {0.01, 0.05, 0.1}

Figure 2 shows the price surface of an Indonesian call op-
tion with a change of Hurst index (H) and a change of
strike price (K) for various volatility values of the stock
price (σ). As the stock price volatility increases, the Hurst
index and strike price decrease, we see that the price of
Indonesian options increase.

Table 1. Convergence results of the scheme (17)

∆S ∆τ Value Difference Ratio
10.00000 0.001000000 30.7251
5.00000 0.000500000 30.8103 0.0852
2.50000 0.000250000 30.8352 0.0249 3.4217
1.25000 0.000125000 30.8433 0.0081 3.0741
0.62500 0.000062500 30.8463 0.0030 2.7000
0.31250 0.000031250 30.8475 0.0012 2.5000
0.15625 0.000015625 30.8480 0.0005 2.4000

Example 3. Consider an Indonesian call option pricing
at (17), (21) and (22) with α = β = 1 and parameters,

S0 =1000,K=1000, r=0.05, σ=0.1, T =0.25, H=0.7.

This example will show the convergence of the scheme
(17). The convergence is demonstrated by the difference
between consecutive approximation processes in Table 1.
The numerical results from Table 1 confirm the results of
the theoretical analysis (46) in Theorem 9.

Figure 3. The price of Indonesian options uses the exact and
numerical solution for H = 1

2
.

In Examples 1, 2 and 3, we choose small ∆S and ∆τ
values. The implicit finite difference scheme can still pro-
duce Indonesian option prices using these values. In other
words, even though the values chosen are very small, it
still produces option prices. We need to mention here that
the calculation process takes a longer time. In addition,
we can see that trends and visible shapes of option price
solutions of the proposed scheme are similar to the option
price solutions in [2] (Example 4). Therefore, it can be
concluded that the implicit finite difference scheme used
to determine Indonesian option prices is stable and con-
vergent.

Example 4. Let Indonesian call option pricing at (17),
(21) and (22) with α = 0, β = 1, H = 1

2 and parameters,

S0 = 1000,K = 1000, r = 0.05, σ = 0.1, T = 2
12 ,

∆S = 1,∆τ = 0.0001.

Equation (7) with α = 0, β = 1 and H = 1
2 which is a

stock price model under a Brownian motion. Figure 3
shows the comparison of numerical and exact solutions
of Indonesian option prices for stock prices modeled by
Brownian motion. The exact solution for determining
Indonesian option prices is obtained by a formula in
[2]. Whereas, the numerical solution is obtained by the
implicit finite difference method (17) with α = 0, β = 1
and H = 1

2 .
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Moreover, if we set α = 1 and β = 0 in (17), then we get
a similar trend of option prices as shown in Figure 3. As
can be seen, both solutions overlap each other. In other
words, the numerical solution is similar to the analytical
solution.

7 Conclusions

In this paper, we apply an implicit finite difference
method to solve Indonesian option pricing problems.
Given that Jakarta Composite Index is long-range de-
pendent, an MFBM is used to model the stock returns.
The implicit finite difference scheme has been developed
to solve a partial differential equation that is used to de-
termine Indonesian option prices. We study the stability
and convergence of the implicit finite difference scheme for
Indonesian option pricing. We also present several exam-
ples of numerical solutions for Indonesian option pricing.
Based on theoretical analysis and numerical solutions, the
scheme proposed in this paper is efficient and reliable.
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Abstract This paper deals with an Indonesian option
pricing using mixed fractional Brownian motion to model
the underlying stock price. There have been researched
on the Indonesian option pricing by using Brownian
motion. Another research states that logarithmic returns
of the Jakarta composite index have long-range depen-
dence. Motivated by the fact that there is long-range
dependence on logarithmic returns of Indonesian stock
prices, we use mixed fractional Brownian motion to model
on logarithmic returns of stock prices. The Indonesian
option is different from other options in terms of its
exercise time. The option can be exercised at maturity
or at any time before maturity with profit less than
ten percent of the strike price. Also, the option will be
exercised automatically if the stock price hits a barrier
price. Therefore, the mathematical model is unique, and
we apply the method of the partial differential equation
to study it. An implicit finite difference scheme has
been developed to solve the partial differential equation
that is used to obtain Indonesian option prices. We
study the stability and convergence of the implicit finite
difference scheme. We also present several examples of
numerical solutions. Based on theoretical analysis and
the numerical solutions, the scheme proposed in this
paper is efficient and reliable.

Keywords Indonesian option pricing, mixed frac-
tional Brownian motion, Finite Difference

1 Introduction

The Jakarta Stock Exchange, currently called the
Indonesia Stock Exchange after merging with the
Surabaya Stock Exchange, launched an option on Octo-
ber 6, 2004. The option traded in Indonesia is different
to the usual options. An Indonesia option [1] is an Amer-
ican option that is given a barrier, but the Indonesian
option only has maximum gain of 10% of a strike price.
The option price depends on the weighted moving average
(WMA) price of the underlying stock price. The WMA

price is a ratio of the total value of all transactions to the
total volume of the stock traded in the last 30 minutes.
Calculating the Indonesia option by using the WMA price
is not easy due to model complexity. If the WMA price
is calculated during the last 30 minutes, then the WMA
price and the stock price do not differ in terms of value.
This study assumed the WMA price is equal to the stock
price.

