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Abstract. Financial modeling is conventionally based on a Brownian motion (Bm). A Bmis a
semimartingale process with independent and stationary increments. However, some financial
data do not support this assumption. One of the models that can overcome this problem is a
fractional Brownian motion (fBm). In fact, the main problem in option pricing by implementing
an fBm is not arbitrage-free. This problem can be handled by using a mixed fBm (mfBm) to
model stock prices. The mfBm is a linear combination of an fBm and an independent Bm. The
aim of this paper is to find European option pricing by using the mfBm based on Fourier
transform method and quasi-conditional expectations. The main result of this research is a closed
form formula for calculating the price of European call options.

1. Introduction
The Black-Scholes formula is a formula for calculating option prices based on geometr‘icam‘ A Bm 15
a centered and continuous Gaussian process with independent and stationary increments. The existence

of long-range dependence in s returns has been an essential topic of both empirical and theoretical
research. If stock re@ns show long-range dependence, the time series is said to de on time to time
for a long lag. This e case of an {Bm. Long-range dependence in stock returns been tested in a

number of studies, for example [1-6].

Kolmogorov introduced an fBm in 1940. Mandelbrot and Van Ness gave a representation theorem
for Kolmogorov’s process and introduced the name of fBm in [7]. The fBm has further been developed
by Hurst in [8]. Currently, an fBm has an important part in assorted fields of study such as hydrology
[8,9], insurance [10,11] and finance [12-14].

The stochastic integral in an fBm is different from the classical Itd integral because the fBm is not a
martingale. Duncan et al [15] introduced a Wick product for the fractional [t6's formula. They also
introducggy Girsanov’s theorem under the fBm. The option model under the fBm is arbitrage-free
[16,17], e Wick product is applied on the definition of stochastic integration. Hu and Oksendal [16]
obtain a pricing formula for a European call option at ¢ =0. Necula [ 18] extended the formula in [16]
to 1 €[0,T]. Moreover, Necula proved some results regarding quasi-conditional expectations by using
Fourier transform.

The European call option pricing formula obtained in [16] is an arbitrage-free and complete market.
However, Bender and Elliott [19] and Bjork and Hult [20] still saw a possibility of arbitrage

gm.em from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
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opportunities in the resulting modqu[)lﬁ]A Cheridito [21] and Bender et al. [22] proposed an mfBm to
reduce arbitrage opportunities. An mtBm is a linear combination of an fBm and an independent BM.

Cheridito [23] has proven that an mfBm is equivalent to a Bm forH e (;1), therefore it can be said
that the option model under an mfBm is an arbitrage-free. The aim of this paper is to obtain the pricing
formula for European call options where a stock return is modeled an mfBm.

Mixed fractional Brownian motions
Let H be a constant belonging to (0, 1). An fBm B” =(B,”;r 20) of Hurst index / is a continuous and

centered Gaussian process with covariance function,

1 2 2 2
[E[B,”B_f]zi( s )., (1)

forall 7,5 >0, see [24]. Here E[-] denotes an expectation with respect to a probability measure P,

t

Properties of fBm, see [24], are
e mean of an fBm is 0;

. Y
e variance of an fBm is +*" for 1>0;
d
e an fBm has stationary increments, i.e., B? —B" =B forall t,5=0;

¢ anfBm is H-self similar, i.e., B ia” B" for120;

B an fBm has continuous trajectories. 3

If H =1, then an fBm coincides with a standard Bm. The Hurst index H determines the sign of the
covariance of the future and past increments. This covariance 'ﬁ]egative when H e (0, %) , zero when
H =1, and positive when H e(iz,l) . As a consequence, for H E(O,%) it has short-range dependence
and for H #, 1) it has long-range dependence.

An fBm is neither a semimartingale nor a Markov process unless H =1 . When H is not equal to /5,
the option model has arbie opportunities. An mfBm is introduced by Cheridito [23], to avoid
arbitrage opportunities. An mfBm of parameter H, a, and b is a stochastic process M " =(M;”§"20)
defined in [25] as follows

M =aB" +bB,
where B” is an fBm with Hurst index H and B, is an independent BM.

3. Quasi-conditional expectations

We will present some results regarding a quasi-conditional expectation in this section which is needed
for the rest of this paper. These results were introduced by Necula [ 18] and then developed by Sun [14]
and Xiao et gi§[13] for an mfBm. The proofs of theorems in this section can be seen in [13]. Let

(Q.F” P ) be a probability space suchthat B” is an fBm with respect to P and B, is anindependent
BM.

Theorem 1 [13]. For every t(0.T) and A,£€C we have

[E[exp(,%ng + AB, )‘.?'—:”}:exp(ﬂ.gB;" +AB, +LA7E (T”" - )+l3.?.2 (7-1)),

where J"_,H is a o-algebra generated by (B‘” 0<s S.') and EHF;”} denotes a quasi-conditional

. . H .
expectation with respect to F," under a probability measure P".
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Using Theorem |, one can determine a quasi-conditional expectation of a function of an mfBm as
shown in the theorem below.

