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Abstract. Option pricing is conventionally based on a Brownian motion (Bm). The Bm is a
semimartingale process with stationary and independent increments. However, there are several
stock returns that have a long memory or have high autocorrelation for long lags. A fractional
Brownian motion (fBm) is one of the models that can solve this problem, but a model option
with fBm is not arbitrage-free. A mixed fractional Brownian motion (mfBm) is a linear
combination of a Bm and an independent fBm which can overcome the arbitrage problem. A
jump process in time series is another problem found in stock price modeling. This paper deals
with the problem of options pricing by using mfBm with jumps. Based on quasi-conditional
expectation and Fourier transform method, we obtain a pricing formula for a stock option.

1. Introduction

Some empirical studies show that stock returns exhibit long-range dependence, see for example [1-5].
One of themodel that can describe long-range dependence is the fractional Brownian motion (fBm).
The fBm with Hurst index H € (0, 1) is a continuous centered Gaussian process with dependent and
stationary increments. For /{ = 2 we recover the classical case of Brownian motion (Bm) . The fBm is
a long-range dependence process or a long memory process if /> 4.

The fBm is neither a semimartingale nor a Markov process, except for /f = V4. Therefore, we cannot
use the standard theory of [t6 integral. One of the stochastic integrals that can be used in option pricing
is the Wick-Ité integral [6,7]. Hu and Oksendal [6] obtained a formula for European call option under
an fBm using a Wick-It6 integral and then this formula was expanded by Necula [8].

Option pricing using the Wick-It6 integral still has an arbitrage opportunity [9,10]. Cheridito [11]
introduced a mixed fractional Brownian motion (mfBm) which can reduce the arbitrage opportunity.
The mfBm is a family of Gaussian processes which are linear combinations of a Bm and an independent
fBm. An mfBm is equivalent to a Bm for /{ € (%, 1), so this option pricing model is arbitrage free [12].
A formula for option pricing under an mfBm using the Wick-It6 integral was derived in [18J.

In this paper we will discuss a combination of Poisson jumps and an mfBm called jump mixed
fractional Bmwnia:'mtion (jmfBm). The jmfBm model is used to capture ﬂucmations,.iscominuities
or jumps as well as to take into account long-range dependence properties. The jmfBm 1s based on the
assumption that stock retums are generated by a two-part stochastic process: (1) continuous price
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movements are generated by an mfBm and (2) infrequent price jumps are generated by a Poisson
process. This process are able to describe a distribution of empirical data from stock prices that are long-
range dependence, leptokurtic, skewed, and have fatter tails.

A currency options pricing by using jump fractional Brownian motion (jfBm) has been studied in
[14]. A currency options pricing by using a jmfBm has been studied in [15]. Our aim is to investigate
the price of European option under a jmfBm model.

2. Preliminaries (]

An fBm B? =(B,H) Uof' Hurst index H E(U,l) is a centered and continuous Gaussian process with
1z

covariance function

-

wl pH pH _l 2H

E[B B‘]—z(r ), (1)
forall t, s = 0, see [16]. The sign of the covariance of the fBm is determined by a Hurst index /. This
covariance is zero when H = '5, negative when H € (0, '2), and positive when / = (%2, 1). As a
consequence, for H € (0, }2), it exhibits a short-range dependence (short memory) and for H € (Y%, 1) it
exhibits a long-range dependence.

" +|s\m —lt-s

Definition 1. [12,17] An mfBm is a stochastic process M7 = (M,H"‘J’) - defined on a probability space
(Q.F.P") by

M;".f,n,.h =aBrH + bBr
where B" is an fBm with Hurst index / and B, is an independent Bm.

Proposition 2. [17] The mtBm Mf“"‘" is a centered Gaussian process which satisfies the following
properties:
(i) M, is not a Markovian process forall H e (0.)\ 1 ;

(i) MI*" =0 P"_almost surely;

(ili) the covariation function of M“” and M "“* forany ¢,s>0 is given by

2H
s

(iv) the increments of M *” are stationary and mixed-self-similar, i.c. for any % >0

Hasy ¢ Hah? b
(M hr ) = (M 1 ) ;
1=0

1=0

CDV(Mr”ﬂh.M_:" ab )= a’ min(t,s)+ 16 (r”’ +s521 —|r —5

(v)  the increments of M"* are negatively correlated if H E(O,%) ,uncorrelated if H #{ and

positively correlated if H € (%,1);

(vi) the increments of M"*” are short-range dependent if H €(0.%) and long-range dependent
if He(4.1);
(vil) for ¢ =0, we have the moment formula
0 n=20+1
h|: Mru,m‘: “}z v .
( ) (2’)'(0‘1 +b1 )f n=21
21

Cheridito [12] introduced mfBm, to avoid arbitrage opportunities. The stock price model under
mfBm is given by
dS, =oS,dB" +oSdB, + uS,dt, S, >0, te[0,T], (2)
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where B, is a Bmand 8" is an fBm with respect to B, u is an expected return and o is a volatility
coefficient. Furthermore, we get the solution from (2) using the Ito formula in [16] as follows

S, =S,exp(ut+0B" +0B ~1o'r’" —L1o7).