In Indonesian options, if a stock price hits the barrier
value, then the option will be exercised automatically with
a gain of 10% of a strike price. On the contrary, if the
stock price does not hit the barrier, then the option can be
exercised any time before or at the maturity date. When
the stock price does not hit the barrier, option buyers
tend to wait until maturity. This is due to the fact that
the barrier value is close enough to the strike price and
the maximum duration of the contract is only 3 months.
Therefore, we are interested in studying the pricing of
Indonesian options that can be exercised at maturity or
when the stock prices hit the barrier.

Gunardi et al. [2] introduced pricing of Indonesian op-
tions. The pricing of Indonesian options in [2, 3, 4] used
Black-Scholes and variance gamma models. The Black-
Scholes model used geometric Brownian motion to model
logarithmic returns of stock prices. This model assumes
that logarithmic returns of stock prices ware normally and
independent identically distributed (iid). However, empir-
ical studies have shown that logarithmic returns of stock
prices usually exhibit properties of self-similarity, heavy
tails, and long-range dependence [5, 6, 7]. Even Cajueiro
[5] and Fakhriyana [7] stated that returns of the Jakarta
Composite Index have long-range dependence properties.
In this situation, it is suitable to model the stock price
using a fractional Brownian motion (FBM).

To use a FBM in option pricing, we must define a
risk-neutral measure and the Itô formula, with analog
in Brownian motion. Hu and Øksendal [8] contributed
to finding the Itô formula that can be used in the FBM
model. However, the determination of option prices still
had an arbitrage opportunity. Cheridito [9] proposed a
mixed fractional Brownian motion (MFBM) to reduce
an arbitrage opportunity. In this paper, we employ the
MFBM on the Indonesian option pricing to reduce the
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arbitrage opportunity.
In the stock market, there are many types of options

traded. European and American options are standard or
vanilla options. European options can be exercised at ma-
turity, whereas American options can be exercised at any
time during the contract. Pricing of European options us-
ing MFBM has been studied in [10, 11]. Chen et al. [12]
investigated numerically pricing of American options un-
der the generalization of MFBM. Options that have more
complicated rules than vanilla options are called exotic
options. Examples of exotic options are Asian options,
rainbow options, currency options, barrier options, and
also Indonesian options. Rao [13] and Zang et al. [14] dis-
cussed the pricing of Asian power options under MFBM.
Wang [15] explored the pricing of Asian rainbow options
under FBM. Currency options pricing under FBM and
MFBM has been studied in [16, 17, 18]. Numerical so-
lution of barrier options pricing under MFBM have been
evaluated by Ballestra et al. [19].

Indonesian option is one type of barrier options. Be-
cause analytic solutions for barrier options are not easy
to find [19], we determine Indonesian options using nu-
merical solutions. One numerical solution that can be
used is the finite difference method discussed in [20]. The
purpose of this paper is to determine Indonesian option
prices under the MFBM model using the finite difference
method. In this article, we also show that the resulting
finite difference scheme is stable and convergent.

2 An option pricing model by
using MFBM

A mixed fractional Black Scholes market is a model con-
sisting of two assets, one riskless asset (bank account) and
one risky asset (stock). A bank account satisfies

dAt = rAtdt, A0 = 1,

where At denotes a bank account at time t, t ∈ [0, T ], with
an interest rate r. Meanwhile, a stock price is modeled by
using an MFBM defined in Definition A.2 (Appendix A).
The stock price satisfies

dSt = µStdt+ ασStdB̂t + βσStdB̂
H
t , S0 > 0,

where St denotes a stock price at time t, t ∈ [0, T ], with
an expected return µ and a volatility σ, B̂t is a Brownian
motion, B̂Ht is an independent FBM of Hurst index H
with respect to a probability measure P̂H .

According to the fractional Girsanov theorem [21], it is
known that there is a risk-neutral measure PH , so that if
ασB̂t + βσB̂Ht = ασBt + βσBHt − µ+ r is

dSt = rStdt+ ασStdBt + βσStdB
H
t , S0 > 0. (1)

Lemma 1. The stochastic differential equation (1) admits
a solution

St=S0 exp
(
rt− 1

2 (ασ)2t− 1
2 (βσ)2t2H+ασBt+βσB

H
t

)
.

(2)

In mathematical finance, the Black-Scholes equation is
a partial differential equation (PDE) which is used to de-
termine the price of an option based on the Black-Scholes
model. The Black-Scholes type differential equation based
on an MFBM is constructed in the following theorem.

Theorem 2. Let V (t, S) be an option value that depends
on a time t and a stock price S. Then, under an MFBM
model, V (t, S) satisfies

∂V

∂t
+ rS

∂V

∂S
+

1

2
(ασS)2 ∂

2V

∂S2

+ (βσS)2Ht2H−1 ∂
2V

∂S2
− rV = 0. (3)

3 A Finite Difference Method for
Indonesian option pricing

An Indonesian option is an option that can be exercised
at maturity or at any time before maturity but the profit
does not exceed 10 percent of the strike price. The option
will be exercised automatically if the stock price hits a
barrier price. The barrier price in an Indonesian option
is 110% of the strike price for a call option and 90% of
the strike price for a put option. Because the benefits of
an Indonesian option is very small, more option contract
holders often choose to exercise their contracts at matu-
rity. In other words, an Indonesian option is an option
that can be exercised at maturity or when the stock hits
the barrier price.

