

Source details

Journal of Physics: Conference Series	CiteScore 2021	(j
Scopus coverage years: from 2005 to Present	0.0	
ISSN: 1742-6588 E-ISSN: 1742-6596		
Subject area: (Physics and Astronomy: General Physics and Astronomy)	SJR 2021	(j
Source type: Conference Proceeding	0.210	
View all documents > Set document alert Save to source list Source Homepage	SNIP 2021 0.395	0

CiteScore CiteScore rank & trend Scopus content coverage

i	Improved CiteScore methodology	×
	CiteScore 2021 counts the citations received in 2018-2021 to articles, reviews, conference papers, book chapters and data papers published in 2018-2021. Learn more >	

CiteScor	re 2021 ~	CiteSco	reTracker 2022 🛈
0.8 =	74,925 Citations 2018 - 2021	0.0	88,857 Citations to date
	96,702 Documents 2018 - 2021	0.9 =	95,386 Documents to date
Calculated on 05	5 May, 2022	Last updated or	n 05 March, 2023 • Updated monthly
CiteScore	rank 2021		

Category	Rank	Percentile
Physics and Astronomy General Physics and Astronomy	#195/240	18th

View CiteScore methodology > CiteScore FAQ > Add CiteScore to your site c°

Q

_

About Scopus

- What is Scopus
- Content coverage
- Scopus blog
- Scopus API
- Privacy matters

Language

日本語版を表示する 查看简体中文版本 查看繁體中文版本 Просмотр версии на русском языке

Customer Service

Help Tutorials Contact us

ELSEVIER

Terms and conditions \neg Privacy policy \neg

RELX

					ш «	SCIMAGO INSTITUTION	S RANKINGS
SJR	Scimago Journal & Country Rank			Enter Journal	Title, ISSN	or Publisher Name	Q
	Home	Journal Rankings	Country Rankings	Viz Tools	Help	About Us	

Journal of Physics: Conference Series 8

COUNTRY	RY SUBJECT AREA AND CATEGORY		H-INDEX		
United Kingdom Universities and research institutions in United Kingdom Media Ranking in United Kingdom	Physics and Astronomy └─ Physics and Astronomy (miscellaneous)	IOP Publishing Ltd.	85		
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION		
Conferences and Proceedings	17426588, 17426596	2005-2021	Homepage How to publish in this journal jpcs@ioppublishing.org		

SCOPE

The open access Journal of Physics: Conference Series (JPCS) provides a fast, versatile and cost-effective proceedings publication service.

 \bigcirc Join the conversation about this journal

Quartiles

IOP Publishing

Committee of the International Conference on Mathematical Analysis, its Applications and Learning (ICoMAAL) 2018

Chairman

Febi Sanjaya, M.Sc. Department of Mathematics Education, Sanata Dharma University, Indonesia

Editor in Chief

Dr. Sudi Mungkasi Department of Mathematics, Sanata Dharma University, Indonesia

Associate Editors

Dr. Hendra Gunawan Harno Department of Aerospace and Software Engineering, Gyeongsang National University, South Korea

Dr. Herry Pribawanto Suryawan Department of Mathematics, Sanata Dharma University, Indonesia

Dr. Hongki Julie Department of Mathematics Education, Sanata Dharma University, Indonesia

Dr. Mahardhika Pratama School of Computer Science and Engineering, Nanyang Technological University, Singapore

Dr. Marcellinus Andy Rudhito Department of Mathematics Education, Sanata Dharma University, Indonesia

Dr. Vikram Sunkara Department of Mathematics and Computer Science, Freie Universität Berlin, Germany

Dr. Mongkolsery Lin Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia

Ir. Ignatius Aris Dwiatmoko, M.Sc. Department of Mathematics, Sanata Dharma University, Indonesia

Prof. Dr. Leo Hari Wiryanto Department of Mathematics, Bandung Institute of Technology, Indonesia

Steering Committee

Prof.em. Dr. Elmar Cohors-Fresenborg (*University of Osnabrueck, Germany*) Dr. Gerard Jeurnink (*University of Twente, The Netherlands*)

IOP Publishing

Scientific Committee

Prof. Dr. Supama (Universitas Gadjah Mada, Indonesia) Dr. Ratno Bagus Edy Wibowo (Brawijaya University, Indonesia) Dr. Wanty Widjaja (Deakin University, Australia)

Members of Local Organising Committee

Veronika Fitri Rianasari, M.Sc. (Sanata Dharma University, Indonesia)
Dewa Putu Wiadnyana Putra, M.Sc. (Sanata Dharma University, Indonesia)
Niluh Sulistyani, M.Pd (Sanata Dharma University, Indonesia)
Maria Suci Apriani, S.Pd., M.Sc. (Sanata Dharma University, Indonesia)
Margertha Madha Melissa, M.Pd. (Sanata Dharma University, Indonesia)
Yudhi Anggoro, M.Si. (Sanata Dharma University, Indonesia)
Eko Budi Santoso, S.J., Ph.D. (Sanata Dharma University, Indonesia)
Beni Utomo, M.Sc. (Sanata Dharma University, Indonesia)
Hartono, Ph.D. (Sanata Dharma University, Indonesia)
Yosep Dwi Kristanto, M.Pd. (Sanata Dharma University, Indonesia)
Dominikus Arif Budi Prasetyo, M.Si. (Sanata Dharma University, Indonesia)
Maria Vianney Any Herawati, M.Si. (Sanata Dharma University, Indonesia)
Fx. Made Setianto, S.Pd. (Sanata Dharma University, Indonesia)

Table of contents

Volume 1180

2019

Previous issue
 Next issue >

The International Conference on Mathematical Analysis, its Applications and Learning 15 September 2018, Yogyakarta, Indonesia