3. Results and discussion
Let (Q.}_.PH) be a probability space. The Black Scholes market is a model consisting of two assets,

one risky asset (stock) and one riskless asset (bank account). A bank account satisfies

dA =rAdt, A =1, te[0,T], (3)
where ris a interest rate. A stock price satisfies
dS, =S, (u~2u, )dt +0S,dB" + 6S,dB, +5,(" ~1dN,  S,>0,  te[0.T], (4)

where §, denote a stock price with an expected return # and a volatility o, N, is a Poisson process
with rate A, J, is the jump size percent at time t which is a sequence of independent identically
distributed, (e” —1)~ N(u, ,6), ﬂ is a Bm, f}’f’ is a fBm with respect to P? and Hurst index
H >3/4.

According to the fractional Girsanov theorem [16], it is known that there is a risk-neutral measure
P", so that if oB, + oB" =oB, +oB" — yt+r is obtained

ds, =S, (r — i, )di +cS,dB" +5S,dB +5,(e" ~dN,  S,>0,  1€[0,T]. (5)
Furthermore, we obtain a Rolution of (5) by using an It6 formula in [16], as
23 |
S(,He exp[[r—&,u, )r+o-B” +oB, - 70' o —Eo".'}. (6)

heorem 3. Suppose stock price S, is modeled with a jmfBm (6), a price at time t €[0,T'] of a European
call option with a strike price K and an expiry date T is given by

_ e A{J r]/'-lu (T —A-UJ_,”'—J‘] o (T—1)
C(t,5)= 27”' S l_[e ®(d,)-Ke ®(d,) |, (7)
n=0 .
where
I 5in s 1
) 750,_ (T‘” .,_”).'.Eg T—t +]n{ l_[e J (r—ip,_.)(T—-') "
I Ja' T”’ —r“’)+ a*(T-r) .
_150,2 (Tzn l,2“‘) %g’ +]n[ l_[e J (r—;»p‘_,_l)(T—-')
d,= . 9

JO' +0' T -1)

n

¢, denote a expectation operator over the distribution of l_[e""-' and ©(-) is a cumulative normal
i=1

distribution function.

Proof: Equation (6) can be written as

S: —Sl_[e" exp[(r—&,u,)(T—r)+o[B”—B”)+o-[B ~B)-1o? (7" =)
i=1 2 (10)
—%JE(T—.')].
Let




ICoMAAL 2018 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1180(2019) 012011  doi:10.1088/1742-6556/1180/1/012011

Sy =S,li[e;"-‘ exp[(r -Au, )(T -0+ O'(B;." —B,”)+0'(BT - B, )—%0'2 (T”" - )
i=1 (ll)

1, '
——a (T—-1)|.
& )J
Using the independence of N, _, and J, and the theory of Poisson distribution with intensity (7' —r)

we have
AT =1} }“”(T_'r)” n
.

S, —ZP ,=n)S; ie

(12)
n=0 n=0

Motivated from Theorem 3.5 from [18] and using (11) and (12), the call option with a strike price K and
an expiry date T is determined by

C(F.S,)=E[B "0 max{s, — f,”}
=7 ”:Zue Al ”L (:!_")”E[max{Sj’. - Jf”}
merS e SEL) el I f}

(13)
r(T-t N A(T =t ;L“(T _r)JJ -
—~Ke " JZE T-1) —E{ll-‘f’”:‘

n=0 n!