Let L is a barrier of an Indonesian option and tL is the
first time of the stock price hitting the barrier;

tL = min { t| t ∈ [0, T ], St ≥ L} . (4)

An Indonesian call option with a strike price K can be
exercised at maturity T or until the stock price of St hits
the barrier at L = 1.1K. The payoff function at time T
of the call option can be expressed as follows :

f(ST ) =

{
ST −K if tL > T,
(L−K)er(T−tL) if tL ≤ T .

(5)

Similarly, the payoff function at time T of an Indonesian
put option with barrier price L = 0.9K can be expressed
as follows :

f(ST ) =

{
K − ST if tL > T,
(K − L)er(T−tL) if tL ≤ T .

(6)

The partial differential equation used in the Indonesian
option pricing is a PDE with a final time condition. Be-
cause finite difference methods usually use an initial time
condition, we make changes on variable τ i.e. τ = T − t.
Under this transformation, PDE (3) becomes,

∂V

∂τ
− rS ∂V

∂S
− 1

2
(ασS)2 ∂

2V

∂S2

− (βσS)2H(T − τ)2H−1 ∂
2V

∂S2
+ rV = 0. (7)

We must set up a discrete grid in this case with respect
to stock prices and time to solve the PDE by finite dif-
ference methods. Suppose Smax is a suitably large stock
price and in this case Smax = L. We need Smax since the
domain for the PDE is unbounded with respect to stock
prices, but we must bound it in some ways for comput-
ing purposes. The grid consists of points (τk, Sj) such
that Sj = j∆S and τk = k∆τ with j = 0, 1, . . . ,M and
k = 0, 1, . . . , N .

2



Using Taylor series expansion, we have

V kj − V
k−1
j

∆τ
=
∂V

∂τ
+O(∆τ), (8)

V kj+1 − V kj−1

2∆S
=
∂V

∂S
+O

(
(∆S)

2
)
, (9)

and

V kj+1 − 2V kj + V kj−1

(∆S)
2 =

∂2V

∂S2
+O

(
(∆S)

2
)
. (10)

Substitution of (8), (9) and (10) in (7) yields

V k
j −V

k−1
j

∆τ −rj∆S V
k
j+1−V

k
j−1

2∆S −(ασ)2

2 (j∆S)
2 V

k
j+1−2V k

j +V k
j−1

(∆S)2

−(βσ)2(j∆S)2H(T−k∆τ)2H−1 V
k
j+1−2V k

j +V k
j−1

(∆S)2

+ rV kj = 0, (11)

where the local truncation error is O
(

∆τ + (∆S)
2
)

.

Rewriting (11), we get an implicit scheme as follows

V k−1
j = ajV

k
j−1 + bjV

k
j + cjV

k
j+1, (12)

where

aj =
(
− 1

2 (ασj)
2 − (βσj)

2
H(T − k∆τ)

2H−1
+ 1

2rj
)

∆τ,

(13)

bj =
(

1 +
(

(ασj)
2

+ 2(βσj)
2
H(T − k∆τ)

2H−1
+ r
)

∆τ
)
,

(14)

cj =
(
− 1

2 (ασj)
2 − (βσj)

2
H(T − k∆τ)

2H−1 − 1
2rj,

)
∆τ.

(15)
Using (4) and (5), we can write an initial condition of

the Indonesian call option as follows:

V 0
j =

{
j∆S −K if L > j∆S,
L−K if L ≤ j∆S, (16)

and boundary conditions of the call option as follows:

V k0 = 0 and V kM = (L−K)e−rk∆τ . (17)

In another case, using (4) and (6), we get an initial condi-
tion and boundary conditions of the Indonesian put option
shown below respectively:

V 0
j =

{
K − j∆S if L < j∆S,
K − L if L ≥ j∆S,

and
V k0 = 0 and V kM = (K − L)e−rk∆τ .

We analyze the stability and convergence of the implicit
finite difference scheme using Fourier analysis. Firstly,
we discuss the stability of the implicit finite difference
scheme. Let V kj be difference solution of (12) and Ukj be
another approximate solution of (12), we define a roundoff
error εkj = V kj −Ukj . Next, we obtain a following roundoff
error equation

εk−1
j = ajε

k
j−1 + bjε

k
j + cjε

k
j+1. (18)

Furthermore, we define a grid function as follows:

εk(S) =

{
εkj if Sj−∆S

2 < S ≤ Sj+ ∆S
2 , j = 1, ...,M−1,

0 if 0 ≤ S ≤ ∆S
2 or Smax−∆S

2 < S ≤ Smax.

The grid function can be expanded in a Fourier series
below:

εk(S) =

∞∑
l=−∞

ξk(l) exp
(
i2πlS
Smax

)
, k = 1, 2, . . . , N,

where

ξk(l) = 1
Smax

Smax∫
0

εk(S) exp
(
−i2πlS
Smax

)
dS.

Moreover, we let

εk =
[
εk1 , ε

k
2 , . . . , ε

k
N−1

]T
.

And we introduce a norm,

∥∥εk∥∥
2

=

M−1∑
j=1

∣∣εkj ∣∣2∆S


1
2

=

 Smax∫
0

∣∣εk(S)
∣∣2dS


1
2

.