Accepted papers received: 29 January 2019 Published online: 22 March 2019

Open all abstracts

Preface			
OPEN ACCESS			011001
Overview of the I Learning (ICoMA	nternational Confe AL) 2018	erence on Mathematical Analysis, its Applications and	
+ Open abstract	View article		
OPEN ACCESS Committee of the Learning (ICoMA	International Con AL) 2018	ference on Mathematical Analysis, its Applications and	011002
+ Open abstract	Uiew article	PDF	
OPEN ACCESS Some Pictures of Learning (ICoMA	the International AL) 2018	Conference on Mathematical Analysis, its Applications and	011003
+ Open abstract	Uiew article	PDF	
OPEN ACCESS			011004
Peer review state	ement		
+ Open abstract	View article	🔁 PDF	
Papers			
OPEN ACCESS Analysis of Stude Procedure	ents' Error in Provi	ng Convergent Sequence using Newman Error Analysis	012001
E Kristianto, Mardiy	ana and D R S Sapu	itro	
+ Open abstract	View article	PDF	
OPEN ACCESS Boundedness of	Mikhlin Operator i	n Morrey Space	012002
Dian Maharani, Jali	na Widjaja and Marc	us Wono Setya Budhi	
+ Open abstract	View article	🔁 PDF	

Conditional Expect	tation in an Uncert	tainty Space	
E Aujero, M Frondoza	a, E De Lara-Tuprio,	R Eden and T R Teng	
+ Open abstract	View article	PDF	
OPEN ACCESS Discovering the for	mal definition of li	mit through exploration in dynamic geometry environments	012004
Y D Kristanto, M M M	elissa and A H Panu	luh	
+ Open abstract	View article	PDF	
OPEN ACCESS Edge Metric Dimer	nsion on Some Fa	milies of Tree	012005
R. Adawiyah, Dafik, F	R. Alfarisi, R. M. Priha	andini and I. H. Agustin	
+ Open abstract	View article	🔁 PDF	
OPEN ACCESS Error analysis in so N Sulistyani	olving inferential s	tatistics problems for psychology students	012006
+ Open abstract	View article	🔁 PDF	
OPEN ACCESS Finding and provin C K Sari, I U Machron + Open abstract	g supremum and mah and M E R Purn T View article	infimum: students' misconceptions nomo PDF	012007
OPEN ACCESS Learning calculus v I U Machromah, M E + Open abstract	with geogebra at c R Purnomo and C K Jiw article	college Sari 🏂 PDF	012008
OPEN ACCESS Numerical solution frankel method	of 2-d advection-	diffusion equation with variable coefficient using du-fort	012009
G D Hutomo, J Kusur	ma, A Ribal, A G Mał	nie and N Aris	
+ Open abstract	View article	PDF	
OPEN ACCESS Numerical study or line integrals with N	n an area of regula MS Excel	ar polygon as a concept of limit approach for unit circle using	012010
Beni Utomo	_		
+ Open abstract	View article	🔁 PDF	
OPEN ACCESS Option pricing by u Chatarina Enny Murw + Open abstract	Ising a mixed fract vaningtyas, Sri Harya ≣ View article	tional Brownian motion with jumps atmi Kartiko, Gunardi and Herry Pribawanto Suryawan PDF	012011

PAPER • OPEN ACCESS

Option pricing by using a mixed fractional Brownian motion with jumps

To cite this article: Chatarina Enny Murwaningtyas et al 2019 J. Phys.: Conf. Ser. 1180 012011

View the article online for updates and enhancements.

You may also like

- Inhibitory effect induced by fractional Gaussian noise in neuronal system Zhi-Kun Li, , Dong-Xi Li et al.
- <u>Spectral content of fractional Brownian</u> motion with stochastic reset Satya N Majumdar and Gleb Oshanin
- THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

Antonio Parravano, Néstor Sánchez and Emilio J. Alfaro

This content was downloaded from IP address 202.94.83.202 on 13/03/2023 at 02:48

IOP Publishing

Option pricing by using a mixed fractional Brownian motion with jumps

Chatarina Enny Murwaningtyas^{1,2)}, Sri Haryatmi Kartiko¹⁾, Gunardi¹⁾, and Herry Pribawanto Suryawan ³⁾

¹Department of Mathematics, Universitas Gadjah Mada, Indonesia,

²Department of Mathematics Education, Universitas Sanata Dharma, Indonesia,

³Department of Mathematics, Universitas Sanata Dharma, Indonesia.

Corresponding author: enny@usd.ac.id

Abstract. Option pricing is conventionally based on a Brownian motion (Bm). The Bm is a semimartingale process with stationary and independent increments. However, there are several stock returns that have a long memory or have high autocorrelation for long lags. A fractional Brownian motion (fBm) is one of the models that can solve this problem, but a model option with fBm is not arbitrage-free. A mixed fractional Brownian motion (mfBm) is a linear combination of a Bm and an independent fBm which can overcome the arbitrage problem. A jump process in time series is another problem found in stock price modeling. This paper deals with the problem of options pricing by using mfBm with jumps. Based on quasi-conditional expectation and Fourier transform method, we obtain a pricing formula for a stock option.

1. Introduction

Some empirical studies show that stock returns exhibit long-range dependence, see for example [1–5]. One of the model that can describe long-range dependence is the fractional Brownian motion (fBm). The fBm with Hurst index $H \in (0, 1)$ is a continuous centered Gaussian process with dependent and stationary increments. For $H = \frac{1}{2}$ we recover the classical case of Brownian motion (Bm). The fBm is a long-range dependence process or a long memory process if $H > \frac{1}{2}$.

The fBm is neither a semimartingale nor a Markov process, except for $H = \frac{1}{2}$. Therefore, we cannot use the standard theory of Itô integral. One of the stochastic integrals that can be used in option pricing is the Wick-Itô integral [6,7]. Hu and Oksendal [6] obtained a formula for European call option under an fBm using a Wick-Itô integral and then this formula was expanded by Necula [8].

Option pricing using the Wick-Itô integral still has an arbitrage opportunity [9,10]. Cheridito [11] introduced a mixed fractional Brownian motion (mfBm) which can reduce the arbitrage opportunity. The mfBm is a family of Gaussian processes which are linear combinations of a Bm and an independent fBm. An mfBm is equivalent to a Bm for $H \in (\frac{3}{4}, 1)$, so this option pricing model is arbitrage free [12]. A formula for option pricing under an mfBm using the Wick-Itô integral was derived in [13].