3

In the meantime, if §; > K , option holders would exercise an option. Solving (10) attime ¢ — 0 on this

boundary, we have

K .
— | —(r-4 T.
sIT L";"'l (=)

1 3 ) 1 )
oB +oB, >=c'T" +=6°T +In
2 2
Let

S SR I K
& =0T +EO'T+]11[W}—(:‘—A;{,:)T. (14)

Using (14) and applying Corollary 3.3 from [ 18] on the second of the right-hand side of (13), we have

E[,g ) f”} "[‘ (O'B + 0B, )‘J—j”}

, 1 (v-ob —ob)
= P B B CXp| — 2 (2t 2H 2 Y
& J2rr(cr'(1’"” -r)+o’ (T—r)) 2(0 (7" =)+ (1 _"))
B 18, -d,
1" )ag? (1) .
_ I '];exp[_z_'] .
. V2 2
=d(d,). (15)
i s
where d, = oB_+oB —d, . Furthermore, (6) can be written as

‘j(o_z (Tzu A )+ o (T _r))
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I 55 I 5 S,
oB +oB, =50 ottt ——— 7[rfﬂ.;:‘,.]r. (16)

2 N,
So I I e
i=1

Hence, using (14) and (16) on d>, we have

Ny
" ;cf(m)ﬂn[%ﬂe-a-.-j(r,m,_)(rr)
JUE(TEH _ )+03(T 7,) '
—%JE(TEH - )—%o” —t +]n[ l_[e g ]—(r—iﬂ_,_. )(T—J’)
JO'E(TEH—.'EH)+O"(T—F) ’

Let us consider a process
oB" +oB =B +oB-oct"" — o1, (17)

for t €[0,7]. The fractional Girsanov theorem assures us that there is a probability measure P* such

that oB" + B’ is anew jmfBm under P"". We will denote

Z, :exp(chrH it + oB, —lzcrzr) (18)
By using Theorem 3.4 from [18], (10) and (18) on the first of the right-hand side of (13), we have
N. Y - 1
" 1 1, (r=4ay, J?'lalj’,ﬂ +a By TG'T'“ —’G'?'
E[S, l‘ }_—n } {SOHG e - : l{_\;___»x:‘ -7:;“ }
N, i 1 3 ap 1 3
~ L, (redw, |1 o8 raBy Sa T 2ot
=E}{Sc]r|[e Al 2 : l'r"f""':' }:H}
=5 He ‘J e |:Z? l'\ K| }—H}
" g, (redpg )T =
=5, He Piial J{Z P (B +0B, ).’I—j“}

= Sﬂﬁe';‘-‘ & ;"”"']TZ,lEf |:ll_.--,d;‘. (O'B;-r +0oB; )|}:”}

i {" Ay, L
_sﬂne-- A {l,w, J‘-‘”} (19)
i=1
By substituting (17) into (6), we obtain
N,
s, =5,]Te" exp[(r— Au, ) t+cB" +0oB + ; o'+ %azrj. (20)
i=l

Solving (20) at time 7 for the boundary S, > K, we have

* 1 ) 2 1 2, K
oB +0B, >——c'T" ——¢’T +In| —————
2 2 S, ;-‘Ie

}-(f-iﬂ.:, )T

If we denote

R R
d =—=cT" - —¢*T+In| ———
2 2 ‘JE.F_._I

= i=1

~(r=Au, )T, (21)

we get
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- : | - r-oB—on)
i .JEJT[O'E (Tzu _pH )+o’2 (T —.")) 2(0’3 (Tm ! )+u‘:}'3 (T —-‘))

- I Lexp 2 dz
g 27 2

=d(d)), (22)
P s
where d, = ob_ +oB —d . Subsequently, (20) can be written as
Jo_z (Tzu _p )+D_z (T—r)
3.2 2 S
oB" +oB =-Lor" Lo+ In| ——L—— |- (r—Au, )t. (23)
T [vn] o)
Substituting (21) and (23) on d,, we get
2 7 7 2 S il f,
1a? (T =" )+ 1c* (T 1)+ In| = —\r—Au, (T -1
DO it 2 0 R e i
! ng(Tz;x _ +0'E(T—.’)

2

)
1o’ (T =" )+10” (T —r)+]n[K’He"- J— (r=Au, )(T -1)

Substitution of (22) into (19) yields

Ny .
=1 n T A )T
E{Srli.\‘;-:\k: }-r”:|=5c1 I,- || e’é Z,®(d)

M (r-du 7.7 2
= Sﬂne""'e{' s )7 exp (O’Br” +aB, - %O’T’” - lzo"r)(b(dl)
i=1

Ny,

=[S(]ﬁg""€XP(D'B,H+O'B, _%O_zrzn_%o_zr_’_(r_}bﬂﬁ )r)]l—ler.-_.eh Ay, JIT ”(D(dl)
i=1

i=l
Y (e J(T-1)
=8 []e" e ™" and,)
i=l
:Srl—['g.r,_. e{r gy, )T H(D(dl). (24)
i=1

Finally, from (13), (15), (12), (24) and [19] it is calculated that the price of European call option can be
expressed as