Further, by using Parseval equality,

Smax∫
0

∣∣εk(S)
∣∣2dS =

∞∑
l=−∞

∣∣ξk(l)
∣∣2,

we obtain ∥∥εk∥∥2

2
=

∞∑
l=−∞

∣∣ξk(l)
∣∣2.

At the moment, we assume that the solution of equation
(18) has the following form

εkj = ξkeiωj∆S , (19)

where ω = 2πl
Smax

and i =
√
−1. Substituting (19) into

(18), we obtain

ξk−1eiωj∆S=ajξ
keiω(j−1)∆S+bjξ

keiωj∆S+cjξ
keiω(j+1)∆S

=ξkeiωj∆S
(
aje
−iω∆S+bj+cje

iω∆S
)
. (20)

Equation (20) can be rewritten as follows,

ξk−1 = ξk
(
aje
−iω∆S + bj + cje

iω∆S
)
, (21)

ξk−1 = ξkϑj , (22)

where
ϑj = aje

−iω∆S + bj + cje
iω∆S . (23)

By substituting (13), (14) and (15) into (23), we obtain

ϑj =
(
−(ασj)2−2(βσj)2H(T−k∆τ)2H−1

)
∆τ cos(ω∆S)

+
(
(ασj)2+2(βσj)2H(T−k∆τ)2H−1+r

)
∆τ

− rji∆τ sin(ω∆S) + 1. (24)

Proposition 3. If ξk, k ∈ N, is a solution of (21), then
|ξk| ≤ |ξ0|.

Hence by (19) and Proposition 3, we have the following
theorem.
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Theorem 4. The difference scheme (12) is uncondition-
ally stable.

Now we analyze the convergence of implicit finite dif-
ference scheme. Let V (τk, Sj) is exact solution of (7) at a
point (τk, Sj) and

Rkj =
V (τk,Sj)−V (τk−1,Sj)

∆τ −rj∆S V (τk,Sj+1)−V (τk,Sj−1)
2∆S

− 1
2 (ασ)2(j∆S)

2 V (τk,Sj+1)−2V (τk,Sj)+V (τk,Sj−1)

(∆S)2

−
(
(βσ)2(j∆S)2H(T − k∆τ)2H−1

)
× V (τk,Sj+1)−2V (τk,Sj)+V (τk,Sj−1)

(∆S)2

+ rV (τk, Sj), (25)

where k = 1, 2, . . . , N and j = 1, 2, . . . ,M − 1. Conse-
quently, there is a positive constant Ck,j1 , so as∣∣Rkj ∣∣ ≤ Ck,j1

(
∆τ + (∆S)2

)
,

then, we have ∣∣Rkj ∣∣ ≤ C1

(
∆τ + (∆S)2

)
, (26)

where

C1 = max
{
Ck,j1

∣∣∣ k = 1, 2, . . . , N ; j = 1, 2, . . . ,M − 1
}
.

From (12), (13), (14), (15) and definition Rkj in (25), we
have

V (τk−1, Sj) = ajV (τk, Sj−1) + bjV (τk, Sj)

+ cjV (τk, Sj+1)−∆τRkj . (27)

By subtracting (12) from (27), we obtain

εk−1
j = ajε

k
j−1 + bjε

k
j + cjε

k
j+1 −∆τRkj , (28)

where an error εkj = V (τk, Sj) − V kj . The error equation
satisfies a boundary conditions,

εk0 = εkM = 0, k = 1, 2, ..., N,

and an initial condition,

ε0j = 0, j = 1, 2, ...,M. (29)

Next, we define the following grid functions,

εk(S) =

{
εkj if Sj−∆S

2 < S ≤ Sj+ ∆S
2 , j = 1, ...,M−1,

0 if 0 ≤ S ≤ ∆S
2 or Smax−∆S

2 < S ≤ Smax,

and

Rk(S) =

{
Rkj if Sj−∆S

2 < S ≤ Sj+ ∆S
2 , j = 1, ...,M−1,

0 if 0 ≤ S ≤ ∆S
2 or Smax−∆S

2 < S ≤ Smax.

The grid functions can be expanded in a Fourier series
respectively as follows

εk(S) =

∞∑
l=−∞

%k(l) exp
(
i2πlS
Smax

)
, k = 1, 2, . . . , N,

and

Rk(S) =

∞∑
l=−∞

ρk(l) exp
(
i2πlS
Smax

)
, k = 1, 2, . . . , N,

where

%k(l) = 1
Smax

Smax∫
0

εk(S) exp
(
−i2πlS
Smax

)
dS,

and

ρk(l) = 1
Smax

Smax∫
0

Rk(S) exp
(
−i2πlS
Smax

)
dS.