In this paper we will discuss a combination of Poisson jumps and an mfBm called jump mixed fractional Brownian motion (jmfBm). The jmfBm model is used to capture fluctuations, discontinuities or jumps as well as to take into account long-range dependence properties. The jmfBm is based on the assumption that stock returns are generated by a two-part stochastic process: (1) continuous price

movements are generated by an mfBm and (2) infrequent price jumps are generated by a Poisson process. This process are able to describe a distribution of empirical data from stock prices that are long-range dependence, leptokurtic, skewed, and have fatter tails.

A currency options pricing by using jump fractional Brownian motion (jfBm) has been studied in [14]. A currency options pricing by using a jmfBm has been studied in [15]. Our aim is to investigate the price of European option under a jmfBm model.

2. Preliminaries

An fBm $B^H = (B_t^H)_{t\geq 0}$ of Hurst index $H \in (0,1)$ is a centered and continuous Gaussian process with covariance function

$$\mathbb{E}\Big[B_{t}^{H}B_{s}^{H}\Big] = \frac{1}{2}\Big(\left|t\right|^{2H} + \left|s\right|^{2H} - \left|t - s\right|^{2H}\Big),\tag{1}$$

IOP Publishing

for all $t, s \ge 0$, see [16]. The sign of the covariance of the fBm is determined by a Hurst index H. This covariance is zero when $H = \frac{1}{2}$, negative when $H \in (0, \frac{1}{2})$, and positive when $H \in (\frac{1}{2}, 1)$. As a consequence, for $H \in (0, \frac{1}{2})$, it exhibits a short-range dependence (short memory) and for $H \in (\frac{1}{2}, 1)$ it exhibits a long-range dependence.

Definition 1. [12,17] An mfBm is a stochastic process $M^H = (M_t^{H,a,b})_{t\geq 0}$, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P}^H)$ by

$$M_t^{H,a,b} = aB_t^H + bB_t$$

where B_t^H is an fBm with Hurst index H and B_t is an independent Bm.

Proposition 2. [17] The mfBm $M_t^{H,a,b}$ is a centered Gaussian process which satisfies the following properties:

- (i) $M_t^{H,a,b}$ is not a Markovian process for all $H \in (0,1) \setminus \frac{1}{2}$;
- (ii) $M_0^{H,a,b} = 0 \mathbb{P}^H$ -almost surely;
- (iii) the covariation function of $M_t^{H,a,b}$ and $M_s^{H,a,b}$ for any $t, s \ge 0$ is given by $\operatorname{cov}(M_t^{H,a,b}, M_s^{H,a,b}) = a^2 \min(t,s) + \frac{1}{2}b^2 (t^{2H} + s^{2H} - |t-s|^{2H});$

(iv) the increments of $M_t^{H,a,b}$ are stationary and mixed-self-similar, i.e. for any h > 0

$$(M_{ht}^{H,a,b})_{t\geq 0} \stackrel{d}{=} (M_t^{H,ah^{1/2},bh^H})_{t\geq 0};$$

- (v) the increments of $M_t^{H,a,b}$ are negatively correlated if $H \in (0, \frac{1}{2})$, uncorrelated if $H \neq \frac{1}{2}$ and positively correlated if $H \in (\frac{1}{2}, 1)$;
- (vi) the increments of $M_t^{H,a,b}$ are short-range dependent if $H \in (0, \frac{1}{2})$ and long-range dependent if $H \in (\frac{1}{2}, 1)$;
- (vii) for $t \ge 0$, we have the moment formula

$$\mathbb{E}\left[\left(M_{t}^{H,a,b}\right)^{n}\right] = \begin{cases} 0 & n = 2l+1\\ \frac{(2l)!}{2!l!} \left(a^{2}t + b^{2}t^{2H}\right)^{l} & n = 2l \end{cases}$$

Cheridito [12] introduced mfBm, to avoid arbitrage opportunities. The stock price model under mfBm is given by

$$dS_{t} = \sigma S_{t} dB_{t}^{H} + \sigma S_{t} dB_{t} + \mu S_{t} dt, \qquad S_{0} > 0, \qquad t \in [0, T],$$
(2)

where B_t is a Bm and B_t^H is an fBm with respect to $\hat{\mathbb{P}}^H$, μ is an expected return and σ is a volatility coefficient. Furthermore, we get the solution from (2) using the Ito formula in [16] as follows $S_t = S_0 \exp(\mu t + \sigma B_t^H + \sigma B_t - \frac{1}{2}\sigma^2 t^{2H} - \frac{1}{2}\sigma^2 t).$

Let $(\Omega, \mathcal{F}, \mathbb{P}^H)$ be a probability space. The Black Scholes market is a model consisting of two assets, one risky asset (stock) and one riskless asset (bank account). A bank account satisfies

$$dA_t = rA_t dt, \qquad A_0 = 1, \qquad t \in [0, T],$$
 (3)

IOP Publishing

where r is a interest rate. A stock price satisfies

$$dS_{t} = S_{t} \left(\mu - \lambda \mu_{J_{t}} \right) dt + \sigma S_{t} d\hat{B}_{t}^{H} + \sigma S_{t} d\hat{B}_{t} + S_{t} (e^{J_{t}} - 1) dN_{t} \qquad S_{0} > 0, \qquad t \in [0, T],$$
(4)

where S_t denote a stock price with an expected return μ and a volatility σ , N_t is a Poisson process with rate λ , J_t is the jump size percent at time t which is a sequence of independent identically distributed, $(e^{J_t} - 1) \sim N(\mu_{J_t}, \delta_t^2)$, \hat{B}_t is a Bm, \hat{B}_t^H is a fBm with respect to $\hat{\mathbb{P}}^H$ and Hurst index H > 3/4.