@ AMT=1} qn — e\ n . - -
C(-'~Sr)=zw€,,X{S,]_[e"’-'e Ay AT ”(D(dl)—!{'e 1 ”(D(dz)i|' [

n=0) n!

i=1

Using put-call parity, we calculate the price of European put option in the corollary below.
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Corollary 4. ‘tppoce stock price S, is modeled with a jmfBm (6), a price at time t[0,T] of a
European put option with a strike price K and an expiry date T is given by

o gt gn (T —rt) CHT-1) 4, =dpy (T=1)
P(t.5)= 27.&‘” x| Ke D(-d,) - Sfl_[e e T O(-d) |, (25)

n=0 ”! i=l

where

1 2 2H 2H 1

_Ea' (T —1 )+Ea( +]n[ He J (r—ip_;l)(T—r)

I JO' +cr T -1) ‘

_150,2 (Tzn _',2”)_%0- ( +]n[ l_[e J (r—/’»ﬂ_,_l)(T—-')
JO’ T 1)+ 0" (T -1) .

n
£, denote a expectation operator over the distribution of | Ie " and ®(-) is a cumulative normal
i=1

distribution finction.

The next part is how to implement the jfmBm model and to present the effects of jump parameters.
We compare option prices under several stock price models, among the following models: an option
price model under a Bm [20], an option price model under an fBm [8], an option price model under an
mfBm [13] and an option price model under a jmfBM. This test will not be based on empirical data, but
they will be calculated based on the formula that has been produced with the selected parameter.

Parameters for computing call options are presented in Table 1. The first row presents parameters for
calculating a call option under a Bm model. The second row displays parameters for calculating a call
option under an fBm model. The third row presents parameters for calculating a call option under a
mfBm model. The fourth and fifth row provide the parameters for calculating the prices by the jfmBm
which has low and high jump parameters.

Table 1. The valuation of chosen parameters used in these models.

Model type r o K H J A 2 g
Bm 0.04 0.1 100 - - - - -
fBm 0.04 0.1 100 0.8 - - - -
mfBm 0.04 0.1 100 0.8 - - - -
jmfBm? 0.04 0.1 100 0.8 0.008 1.25 0.0005 0.001
JmfBm"® 0.04 0.1 100 0.8 0.008 6.25 -0.0005 0.001

By comparing the Bm, fBm, mfBm, and jmfBm® columns in Table 2 for 7= 0.25 cases, it produces
an option value that is almost close. This is especially a very low jump parameter and the effect of long
memory properties has not been seen for options with a short time maturity. As maturity increases, the
magnitude of option prices calculated by the four methods increases in the case of high and low jump
parameters. The jmfBm" column has an option price that is relatively larger than the other three methods
for the case T=3.

Figure 1 and 2 display the values of European call options versus time of maturity and strike prices.
The default parameter is § =100, r=0.04,6=0.1, H=0.8,J=0.08,1=6.25,5=0.01 and K = [80,120]
and 7 =[0,5]. Figure 1 using py = —0.005 and Figure 2 uqmg 1y = 0.005. Figure | illustrates the option
price under jmfBm is relatively greater than the option price under mfBm if p;, = —0.005. This does not
apply if W = 0.005 is seen in Figure 2. It can be concluded that an option price below jmfBm depends
on the value of jump parameters.
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Table 2. Price of call options by different models.

T=10.25 (low time to maturity) T=3 (high time to maturity)

S

CBm Cﬂ?m Cmﬂ?m C‘]ml’B rn“I CJmI'B mb CBm Cfl?m Cmﬂ?m C’j rnl'l]rn“I ijmeb
80  0.0000 0.0000 0.0002 0.0004 0.0004 24740 44639  6.1894 63756  6.7925
85 0.0015 0.0000 0.0095 00143 0.0150 43266 6.6063 84982 87342 9.2589
90 0.0512 0.0017 0.1339 0.1813  0.1881 6.8419  9.2329 11.2015 11.4895 12.1258
95 0.5567 0.1612 0.8449  1.0504 1.0782 9.9833 123107 14.2705 14.6113 153598
100 2.5216 1.8666  2.9080 33809 3.4412 13.6621 15.7893 17.6684 18.0617 18.9205
105 6.2954  6.0452  6.5219  7.2301  7.3155 17.7660 19.6099 21.3549 21.7994 22.7649
110 11.0282 10,9957 11.0941 119318 12.0277 22,1837 23,7123 252891 25.7831 26.8506
115 159971 15.9950 16.0078 16.9103 17.0089 26.8195 28.0404 294323 299736 31.1378
120 20.9951 20.9950 20.9962 21.9441 22.0431 31.5994 32.5446 33.7488 34.3353 35.5909
S 80 S 60
2 =
=] o
= 40 = 40
(&) (&)
1= =
3 20- 2 20
g 3
2 ol & oo
6 6
e i 110 g — 110
2 T o 100 2 e T 100
e a0 el a0
Time to maturity 0 80 Strike Price Time to maturity 0 80 Strike Price