Thus, we let

εk =
[
εk1 , ε

k
2 , . . . , ε

k
N−1

]T
and

Rk =
[
Rk1 , R

k
2 , . . . , R

k
N−1

]T
,

and we define their corresponding norms

∥∥εk∥∥
2

=

M−1∑
j=1

∣∣εkj ∣∣2∆S


1
2

=

 Smax∫
0

∣∣εk(S)
∣∣2dS


1
2

,

and

∥∥Rk
∥∥

2
=

M−1∑
j=1

∣∣Rkj ∣∣2∆S


1
2

=

 Smax∫
0

∣∣Rk(S)
∣∣2dS


1
2

,

(30)
respectively. By using Parseval equality, we get

Smax∫
0

∣∣εk(S)
∣∣2dS =

∞∑
l=−∞

∣∣%k(l)
∣∣2

and
Smax∫
0

∣∣Rk(S)
∣∣2dS =

∞∑
l=−∞

∣∣ρk(l)
∣∣2,

respectively. As a consequence, we can show that

∥∥εk∥∥2

2
=

∞∑
l=−∞

∣∣%k(l)
∣∣2 (31)

and ∥∥Rk
∥∥2

2
=

∞∑
l=−∞

∣∣ρk(l)
∣∣2. (32)

Further, we assume that the solution of (28) has the fol-
lowing form

εkj = %keiωj∆S (33)

and

Rkj = ρkeiωj∆S . (34)

Substituting (33) and (34) into (28), we obtain

%k−1eiωj∆S=eiωj∆S
(
%k
(
aje
−iω∆S+bj+cje

iω∆S
)
−∆τρk

)
.

(35)
Equation (35) can be simply rewritten as follows

%k−1 = %k
(
aje
−iω∆S + bj + cje

iω∆S
)
−∆τρk. (36)
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Figure 1. Indonesian option prices on H and σ for values T = 1
12

,

T = 2
12

and T = 3
12

.

By using equations (13), (14), (15) and (36), we obtain

%k−1 =
[(
−(ασj)2−2(βσj)2H(T−k∆τ)2H−1

)
∆τ cos(ω∆S)

+
(
(ασj)2+2(βσj)2H(T−k∆τ)2H−1+r

)
∆τ

−rji∆τ sin (ω∆S) + 1] %k −∆τρk. (37)

Equation (37) can be effectively expressed as follows

%k = 1
ϑj
%k−1 + 1

ϑj
∆τρk, (38)

where ϑj is defined in (24).

Proposition 5. Assuming that %k(k = 1, 2, . . . , N) is a
solution of (37), then there exist a positive constant C2,
so that

|%k| ≤ C2k∆τ |ρ1|.

The following theorem gives convergence of the different
scheme (12).

Theorem 6. The difference scheme (12) is L2-
convergent, and the convergence order is O(∆τ + (∆S)2).

4 Numerical examples and discus-
sions

An Indonesian option pricing based on an MFBM has
been studied. An implicit difference scheme of (7) is given
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Figure 2. Indonesian option prices on H and K for values σ = 0.01,
σ = 0.05 and σ = 0.1.

in (12) and initial and boundary conditions of an Indone-
sian call option is given in (16) and (17), respectively. We
provide several numerical results that illustrate the sta-
bility and convergence of the finite difference method in
calculating an Indonesian call option price using Matlab
in this section. In Examples 1, 2 and 3, we show that the
scheme is stable. We also show that the scheme is con-
vergent in Example 4. Furthermore, Example 5 compares
the option price generated by the scheme with the exact
solution in [2] when α = 0 , β = 1, H = 1

2 .

Example 1. An Indonesian call option pricing model
is based on (12) where α = β = 1, an initial condition
(16) and boundary conditions (17) under the following
parameters,

∆S = 1,∆τ = 0.0001, r = 0.05, S0 = 1000,K = 1000,

and various values of parameters,

H ∈ (0.5, 1), σ ∈ (0, 0.5), T ∈
{

1
12 ,

2
12 ,

3
12

}
Figure 1 exhibits the price surface of an Indonesian call
option with a change of the Hurst index (H) and a change
of stock price volatility (σ) for difference maturity time
(T ). The Hurst Index, stock price volatility and maturity
time affect option prices. As the Hurst index decreases
and the stock price volatility and maturity time increase,
we see that the price of Indonesian options increase.
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Figure 3. Indonesian option prices with H and T for values of
σ = 0.01, σ = 0.05 and σ = 0.1

Example 2. Consider an Indonesian call option pricing
at (12), (16) and (17) with α = β = 1 and parameters,

∆S = 1,∆τ = 0.0001, r = 0.05, S0 = 1000, T = 3
12 ,

and various values of parameters,

H ∈ (0.5, 1), K ∈ (900, 1100), σ ∈ {0.01, 0.05, 0.1}

Figure 2 shows the price surface of an Indonesian call op-
tion with a change of Hurst index (H) and a change of
strike price (K) for various volatility values of the stock
price (σ). As the stock price volatility increases, the Hurst
index and strike price decrease, we see that the price of
Indonesian options increase.

Example 3. Consider an Indonesian call option pricing
problem (12), (16) and (17) with α = β = 1 and parame-
ters,

∆S = 1,∆t = 0.0001, r = 0.05, S0 = 1000,K = 1000,

and various values of parameters

H ∈ (0.5, 1), T ∈ (0, 0.5), σ ∈ {0.01, 0.05, 0.1}.

Figure 3 shows the price surface of an Indonesian call op-
tion with a change of the Hurst index (H) and a change of
maturity time (T ) for various values of stock price volatil-
ity (σ). Similar to the result obtained in Example 1, we
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Figure 4. The price of Indonesian options uses the exact and
numerical solution for H = 1

2
.

see that the price of Indonesian options increase when the
stock price volatility and maturity time increase while the
Hurst index decreases.