According to the fractional Girsanov theorem [16], it is known that there is a risk-neutral measure \mathbb{P}^{H} , so that if $\sigma \hat{B}_{t} + \sigma \hat{B}_{t}^{H} = \sigma B_{t} + \sigma B_{t}^{H} - \mu + r$ is obtained

$$dS_{t} = S_{t} \left(r - \lambda \mu_{J_{t}} \right) dt + \sigma S_{t} dB_{t}^{H} + \sigma S_{t} dB_{t} + S_{t} (e^{J_{t}} - 1) dN_{t} \qquad S_{0} > 0, \qquad t \in [0, T].$$
(5)

Furthermore, we obtain a solution of (5) by using an Itô formula in [16], as

$$S_{t} = S_{0} \prod_{i=1}^{N_{t}} e^{J_{t_{i}}} \exp\left(\left(r - \lambda \mu_{J_{t}}\right)t + \sigma B_{t}^{H} + \sigma B_{t} - \frac{1}{2}\sigma^{2}t^{2H} - \frac{1}{2}\sigma^{2}t\right).$$
(6)

Theorem 3. Suppose stock price S_t is modeled with a jmfBm (6), a price at time $t \in [0,T]$ of a European call option with a strike price K and an expiry date T is given by

$$C(t,S_{t}) = \sum_{n=0}^{\infty} \frac{e^{\lambda(T-t)}\lambda^{n}(T-t)^{n}}{n!} \varepsilon_{n} \times \left[S_{t}\prod_{i=1}^{n} e^{J_{i_{i}}}e^{-\lambda\mu_{J_{t}}(T-t)}\Phi(d_{1}) - Ke^{-r(T-t)}\Phi(d_{2})\right],$$
(7)

where

$$d_{1} = \frac{\frac{1}{2}\sigma^{2}(T^{2H} - t^{2H}) + \frac{1}{2}\sigma^{2}(T - t) + \ln\left(\frac{S_{t}}{K}\prod_{i=1}^{n}e^{J_{i_{t}}}\right) - (r - \lambda\mu_{J_{t}})(T - t)}{\sqrt{\sigma^{2}(T^{2H} - t^{2H}) + \sigma^{2}(T - t)}},$$
(8)

$$d_{2} = \frac{-\frac{1}{2}\sigma^{2}(T^{2H} - t^{2H}) - \frac{1}{2}\sigma^{2}(T - t) + \ln\left(\frac{S_{t}}{K}\prod_{i=1}^{n}e^{J_{t_{i}}}\right) - (r - \lambda\mu_{J_{t}})(T - t)}{\sqrt{\sigma^{2}(T^{2H} - t^{2H}) + \sigma^{2}(T - t)}},$$
(9)

 ε_n denote a expectation operator over the distribution of $\prod_{i=1}^n e^{J_{i_i}}$ and $\Phi(\cdot)$ is a cumulative normal

distribution function. Proof: Equation (6) can be written as

$$S_{T} = S_{t} \prod_{i=1}^{N_{T}} e^{J_{t_{i}}} \exp\left(\left(r - \lambda \mu_{J_{t}}\right)(T - t) + \sigma\left(B_{T}^{H} - B_{t}^{H}\right) + \sigma\left(B_{T} - B_{t}\right) - \frac{1}{2}\sigma^{2}\left(T^{2H} - t^{2H}\right) - \frac{1}{2}\sigma^{2}\left(T - t^{2H}\right) - \frac{1}{2}\sigma^{2}\left(T - t^{2H}\right)\right)$$
(10)

Let

$$S_{T}^{n} = S_{t} \prod_{i=1}^{n} e^{J_{i_{i}}} \exp\left(\left(r - \lambda \mu_{J_{t}}\right)(T - t) + \sigma\left(B_{T}^{H} - B_{t}^{H}\right) + \sigma\left(B_{T} - B_{t}\right) - \frac{1}{2}\sigma^{2}\left(T^{2H} - t^{2H}\right) - \frac{1}{2}\sigma^{2}\left(T^{2H} - t^{2H}\right) - \frac{1}{2}\sigma^{2}\left(T - t\right)\right).$$
(11)

Using the independence of N_{T-t} and J_{t_i} and the theory of Poisson distribution with intensity $\lambda(T-t)$ we have

$$S_{T} = \sum_{n=0}^{\infty} P(N_{T-t} = n) S_{T}^{n} = \sum_{n=0}^{\infty} e^{-\lambda(T-t)} \frac{\lambda^{n} (T-t)^{n}}{n!} S_{T}^{n}$$
(12)

Motivated from Theorem 3.5 from [18] and using (11) and (12), the call option with a strike price K and an expiry date *T* is determined by _

$$C(t, S_{t}) = \widetilde{\mathbb{E}} \left[e^{-r(T-t)} \max\{S_{T} - K, 0\} \middle| \mathcal{F}_{t}^{H} \right]$$

$$= e^{-r(T-t)} \sum_{n=0}^{\infty} e^{-\lambda(T-t)} \frac{\lambda^{n}(T-t)^{n}}{n!} \widetilde{\mathbb{E}} \left[\max\{S_{T}^{n} - K, 0\} \middle| \mathcal{F}_{t}^{H} \right]$$

$$= e^{-r(T-t)} \sum_{n=0}^{\infty} e^{-\lambda(T-t)} \frac{\lambda^{n}(T-t)^{n}}{n!} \left(\widetilde{\mathbb{E}} \left[S_{T}^{n} \mathbf{1}_{\left\{S_{T}^{n} > K\right\}} \middle| \mathcal{F}_{t}^{H} \right] - K \widetilde{\mathbb{E}} \left[\mathbf{1}_{\left\{S_{T}^{n} > K\right\}} \middle| \mathcal{F}_{t}^{H} \right] \right)$$

$$= e^{-r(T-t)} \sum_{n=0}^{\infty} e^{-\lambda(T-t)} \frac{\lambda^{n}(T-t)^{n}}{n!} \widetilde{\mathbb{E}} \left[S_{T}^{n} \mathbf{1}_{\left\{S_{T}^{n} > K\right\}} \middle| \mathcal{F}_{t}^{H} \right]$$

$$- K e^{-r(T-t)} \sum_{n=0}^{\infty} e^{-\lambda(T-t)} \frac{\lambda^{n}(T-t)^{n}}{n!} \widetilde{\mathbb{E}} \left[\mathbf{1}_{\left\{S_{T}^{n} > K\right\}} \middle| \mathcal{F}_{t}^{H} \right].$$
(13)