)
Theorem 2 [13]. Let [ be a finction such that IPJ[f(B;’.BT)]<oo. Then, for every 1(0.T) and
A,eeR we have
—(y - AgB" - 1B, )2

7 )=] L el ) f (.
R sz(fgf('f” )4 22 (T 1))

exp

B| £ (22B) + 28,)

If fis an indicator function, f(y) =1,(y), then we can easily obtain a corollary below.
Corollary 3 [13]. Let A B(R). Then,
—(y - 1sB" — 1B )2
2(222 (12 =)+ 22 (T 1))

F =
J [ 2 (228 (17 -1 )+ 22 (T 1)) “

]I:‘.{IA (1¢B!' +1B,)

Let #,9€R and 1 €[0.T], consider the process,
6B" + 9B =60B" + 9" + 9B + 9t. 2)
From a fractional Girsanov theorem in [24], there exists a probability measure P’ such that
@B + 9B is a new MFBM. We will denote E [-|£"'] as a quasi-conditional expectation under the

probability measure P”". Now, we have defined the process
Z(t)=exp(-0B" ~10°¢*" - 9B, - L &1), (3)

where 1 [0,T].
Theorem 4 [13]. Let f be a function such that [E[f(B;’ B, )] <o, Then, for every t €[0,T] we have

B[ f (0B +9B,)

]—:”J:%ED'(QB;’ +9B,)Z(D|E" |. )

5 -
Theorem 4 illustrates a relationship between a quasi-conditional expectation ]E}[

FH } with respect

5 ~ .
to [P and a quasi-conditional expectation [Ef|:-.7-:”] with respect to P*". Based on Theorem 4, a

discounted expectﬁn of a function of an mfBm is calculated in the theorem below. @
17

Theorem 5 [13]. The price at time t €[0,T] of a bounded F" - measurable claim V e L*(P") is given
by
V=e' ”E[VT

where r is a constant riskless interest rate.

7. (5)

4. Results and discussion
aim of this section is to determine a formula for calculating European call option prices. Now let us
consider a mixed fractional Black-Scholes market with two investment possibilities:
* A bank account which satisfies a differential ¢Eftion below
dA, =rAdt, A =1, 1e[0,T], (6)
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where r is a constant riskless interest rate.
e A stock which satisfies a stochastic differential equation below

dS, =cS,dB" +o5S,dB, +uS,di,  S,>0, 1€[0,T], 7)

where B” is an fBm and B, is a Bm with respect to P, W is an appreciation rate, and o is a
volatility coefficient.

By using change of variable oB, + oB" = yi—r + oB, + cB" | then under a risk-neutral measure, we

have
dS,=oS,dB" +cSdB +rSdi,  §,>0, 1e€[0.T]. [®)
Furthermore by using a It6 formula in [24], we obtain a solution of (8) as
S,=S,exp(oB + 0B, ~ o't ~ Lot +rt). 9)

The price of a European option at time ¢ with an expire date 7 and a strike price K is denoted C(z,S,).
We present a formula for a call option pricing under MEBM in the theorem below.
P prion prici tncer iy

Theorem 6. Suppose a stock price S, defined by & then the price at time t €[0,T] ofa European call
option with an expire date T and a strike price K is given by

C(t.5)=S, N(d,)—Ke """ N(d,). (10)
where
1?1 1" ) +46° (T—.“)+1n[%} +r(T—1)
d, = , (11)

P g i)

~Lo* (1™ fr”")f%az(’z‘”fr)Jrln[%}+r(T7r)
d - . (12)
- Jo,z (Tm o )+O,2 (T—.“)
N(-) is a cumulative probability ﬂmm‘on@ standard normal distribution.
Proof: Motivated from Theorem 3, the call option with an expire date 7 and a strike price K is
theoretically equivalﬁ to

C(T,Sr)=]E[E ) max{S, —K.O}‘.E”J

=& TVE[ S, 15 |F |- Ke VB[ 1 |7 ] (13)
Meanwhile option holders would exercise the option only when S, > K. Solving (9) on this boundary,
we have
32 2 K
oB +oB, >1c'T™" +15°T +In [—] —1T.
0
Let

d, =1a’T™" +;crgT+ln[KJ—rT. (14)
0

Using Corollary 3 and applying (14) on the second of the RHS in (13), we have

817 ]=B[1 (o +oB, 7" |
1 (y—O'B,” -oB )2

T

='r[ .J2n'(o’2 (r* ")+ o’ (T—r)) ) 2(02 (17" =" )+ o (T—r))
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aB! 1o B -d,

G:{T:” ,:u] IGE(T ’]l

= H 1 z .
E[lm ) 1 }= _[ Eexp[—?] Z

=N(d,), (15)
oB! +oB, —d,

where d, = . Furthermore, (9) can be written as
J(o_z [Tzn 2 )+ . [T _ r))
oB" +oB, :?crzrz” +—;o'zr+]n[s—']—rr. (16)
“
Hence, using (14) and (16) on d-, we have