Example 4. Consider an Indonesian call option pricing
at (12), (16) and (17) with α = β = 1 and parameters,

r=0.05, σ=0.1, T =0.25, S0 =1000,K=1000, H=0.7.

This example will show the convergence of the scheme
(12). The convergence is demonstrated by the difference
between consecutive approximation processes in Table 1.
The numerical results from Table 1 confirm the results of
the theoretical analysis (B.8) in Theorem 6.

Table 1. Convergence results of the scheme (12)

∆S ∆τ Value Difference Ratio
10.00000 0.001000000 30.7251
5.00000 0.000500000 30.8103 0.0852
2.50000 0.000250000 30.8352 0.0249 3.4217
1.25000 0.000125000 30.8433 0.0081 3.0741
0.62500 0.000062500 30.8463 0.0030 2.7000
0.31250 0.000031250 30.8475 0.0012 2.5000
0.15625 0.000015625 30.8480 0.0005 2.4000

Example 5. Let Indonesian call option pricing at (12),
(16) and (17) with α = 0, β = 1, H = 1

2 and parameters,

∆S = 1,∆τ = 0.0001, r = 0.05, σ = 0.1, T = 2
12 ,

S0 = 1000,K = 1000.
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Equation (7) with α = 0, β = 1 and H = 1
2 is a stock

price model under a Brownian motion. Figure 4 shows the
comparison of numerical and exact solutions of Indone-
sian option prices for stock prices modeled by Brownian
motion. The exact solution for determining Indonesian
option prices is obtained by a formula in [2]. Whereas,
the numerical solution is obtained by the implicit finite
difference method (12) with α = 0, β = 1 and H = 1

2 .

Moreover, if we set α = 1 and β = 0 in (12), then we get
a similar trend of option prices as shown in Figure 4. As
can be seen, both solutions overlap each other. In other
words, the numerical solution is similar to the analytical
solution.

In Examples 1, 2, 3 and 4, we choose small ∆S and
∆τ values. The implicit finite difference scheme can still
produce Indonesian option prices using these values. In
other words, even though the values chosen are very small,
it still produces option prices. We need to mention here
that the calculation process takes a longer time. In addi-
tion, we can see that trends and visible shapes of option
price solutions of the proposed scheme are similar to the
option price solutions in [2] (Example 5). Therefore, it
can be concluded that the implicit finite difference scheme
used to determine Indonesian option prices is stable and
convergent.

5 Conclusions

In this paper, we apply an implicit finite difference
method to solve Indonesian option pricing problems.
Given that Jakarta Composite Index is long-range de-
pendent, an MFBM is used to model the stock returns.
The implicit finite difference scheme has been developed
to solve a partial differential equation that is used to de-
termine Indonesian option prices. We study the stability
and convergence of the implicit finite difference scheme for
Indonesian option pricing. We also present several exam-
ples of numerical solutions for Indonesian option pricing.
Based on theoretical analysis and numerical solutions, the
scheme proposed in this paper is efficient and reliable.
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Appendix

A Review of a mixed fractional Brownian
motion

In Appendix A, we recall several definitions and lemma
which are used in this paper.

Definition A.1. [21] Let H ∈ (0, 1) be given. A frac-
tional Brownian motion BH = (BHt )t≥0 of Hurst index

H is a continuous and centered Gaussian process with co-
variance function

E
[
BHt , B

H
u

]
= 1

2

(
|t|2H + |u|2H − |t− u|2H

)
,

for all t, u > 0.

A FBM is a generalization of the standard Brownian
motion. To see this take H = 1

2 in the Definition A.1.
Standard Brownian motion has been employed to model
stock prices in the Black-Scholes model. However, it can-
not model time series with long-range dependence (long
memory). It is known that a FBM is able to model time
series with long-range dependence for 1

2 < H < 1 .

One main problem of using a FBM in financial models is
that it exhibits arbitrage which is usually excluded in the
modeling. To avoid the possibility of arbitrage, Cheridito
[22] introduced an MFBM.

Definition A.2. [22, 23] A mixed fractional Brownian
motion of parameters α, β and H is a process MH =(
MH,α,β
t

)
t≥0

, defined on a probability space (Ω,F ,PH)

by

MH,α,β
t = αBt + βBHt , t ≥ 0,

where (Bt)t≥0 is a Brownian motion and (BHt )t≥0 is an
independent FBM of Hurst index H.

We rewrite the following lemma which is derived from
the Ito formula [21, 24] and properties of an MFBM. The
lemma will be used later in option pricing based on stock
price modeled by an MFBM.

Lemma A.3. [25] Let f = f(t, St) is a differentiable
function. Let (St)t≥0 be a stochastic process given by

dSt = µStdt+ σ1StdBt + σ2StdB
H
t ,

where Bt is a Brownian motion, BHt is a FBM, and as-
sume that Bt and BHt are independent, then we have

df=

(
∂f

∂t
+µSt

∂f

∂St
+
σ2

1S
2
t

2

∂2f

∂S2
t

+Hσ2
2S

2
t t

2H−1 ∂
2f

∂S2
t

)
dt

+ σ1St
∂f

∂St
dBt+σ2St

∂f

∂St
dBHt .