In the meantime, if $S_T > K$, option holders would exercise an option. Solving (10) at time t = 0 on this boundary, we have 1

$$\sigma B_{T}^{H} + \sigma B_{T} > \frac{1}{2} \sigma^{2} T^{2H} + \frac{1}{2} \sigma^{2} T + \ln \left(\frac{K}{S_{0} \prod_{i=1}^{N_{T}} e^{J_{i_{i}}}} \right) - \left(r - \lambda \mu_{J_{i}} \right) T.$$

Let

$$d_{2}^{*} = \frac{1}{2}\sigma^{2}T^{2H} + \frac{1}{2}\sigma^{2}T + \ln\left(\frac{K}{S_{0}\prod_{i=1}^{N_{T}}e^{J_{i_{i}}}}\right) - \left(r - \lambda\mu_{J_{i}}\right)T.$$
 (14)

Using (14) and applying Corollary 3.3 from [18] on the second of the right-hand side of (13), we have

$$\widetilde{\mathbb{E}}\left[1_{\{s_{T}^{n}>K\}} \middle| \mathcal{F}_{t}^{H}\right] = \widetilde{\mathbb{E}}\left[1_{\{z>d_{2}^{*}\}} \left(\sigma B_{T}^{H} + \sigma B_{T}\right) \middle| \mathcal{F}_{t}^{H}\right] \\
= \int_{d_{2}^{*}}^{\infty} \frac{1}{\sqrt{2\pi} \left(\sigma^{2} \left(T^{2H} - t^{2H}\right) + \sigma^{2} \left(T - t\right)\right)}} \exp\left(-\frac{\left(y - \sigma B_{t}^{H} - \sigma B_{t}\right)^{2}}{2\left(\sigma^{2} \left(T^{2H} - t^{2H}\right) + \sigma^{2} \left(T - t\right)\right)}\right)} dy \\
= \frac{\frac{\sigma B_{t}^{H} + \sigma B_{t} - d_{2}^{*}}{\sqrt{\left(\sigma^{2} \left(T^{2H} - t^{2H}\right) + \sigma^{2} \left(T - t\right)\right)}}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^{2}}{2}\right) dz \\
= \Phi(d_{2}), \qquad (15)$$
where $d_{2} = \frac{\sigma B_{t}^{H} + \sigma B_{t} - d_{2}^{*}}{\sqrt{\left(-2\left(\pi^{2H} - t^{2H}\right) + \sigma^{2} \left(\pi - t\right)\right)}}.$ Furthermore, (6) can be written as

 $\sqrt{\left(\sigma^2\left(T^{2H}-t^{2H}\right)+\sigma^2\left(T-t\right)\right)}$

$$\sigma B_t^H + \sigma B_t = \frac{1}{2} \sigma^2 t^{2H} + \frac{1}{2} \sigma^2 t + \ln \left(\frac{S_t}{S_0 \prod_{i=1}^{N_t} e^{J_{t_i}}} \right) - \left(r - \lambda \mu_{J_t} \right) t.$$
(16)

Hence, using (14) and (16) on d_2 , we have

$$d_{2} = \frac{-\frac{1}{2}\sigma^{2}(T^{2H} - t^{2H}) - \frac{1}{2}\sigma^{2}(T - t) + \ln\left(\frac{S_{t}}{K}\prod_{i=1}^{N_{t-i}}e^{J_{i_{i}}}\right) - (r - \lambda\mu_{J_{i}})(T - t)}{\sqrt{\sigma^{2}(T^{2H} - t^{2H}) + \sigma^{2}(T - t)}}$$
$$= \frac{-\frac{1}{2}\sigma^{2}(T^{2H} - t^{2H}) - \frac{1}{2}\sigma^{2}(T - t) + \ln\left(\frac{S_{t}}{K}\prod_{i=1}^{n}e^{J_{i_{i}}}\right) - (r - \lambda\mu_{J_{i}})(T - t)}{\sqrt{\sigma^{2}(T^{2H} - t^{2H}) + \sigma^{2}(T - t)}}.$$

Let us consider a process

$$\sigma B_t^{H*} + \sigma B_t^* = \sigma B_t^H + \sigma B - \sigma^2 t^{2H} - \sigma^2 t, \qquad (17)$$

for $t \in [0,T]$. The fractional Girsanov theorem assures us that there is a probability measure \mathbb{P}^{H^*} such that $\sigma B_t^{H^*} + \sigma B_t^*$ is a new jmfBm under \mathbb{P}^{H^*} . We will denote

$$Z_t = \exp\left(\sigma B_t^H - \frac{1}{2}\sigma^2 t^{2H} + \sigma B_t - \frac{1}{2}\sigma^2 t\right)$$
(18)

By using Theorem 3.4 from [18], (10) and (18) on the first of the right-hand side of (13), we have