~16* (T -1~ 1o (T—r)+1n[%}+r(?"—r)

d,=

\/0'2 (Tzu _pH )+ o (T —.")
Let us consider a process

oB" +oB =oB" -5t +oB -c't, (17)
for ¢ €[0.T]. The fractional Girsanov theorem assures us that there is a probability measure P*" such
that B + o8B is an new mfBm under P**. We will denote

Z, =exp(0'Br” ~-1a’* + OB, ——;crlr) (18)
By using Theorem 4 and (18) on the first of the RHS in (13), we have

E[Srl{s, » }:n} _ E[S(, o7 7B AT ol ') I En:|

=K}
=5, e”[E[z,lislﬂ,,_ ’F,”J
=5, e’T[E{z, e (oB +oB,)|F" }
=S, ¢ ZE [1,l ] (0B} +0B,) J—j”}
=5, ¢ ZE [l{s‘m .F,”J (19)
By substituting (17) into (9), we obtain
S, = Soexp(ch,m +oB +1o " + 1ot + r.'). (20)
Solving (20) in time 7 for the boundary §, > K, we have
oB!" +0B, >—1c’T" —-Lo°T+In [SEJ —rT.
If we denote '
d =-5c'T" —%JET+]n{£J—rT. (21)
we get )
& [1{& alF } - [1,{_‘_9{!;: (0B +oB; )| %" }
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. i (y-oB" —oB)
}:”:|=.[ 2 [p2n_on 2 EXp _2 T 2"\ f o2 (T —1
d, sz(a (T t )+0' (T r)) ( ( ) ( ))

E |:1{s, =K

e _
o, +of, ~d,

a:{rzn’ r_’n’]“,_fun r] l N
= exp| —— |dz
I = p[ 2 ]
=N(,), (22)
oB" +oB —d,

where d, = . Subsequently, (20) can be written as
\/0'2 (T”‘ fr”’)+oz (T 1)
A # 220 2 S
oB' +0B, =—10t ——:ar+ln[—‘]—rr. (23)
0
Substituting (21) and (23) on d,, we get

16? (17" =" )+ 1o* (T—1) + ln[%] +r(T —1)

d =

Jaz (Tzu 7.“3”)+0'2 (Tfr‘)
Substitution of (22) into (19) yields
E [Srlgsrw; 7 ] =S0¢" 2, N(d))

=87 exp[c:rBrH +0oB, —]EO'ZIEH —;—sz)N(d])

=TS N(d)). (24)

Finally, from (13), (15) and (24) we obtain
C(t.5, )= 8, N(d))—Ke ™" ™ N(d,)

=S, N(d))—Ke ™" N(d,). B

100 100 100
§ § §
B B B
g 50 4 g 50 4 g 50 4
04 [ 04
1 1 1
- - 200 - — 200 - — 200
0s - o - ) 100 0s - - N 100 0.5 . . - u 100
Hurst L Strike Price Hurst LI Strike Price Hurst o Strike Price
WGURE 1. Price of option on  FIGURE 2. Price of option on  FIGURE 3. Price of option on
Hurst vs strike price at 7=0.25. Hurst vs strike price at T=1. Hurst vs strike price at 7=5.

The fgpula in Theorem 6 allows us to determine a fair price for a European call option in terms of
an expire date 7, a strike price K, an initial stock price Sy, a risk-free interest rest r, and a stock volatility
o. LetS=100,K € (0,200), H € (0,1), »=0.05, and 6= 0.3. When T=0.25, T= 1, and T=5, we get
Figure 1, 2 and 3 respectively. We see that when K — 200 and // — 0 the price decreases significantly
in Figure 3.
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Price of Option
Price of Option
Price of Option

0.5

Volatility Hurst L Volatility Hurst e Volatility

L]

Hurst

FIGURE 4. Price of optionon FIGURE 5. Price of optionon  FIGURE 6. Price of option on
Hurst vs volatility at 7=0.25. Hurst vs volatility at T=1. Hurst vs volatility at 7=5.

Let S =100; K =100; r=0.05, 6 € (0, 1) and H € (0, 1). If T= 0.25 we obtain Figure 4 which is
concave upward. The price increases significantly when ¢ — | and // — 0. If T= 1 we obtain Figure 5
which is more linear and as the volatility increases for all Hurst parameters the price increases. If T=35
we obtain Figure 6 which is concave down and we see that the prices increase significantly with high
Hurst index and high volatility. Overall, as T, ¢ and # increase, the price increase in rate and magnitude.

5. Conclusion

In this paper, to exclude arbitrage opportunities in an fBm model and to capture long-range dependence,
stock returns are modeled with an mfBm. By using Fourier transformation method and quasi-conditional
expectation theory, we get a formula for calculating a price of European call options. This formula can
be used by investors to predict option prices for stocks that have long-range dependence.
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