B Proofs

Proof of Lemma 1

Proof. Using Lemma A.3 with µ = r, σ1 = ασ and σ2 =
βσ and taking f(St) = ln(St), be obtained:

d ln(St) =
(
r − 1

2 (ασ)2 − (βσ)2Ht2H−1
)
dt

+ ασdBt + βσdBHt ,

and hence,

ln

(
St
S0

)
= rt− 1

2 (ασ)2t− 1
2 (βσ)2t2H + ασBt + βσBHt ,

which can be related as (2).
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Proof of Theorem 2

Proof. To prove the statement, a portfolio consisting an
option V (t, S) and a quantity q of stock, will be first set,
i.e.

Π = V (t, S)− qS. (B.1)

Thus, changes in portfolio value in a short time can be
written as

dΠ = dV (t, S)− qdS. (B.2)

Now, applying Lemma A.3 and f(t, St) = V (t, S), we ob-
tain

dV =
(
∂V
∂t +rS ∂V∂S + 1

2 (ασS)2 ∂2V
∂S2 +(βσS)2Ht2H−1 ∂2V

∂S2

)
dt

+ ασS ∂V∂S dBt + βσS ∂V∂S dB
H
t . (B.3)

Substituting (B.3) and (1) into (B.2), we have

dΠ =
(
∂V
∂t + rS

(
∂V
∂S − q

)
+ 1

2 (ασS)2 ∂2V
∂S2

+(βσS)2Ht2H−1 ∂2V
∂S2

)
dt+ ασS

(
∂V
∂S − q

)
dBt

+ βσS
(
∂V
∂S − q

)
dBHt .

Further, we choose q = ∂V
∂S to eliminate the random noise.

Then we get

dΠ=
(
∂V
∂t + 1

2 (ασS)2 ∂2V
∂S2 +(βσS)2Ht2H−1 ∂2V

∂S2

)
dt. (B.4)

On the other hand, the portfolio becomes riskless if the
portfolio yield is only determined by the risk-free interest
rate r, which satisfies dΠ = rΠdt. From (B.1), we have

rΠdt = r(V − qS)dt =
(
rV − rS ∂V∂S

)
dt, (B.5)

and also from (B.4) and (B.5), we get(
∂V
∂t + 1

2 (ασS)2 ∂2V
∂S2 +(βσS)2Ht2H−1 ∂2V

∂S2

)
dt

=
(
rV − rS ∂V∂S

)
dt,

which yields (3).

Proof of Proposition 3

Proof. Since |ϑj | ≥ 1 and using (22) for k = 1, we have

∣∣ξ1
∣∣ =

1

|ϑj |
∣∣ξ0
∣∣ ≤ ∣∣ξ0

∣∣ .
If |ξk−1| ≤ |ξ0|, then using (22), we obtain

∣∣ξk∣∣ =
1

|ϑj |
∣∣ξk−1

∣∣ ≤ 1

|ϑj |
∣∣ξ0
∣∣ ≤ ∣∣ξ0

∣∣ .
This completes the proof.

Proof of Theorem 4

Proof. Using Proposition 3 and (19), we obtain∥∥εk∥∥
2
≤
∥∥ε0
∥∥

2
, k = 1, 2, ..., N,

which means that the difference scheme (12) is uncondi-
tionally stable.

Proof of Proposition 5

Proof. From (26) and (30), we have

∥∥Rk
∥∥

2
≤

M−1∑
j=1

C1

(
∆τ + (∆S)2

)2
∆S


1
2

≤ C1

(
∆τ + (∆S)2

)√
M∆S

≤ C1

√
Smax

(
∆τ + (∆S)2

)
(B.6)

where k = 1, 2, . . . , N . If the series of the right hand side
of (32) convergent, then there is a positive constant Ck2 ,
such that

|ρk| ≡ |ρk(l)| ≤ Ck2 |ρ1| ≡ Ck2 |ρ1(l)|

Then, we have

|ρk| ≤ C2|ρ1|, (B.7)

where C2 = max
{
Ck2
∣∣ k = 1, 2, . . . , N

}
. By using (29)

and (31), we have %0 = 0. For k = 1, from (38) and (B.7),
we get

|%1| = ∆τ |ρ1| ≤ C2∆τ |ρ1|

Suppose now that |%n| ≤ C2n∆τ |ρ1|, n = 1, 2, . . . , k − 1,
then by using 38 and B.7, we obtain

|%k| ≤ 1
|ϑj |C2(k − 1)∆τ |ρ1|+ 1

|ϑj |C2∆τ |ρ1|

≤
(

(k−1)
k|ϑj | + 1

k|ϑj |

)
C2k∆τ |ρ1|

≤ C2k∆τ |ρ1|

This completes the proof.

Proof of Theorem 6

Proof. By using Proposition and (31), (32) and (B.6), we
obtain ∥∥εk∥∥

2
≤ C2k∆τ

∥∥R1
∥∥

2

≤ C1C2k∆τ
√
Smax(∆τ + (∆S)2)

Because k∆τ ≤ T , we have∥∥εk∥∥
2
≤ C(∆τ + (∆S)2) (B.8)

where C = C1C2T
√
Smax
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Re: A revision of my paper entitled "Finite difference method for pricing of
Indonesian option under a mixed fractional Brownian motion"

Anthony Robinson <revision.hrpub@gmail.com>
Sen 10/08/2020 13.55

Kepada: Enny Murwaningtyas <enny@usd.ac.id>

Dear C. Enny Murwaningtyas,

Thank you for your kind email.
We have received your revised paper (ID:13416767) and all other related documents. If further
revision is not required, you will expect an Acceptance Letter in a week.