$$\widetilde{\mathbb{E}}\left[S_{T}^{n}\mathbf{1}_{\{S_{T}^{n}>K\}}\middle|\mathcal{F}_{t}^{H}\right] = \widetilde{\mathbb{E}}\left[S_{0}\prod_{i=1}^{N_{T}}e^{J_{i_{i}}}e^{\left(r-\lambda\mu_{J_{i}}\right)T+\sigma B_{T}^{H}+\sigma B_{T}-\frac{1}{2}\sigma^{2}T^{2H}-\frac{1}{2}\sigma^{2}T}\mathbf{1}_{\{S_{T}^{n}>K\}}\middle|\mathcal{F}_{t}^{H}\right] \\
= \widetilde{\mathbb{E}}\left[S_{0}\prod_{i=1}^{N_{T}}e^{J_{i_{i}}}e^{\left(r-\lambda\mu_{J_{i}}\right)T}e^{\sigma B_{T}^{H}+\sigma B_{T}-\frac{1}{2}\sigma^{2}T^{2H}-\frac{1}{2}\sigma^{2}T}\mathbf{1}_{\{S_{T}^{n}>K\}}\middle|\mathcal{F}_{t}^{H}\right] \\
= S_{0}\prod_{i=1}^{N_{T}}e^{J_{i_{i}}}e^{\left(r-\lambda\mu_{J_{i}}\right)T}\widetilde{\mathbb{E}}\left[Z_{T}\mathbf{1}_{\{S_{T}^{n}>K\}}\middle|\mathcal{F}_{t}^{H}\right] \\
= S_{0}\prod_{i=1}^{N_{T}}e^{J_{i_{i}}}e^{\left(r-\lambda\mu_{J_{i}}\right)T}\widetilde{\mathbb{E}}\left[Z_{T}\mathbf{1}_{\{y>d_{2}^{*}\}}\left(\sigma B_{T}^{H}+\sigma B_{T}\right)\middle|\mathcal{F}_{t}^{H}\right] \\
= S_{0}\prod_{i=1}^{N_{T}}e^{J_{i_{i}}}e^{\left(r-\lambda\mu_{J_{i}}\right)T}Z_{i}\widetilde{\mathbb{E}}^{*}\left[\mathbf{1}_{\{y>d_{2}^{*}\}}\left(\sigma B_{T}^{H}+\sigma B_{T}\right)\middle|\mathcal{F}_{t}^{H}\right] \\
= S_{0}\prod_{i=1}^{N_{T}}e^{J_{i_{i}}}e^{\left(r-\lambda\mu_{J_{i}}\right)T}Z_{i}\widetilde{\mathbb{E}}^{*}\left[\mathbf{1}_{\{S_{T}^{n}>K\}}\middle|\mathcal{F}_{t}^{H}\right] \tag{19}$$

By substituting (17) into (6), we obtain

$$S_{t} = S_{0} \prod_{i=1}^{N_{t}} e^{J_{i_{i}}} \exp\left(\left(r - \lambda \mu_{J_{t}}\right)t + \sigma B_{t}^{H^{*}} + \sigma B_{t}^{*} + \frac{1}{2}\sigma^{2}t^{2H} + \frac{1}{2}\sigma^{2}t\right).$$
(20)

Solving (20) at time T for the boundary $S_T > K$, we have

$$\sigma B_{T}^{H^{*}} + \sigma B_{T}^{*} > -\frac{1}{2}\sigma^{2}T^{2H} - \frac{1}{2}\sigma^{2}T + \ln\left(\frac{K}{S_{0}\prod_{i=1}^{N_{T}}e^{J_{i_{i}}}}\right) - \left(r - \lambda\mu_{J_{i}}\right)T$$

If we denote

$$d_{1}^{*} = -\frac{1}{2}\sigma^{2}T^{2H} - \frac{1}{2}\sigma^{2}T + \ln\left(\frac{K}{S_{0}\prod_{i=1}^{N_{T}}e^{J_{i_{i}}}}\right) - \left(r - \lambda\mu_{J_{i}}\right)T,$$
(21)

we get

$$\tilde{\mathbb{E}}^{*}\left[1_{\{S_{T}^{n}>K\}} \middle| \mathcal{F}_{t}^{H}\right] = \tilde{\mathbb{E}}^{*}\left[1_{\{y>d_{t}^{*}\}} \left(\sigma B_{T}^{H*} + \sigma B_{T}^{*}\right) \middle| \mathcal{F}_{t}^{H}\right] \\
= \int_{d_{1}^{*}}^{\infty} \frac{1}{\sqrt{2\pi} \left(\sigma^{2} \left(T^{2H} - t^{2H}\right) + \sigma^{2} \left(T - t\right)\right)}} \exp\left(-\frac{\left(y - \sigma B_{t}^{H*} - \sigma B_{t}^{*}\right)^{2}}{2\left(\sigma^{2} \left(T^{2H} - t^{2H}\right) + \sigma^{2} \left(T - t\right)\right)}\right) dy \\
= \frac{\frac{\sigma B_{t}^{H*} + \sigma B_{t}^{*} - d_{t}^{*}}{\sqrt{\sigma^{2} \left(T^{2H} - t^{2H}\right) + \sigma^{2} \left(T - t\right)}}}{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^{2}}{2}\right) dz \\
= \Phi(d_{1}),$$
(22)

where $d_1 = \frac{\sigma B_t^{H^*} + \sigma B_t^* - d_1^*}{\sqrt{\sigma^2 (T^{2H} - t^{2H}) + \sigma^2 (T - t)}}$. Subsequently, (20) can be written as

$$\sigma B_t^{H^*} + \sigma B_t^* = -\frac{1}{2}\sigma^2 t^{2H} - \frac{1}{2}\sigma^2 t + \ln\left(\frac{S_t}{S_0 \prod_{i=1}^{N_t} e^{J_{i_i}}}\right) - \left(r - \lambda \mu_{J_i}\right) t.$$
(23)

Substituting (21) and (23) on d_1 , we get

$$d_{1} = \frac{\frac{1}{2}\sigma^{2}(T^{2H} - t^{2H}) + \frac{1}{2}\sigma^{2}(T - t) + \ln\left(\frac{S_{t}}{K}\prod_{i=1}^{N_{T-t}}e^{J_{i_{i}}}\right) - (r - \lambda\mu_{J_{t}})(T - t)}{\sqrt{\sigma^{2}(T^{2H} - t^{2H}) + \sigma^{2}(T - t)}}$$
$$= \frac{\frac{1}{2}\sigma^{2}(T^{2H} - t^{2H}) + \frac{1}{2}\sigma^{2}(T - t) + \ln\left(\frac{S_{t}}{K}\prod_{i=1}^{n}e^{J_{i_{i}}}\right) - (r - \lambda\mu_{J_{t}})(T - t)}{\sqrt{\sigma^{2}(T^{2H} - t^{2H}) + \sigma^{2}(T - t)}}.$$