FIGURE 1. Price of call option by mfBm and
jmfBm Model with g, = — 0.005

FIGURE 2. Price of call option by mfBm and
JmfBm Model with g, = 0.005

4. Conclusion

In this paper, stock returns are modeled with a jmfBm to capture long-range dependence and jumps
process and also to exclude arbitrage opportunities in the fBm model. We obtain a formula for
calculating a European option price under a jmfBm by using a theory of quasi-conditional expectation
and Fourier transformation method. This formula may be used by investors to predict option prices for
stocks that have long-range dependence and jumps. Moreover, this formula holds for an arbitrage-free
market.

Acknowledgments

The authors gratefully acknowledge that this research was supported by the ministry of research,
technology and higher education of the Republic of Indonesia under the PDD grant scheme having
project number 109/SP2H/LT/DRPM/2018. The authors also thank the referees for their comments and
suggestions which improve the paper significantly.

References

[1]  Cheung Y-W and Lai K S 1995 A search for long memory in international stock market retums
J. Int. Money Financ. 14 597-615

[2]  NeculaC and Radu A-N 2012 Long memory in Eastern European financial markets returns Econ.
Res. - Ekon. Istrazivanja 25 316-77

[3] Goddard J and Onali E 2012 Short and long memory in stock returns data Econ. Lett. 117 253~
5




ICoMAAL 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1180(2019) 012011  doi:10.1088/1742-6556/1180/1/012011

[4]
(5]

Cajueiro D O and Tabak B M 2008 Testing for long-range dependence in world stock markets
Chaos, Solitons and Fractals 37 918-27

Gyamfi E N, Kyei K and Gill R 2016 Long-memory persistence in African Stock Markets
EuroEconomica 35 §3-91

Hu Y and @ksendal B 2003 Fractional white noise calculus and applications to finance Infin.
Dimens. Anal. Quantum Probab. Relat. Top. 06 1-32

Elliott R J and Van der Hoek J 2003 A general fractional white noise theory and applications to
finance Math. Financ. 13 301-30

Necula C 2002 Option pricing in a fractional Brownian motion environment Adv. Econ. Financ.
Res. - DOFIN Work. Pap. Ser. 1-18

Bender C and Elliott R J 2004 Arbitrage in a discrete version of the Wick-fractional Black-
Scholes market Math. Oper. Res. 29 93545

Bjork T and Hult H 2005 A note on Wick products and the fractional Black-Scholes model
Financ. Stochastics 9 197-209

Cheridito P 2003 Arbitrage in fractional Brownian motion models Financ. Stochastics 7 533-53

Cheridito P 2001 Mixed fractional Brownian motion Bernoulii 7 913-34

Murwaningtyas C E, Kartiko S H, Gunardi and Suryawan H P 2018 European option pricing by
using a mixed fractional Brownian motion J. Phys. Conf. Ser. 1097 012081

Xiao W-L, Zhang W-G, Zhang X-L and Wang Y-L 2010 Pricing currency options in a fractional
Brownian motion with jumps Econ. Model. 27 935-42

Shokrollahi F, Klgman A and Kiligman A 2014 Pricing Currency Option in a Mixed Fractional
Brownian Motion with Jumps Environment Math. Probl. Eng. 2014 1-13

Biagini F, Hu Y, @ksendal B and Zhang T 2008 Stochastic Calculus for Fractional Brownian
Motion and Applications (Springer)

Zili M 2006 On the mixed fractional Brownian motion J. AppliedMathematics Stoch. Anal. 2006
1-9

Sun L 2013 Pricing currency options in the mixed fractional Brownian motion Phys. 4 Stat.
Mech. its Appl. 392 3441-58

Matsuda K 2004 Introduction to Merton jump diffusion model Dep. Econ. Grad. Center, City
Univ. New York

Black F and Scholes M 1973 The pricing of options and corporate liabilities J. Polit. Econ. 637—
54




Option pricing by using a mixed fractional Brownian motion
with jumps

ORIGINALITY REPORT

23, 16« 19 7«

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

3%
* WWW.Crranaimscs.org

Internet Source

Exclude quotes On Exclude matches <5 words

Exclude bibliography On