Best Regards

Anthony Robinson
Editorial Assistant
revision.hrpub@gmail.com
Horizon Research Publishing, USA
http://www.hrpub.org

On Mon, Aug 10, 2020 at 1:21 AM Enny Murwaningtyas <enny@usd.ac.id> wrote:
Dear
Mr. Anthony Robinson
Editorial Assistant of Mathema�cs and Sta�s�cs
August 9, 2020

Thank you for giving me the opportunity to submit a revised dra� of my paper �tled “Finite
difference method for pricing of Indonesian op�on under a mixed frac�onal Brownian mo�on”. I
really appreciate the �me and effort that you and the reviewers have dedicated to provide
valuable feedback on my paper. I am grateful to the reviewers for their insigh�ul comments so I
have been able to incorporate some changes in my paper to reflect most of the sugges�ons
provided by the reviewers.
We have highlighted the changes within the paper.
We look forward to hearing from you in due �me regarding our submission and to respond to any
further ques�ons and comments you may have.

Sincerely,
C. Enny Murwaningtyas
(enny@usd.ac.id)
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Enny Murwaningtyas <enny@usd.ac.id>
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Kepada: revision.hrpub@gmail.com <revision.hrpub@gmail.com>
Dear Mr. Anthony Robinson

My name is Chatarina Enny Murwaningtyas who has submi�ed a revised dra� of my paper en�tled
"Finite difference method for pricing of Indonesian op�on under a mixed frac�onal Brownian
mo�on" (MS-13416767). Un�l now I have not received an email explaining my status paper. I hope
to hear good news about my paper and be able to carry out the next publicity process.

On the other hand, I saw in the Online Manuscript Tracking System that my manuscript has been
accepted for publica�on yesterday. But un�l now I don't know the payment procedure. I don't have
Paypal account and credit card, can I make payments by bank transfer?

Sincerely,
C. Enny Murwaningtyas
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Anthony Robinson <revision.hrpub@gmail.com>
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Dear C. Enny Murwaningtyas,

Thank you for your email.
The acceptance letter has been sent to you on August 21. Later I will forward it to you again. Please
let me know if you receive it.

Best Regards

Anthony Robinson
Editorial Assistant
revision.hrpub@gmail.com
Horizon Research Publishing, USA
http://www.hrpub.org

On Sat, Aug 29, 2020 at 12:03 AM Enny Murwaningtyas <enny@usd.ac.id> wrote:
Dear Mr. Anthony Robinson

My name is Chatarina Enny Murwaningtyas who has submi�ed a revised dra� of my paper en�tled
"Finite difference method for pricing of Indonesian op�on under a mixed frac�onal Brownian
mo�on" (MS-13416767). Un�l now I have not received an email explaining my status paper. I hope
to hear good news about my paper and be able to carry out the next publicity process.

On the other hand, I saw in the Online Manuscript Tracking System that my manuscript has been
accepted for publica�on yesterday. But un�l now I don't know the payment procedure. I don't
have Paypal account and credit card, can I make payments by bank transfer?

Sincerely,
C. Enny Murwaningtyas
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Anthony Robinson <revision.hrpub@gmail.com>
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Kepada: Enny Murwaningtyas <enny@usd.ac.id>

1 lampiran (289 KB)
Acceptance Letter_13416767.jpg;

Dear C. Enny Murwaningtyas,

Your paper has been accepted for publication. Herewith attached is the Acceptance Letter.

The publication fee is $290. Payment can be made by Wire Transfer, PayPal and Credit Card.
Payment instructions are below.

(1)Wire Transfer Instructions

Beneficiary name: HORIZON RESEARCH PUBLISHING CO., LTD
Beneficiary account number:   33113742
Banking Swift code for international wires: CATHUS6L
Beneficiary bank name: Cathay Bank
Beneficiary bank address: 4128 Temple City Blvd, Rosemead, CA 91770  USA
Note: Please add $35.00 for wire transfer fee.

The bank charge would be deducted prior to the receipt of the payment. To avoid a shortfall on
the net amount received and request for repayment, authors shall pay the commission charge
while making the payment.

(2) PayPal Instructions
Our PayPal recipient email address is payment.hrpub@gmail.com. To avoid confusion, please add
special instructions during the transaction process.

The online payment processes via PayPal are divided into 3 steps:

Step 1: login to the Online Manuscript Tracking System
(http://www.hrpub.org/submission/login.php)

Step 2: Select the option "H_Economies: $290 USD" and click on "buy now" to proceed;

Step 3: Login to your PayPal account to complete the purchase

(3) Credit Card Payments
The online payment processes via credit card are divided into 3 steps:
Step 1: log into the Online Manuscript Tracking System;
(http://www.hrpub.org/submission/login.php)

Step 2: Select the option "H_Economies: $290 USD" and click on "buy now" to proceed;

Step 3: Pay with debit or credit card. Fill in all required information to complete your purchase
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Please add special instructions during the transaction process.

Once the payment is finished, please inform us or send the payment voucher to us.

Look forward to hearing from you soon.

Best Regards

Anthony Robinson
Editorial Assistant
revision.hrpub@gmail.com
Horizon Research Publishing, USA
http://www.hrpub.org