Substitution of (22) into (19) yields

$$\begin{split} \tilde{\mathbb{E}} \bigg[S_{T}^{n} \mathbf{1}_{\{S_{T}^{n} > K\}} \big| \mathcal{F}_{t}^{H} \bigg] &= S_{0} \prod_{i=1}^{N_{T}} e^{J_{i_{i}}} e^{(r - \lambda \mu_{J_{i}})^{T}} Z_{t} \Phi(d_{1}) \\ &= S_{0} \prod_{i=1}^{N_{T}} e^{J_{i_{i}}} e^{J_{i_{i}}} e^{(r - \lambda \mu_{J_{i}})^{T}} \exp\left(\sigma B_{t}^{H} + \sigma B_{t} - \frac{1}{2}\sigma^{2}t^{2H} - \frac{1}{2}\sigma^{2}t\right) \Phi(d_{1}) \\ &= \bigg(S_{0} \prod_{i=1}^{N_{t}} e^{J_{i_{i}}} \exp\left(\sigma B_{t}^{H} + \sigma B_{t} - \frac{1}{2}\sigma^{2}t^{2H} - \frac{1}{2}\sigma^{2}t + \left(r - \lambda \mu_{J_{i}}\right)t\right) \bigg) \prod_{i=1}^{N_{T-i}} e^{J_{i_{i}}} e^{(r - \lambda \mu_{J_{i}})(T - t)} \Phi(d_{1}) \\ &= S_{t} \prod_{i=1}^{N_{t-i}} e^{J_{i_{i}}} e^{(r - \lambda \mu_{J_{i}})(T - t)} \Phi(d_{1}) \\ &= S_{t} \prod_{i=1}^{n} e^{J_{i_{i}}} e^{(r - \lambda \mu_{J_{i}})(T - t)} \Phi(d_{1}). \end{split}$$

$$(24)$$

Finally, from (13), (15), (12), (24) and [19] it is calculated that the price of European call option can be expressed as

$$C(t,S_t) = \sum_{n=0}^{\infty} \frac{e^{\lambda(T-t)}\lambda^n (T-t)^n}{n!} \varepsilon_n \times \left[S_t \prod_{i=1}^n e^{J_{i_i}} e^{-\lambda \mu_{J_t} (T-t)} \Phi(d_1) - K e^{-r(T-t)} \Phi(d_2) \right]. \blacksquare$$

Using put-call parity, we calculate the price of European put option in the corollary below.

Corollary 4. Suppose stock price S_t is modeled with a jmfBm (6), a price at time $t \in [0,T]$ of a European put option with a strike price K and an expiry date T is given by

$$P(t,S_t) = \sum_{n=0}^{\infty} \frac{e^{\lambda(T-t)} \lambda^n (T-t)^n}{n!} \varepsilon_n \times \left[K e^{-r(T-t)} \Phi(-d_2) - S_t \prod_{i=1}^n e^{J_{i_i}} e^{-\lambda \mu_{j_i}(T-t)} \Phi(-d_1) \right],$$
(25)

where

$$d_{1} = \frac{\frac{1}{2}\sigma^{2}(T^{2H} - t^{2H}) + \frac{1}{2}\sigma^{2}(T - t) + \ln\left(\frac{S_{t}}{K}\prod_{i=1}^{n}e^{J_{i_{i}}}\right) - (r - \lambda\mu_{J_{t}})(T - t)}{\sqrt{\sigma^{2}(T^{2H} - t^{2H}) + \sigma^{2}(T - t)}},$$

$$d_{2} = \frac{-\frac{1}{2}\sigma^{2}(T^{2H} - t^{2H}) - \frac{1}{2}\sigma^{2}(T - t) + \ln\left(\frac{S_{t}}{K}\prod_{i=1}^{n}e^{J_{i_{i}}}\right) - (r - \lambda\mu_{J_{t}})(T - t)}{\sqrt{\sigma^{2}(T^{2H} - t^{2H}) + \sigma^{2}(T - t)}},$$

 ε_n denote a expectation operator over the distribution of $\prod_{i=1}^n e^{J_{i_i}}$ and $\Phi(\cdot)$ is a cumulative normal

distribution function.

The next part is how to implement the jfmBm model and to present the effects of jump parameters. We compare option prices under several stock price models, among the following models: an option price model under a Bm [20], an option price model under an fBm [8], an option price model under an mfBm [13] and an option price model under a jmfBM. This test will not be based on empirical data, but they will be calculated based on the formula that has been produced with the selected parameter.

Parameters for computing call options are presented in Table 1. The first row presents parameters for calculating a call option under a Bm model. The second row displays parameters for calculating a call option under an fBm model. The third row presents parameters for calculating a call option under a mfBm model. The fourth and fifth row provide the parameters for calculating the prices by the jfmBm which has low and high jump parameters.

Model type	r	σ	K	Н	J	λ	μ_J	δ
Bm	0.04	0.1	100	-	-	-	-	-
fBm	0.04	0.1	100	0.8	-	-	-	-
mfBm	0.04	0.1	100	0.8	-	-	-	-
jmfBm ª	0.04	0.1	100	0.8	0.008	1.25	0.0005	0.001
jmfBm ^b	0.04	0.1	100	0.8	0.008	6.25	-0.0005	0.001

Table 1. The valuation of chosen parameters used in these models.

By comparing the Bm, fBm, mfBm, and jmfBm^a columns in Table 2 for T = 0.25 cases, it produces an option value that is almost close. This is especially a very low jump parameter and the effect of long memory properties has not been seen for options with a short time maturity. As maturity increases, the magnitude of option prices calculated by the four methods increases in the case of high and low jump parameters. The jmfBm^b column has an option price that is relatively larger than the other three methods for the case T = 3.

Figure 1 and 2 display the values of European call options versus time of maturity and strike prices. The default parameter is S = 100, r = 0.04, $\sigma = 0.1$, H = 0.8, J = 0.08, $\lambda = 6.25$, $\delta = 0.01$ and K = [80,120] and T = [0,5]. Figure 1 using $\mu_J = -0.005$ and Figure 2 using $\mu_J = 0.005$. Figure 1 illustrates the option price under jmfBm is relatively greater than the option price under mfBm if $\mu_J = -0.005$. This does not apply if $\mu_J = 0.005$ is seen in Figure 2. It can be concluded that an option price below jmfBm depends on the value of jump parameters.

IOP Publishing

c		T = 0.25 (low time to maturity)				T = 3 (high time to maturity)				
3 -	C_{Bm}	C_{fBm}	C_{mfBm}	$C_{\mathrm{jmfBm}}{}^a$	C_{jmfBm}^{b}	C_{Bm}	C_{fBm}	C_{mfBm}	C_{jmfBm}^{a}	C_{jmfBm}^{b}
80	0.0000	0.0000	0.0002	0.0004	0.0004	2.4740	4.4639	6.1894	6.3756	6.7925
85	0.0015	0.0000	0.0095	0.0143	0.0150	4.3266	6.6063	8.4982	8.7342	9.2589
90	0.0512	0.0017	0.1339	0.1813	0.1881	6.8419	9.2329	11.2015	11.4895	12.1258
95	0.5567	0.1612	0.8449	1.0504	1.0782	9.9833	12.3107	14.2705	14.6113	15.3598
100	2.5216	1.8666	2.9080	3.3809	3.4412	13.6621	15.7893	17.6684	18.0617	18.9205
105	6.2954	6.0452	6.5219	7.2301	7.3155	17.7660	19.6099	21.3549	21.7994	22.7649
110	11.0282	10.9957	11.0941	11.9318	12.0277	22.1837	23.7123	25.2891	25.7831	26.8506
115	15.9971	15.9950	16.0078	16.9103	17.0089	26.8195	28.0404	29.4323	29.9736	31.1378
120	20 9951	20 9950	20,9962	21 9441	22 0431	31 5994	32 5446	33 7488	34 3353	35 5909

 Table 2. Price of call options by different models.

4. Conclusion

In this paper, stock returns are modeled with a jmfBm to capture long-range dependence and jumps process and also to exclude arbitrage opportunities in the fBm model. We obtain a formula for calculating a European option price under a jmfBm by using a theory of quasi-conditional expectation and Fourier transformation method. This formula may be used by investors to predict option prices for stocks that have long-range dependence and jumps. Moreover, this formula holds for an arbitrage-free market.

Acknowledgments

The authors gratefully acknowledge that this research was supported by the ministry of research, technology and higher education of the Republic of Indonesia under the PDD grant scheme having project number 109/SP2H/LT/DRPM/2018. The authors also thank the referees for their comments and suggestions which improve the paper significantly.

References

- [1] Cheung Y-W and Lai K S 1995 A search for long memory in international stock market returns *J. Int. Money Financ.* **14** 597–615
- [2] Necula C and Radu A-N 2012 Long memory in Eastern European financial markets returns *Econ*. *Res. Ekon. Istraživanja* **25** 316–77
- [3] Goddard J and Onali E 2012 Short and long memory in stock returns data *Econ. Lett.* **117** 253–5

- [4] Cajueiro D O and Tabak B M 2008 Testing for long-range dependence in world stock markets *Chaos, Solitons and Fractals* **37** 918–27
- [5] Gyamfi E N, Kyei K and Gill R 2016 Long-memory persistence in African Stock Markets *EuroEconomica* **35** 83–91
- [6] Hu Y and Øksendal B 2003 Fractional white noise calculus and applications to finance *Infin. Dimens. Anal. Quantum Probab. Relat. Top.* **06** 1–32
- [7] Elliott R J and Van der Hoek J 2003 A general fractional white noise theory and applications to finance *Math. Financ.* 13 301–30
- [8] Necula C 2002 Option pricing in a fractional Brownian motion environment Adv. Econ. Financ. Res. - DOFIN Work. Pap. Ser. 1–18
- [9] Bender C and Elliott R J 2004 Arbitrage in a discrete version of the Wick-fractional Black-Scholes market *Math. Oper. Res.* **29** 935–45
- [10] Björk T and Hult H 2005 A note on Wick products and the fractional Black-Scholes model *Financ. Stochastics* **9** 197–209
- [11] Cheridito P 2003 Arbitrage in fractional Brownian motion models *Financ. Stochastics* 7 533–53
- [12] Cheridito P 2001 Mixed fractional Brownian motion Bernoulli 7 913-34
- [13] Murwaningtyas C E, Kartiko S H, Gunardi and Suryawan H P 2018 European option pricing by using a mixed fractional Brownian motion *J. Phys. Conf. Ser.* **1097** 012081
- [14] Xiao W-L, Zhang W-G, Zhang X-L and Wang Y-L 2010 Pricing currency options in a fractional Brownian motion with jumps *Econ. Model.* 27 935–42
- [15] Shokrollahi F, Klçman A and Kılıçman A 2014 Pricing Currency Option in a Mixed Fractional Brownian Motion with Jumps Environment *Math. Probl. Eng.* 2014 1–13
- [16] Biagini F, Hu Y, Øksendal B and Zhang T 2008 Stochastic Calculus for Fractional Brownian Motion and Applications (Springer)
- [17] Zili M 2006 On the mixed fractional Brownian motion *J. AppliedMathematics Stoch. Anal.* **2006** 1–9
- [18] Sun L 2013 Pricing currency options in the mixed fractional Brownian motion Phys. A Stat. Mech. its Appl. 392 3441–58
- [19] Matsuda K 2004 Introduction to Merton jump diffusion model *Dep. Econ. Grad. Center, City Univ. New York*
- Black F and Scholes M 1973 The pricing of options and corporate liabilities J. Polit. Econ. 637– 54

317/Rektor/IX/2018

This certificate is awarded to

Chatarina Enny Murwaningtyas

as a presenter

in The 2018 International Conference on Mathematical Analysis, its Applications and Learning (ICoMAAL 2018).

ICoMAAL 2018 was held at Sanata Dharma University, Yogyakarta, Indonesia on 15 September 2018.

Sanata Dharma University Rector of AS SA

Drs. Johanes Eka Priyatma, M.Sc., Ph.D. and aller of the

R ICoMAAL 2018 Committee gyakarta, 15 September 2018

Febi Sanjaya, M.Sc.