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Abstract. In the field of optimal control, the Hamilton-Jacobi-Bellman equation specifies both the necessary and sufficient 

condition for finding optimal control with respect to the intended objective function. The equation is a nonlinear partial 

differential equation which is generally intractable to be solved analytically. Hence, in order to obtain the solution of some 

optimal control problem formulated in the Hamilton-Jacobi-Bellman equation, it is necessary to develop some reliable and 

efficient numerical method. In this article, we propose a modified version of our iterative method, previously published in 

a journal, to solve the state-constrained Hamilton-Jacobi-Bellman equation. The modification is made on the way to update 

the value function of the objective function. In this new scheme, instead of updating the value function on each point on 

the domain, we select only some points neighboring a nominee of the optimal path making up the solution of the optimal 

control problem. Therefore, comparing to the old scheme, the computation results not only a reliable solution but it is also 

much faster and efficient.   

INTRODUCTION 

 
  Optimal control is a field of Mathematics and Engineering that aims to find an optimal way to control a dynamical 

system. This kind of problem naturally occurs in decision making of many aspects such as science, engineering, 

finance and management [2,6].    Basically, to solve an optimal control problem we need to optimize some objective 

function under constraints of a differential equation system. In the literature, there are two ways to solve an optimal 

control problem. We can use a method of Pontryagin Minimum Principle or Bellman Dynamic Programming. The 

former method results in an open loop problem whose solution is easier to find and constitutes an optimal control 

along the optimal trajectory from the initial state. Unfortunately, this solution is not robust. If for some reason the state 

is off the optimal trajectory then the corresponding optimal control is no longer valid. On the other hand, using Bellman 

Dynamic Programming the optimal control problem will be formulated in Hamilton-Jacobi-Bellman equation [3,5].  

   In this article we will solve an optimal control problem with a state-constraint in the form of 

 

𝑚𝑖𝑛
𝑢∈𝛺

 𝐽(𝑢) = ∫ 𝐿(𝑥, 𝑢, 𝑡) 𝑑𝑡 + 𝛷(𝑥(1))
1

0

 

 
subject to 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢, 𝑡),  𝑡 ∈ (0,1),  𝑥(0) = 𝑧 

 
            𝛺 = {𝑢|ℎ(𝑥, 𝑢, 𝑡) ≤ 0},  𝑡 ∈ (0, 𝑇] (1) 
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This constrained problem can be converted to unconstrained problem by incorporating linear penalty terms in the 

objective function as follows. 

 𝑚𝑖𝑛
𝑢

 𝑃(𝑢) = 𝐽(𝑢) + ∫ 𝜆 ℎ𝜀(𝑥, 𝑢, 𝑡) 𝑑𝑡
𝑇

𝑟
 

subject to 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢, 𝑡),  𝑡 ∈ (𝑟, 𝑇),  𝑥(𝑟) = 𝑧 (2) 

 

The corresponding Hamilton-Jacobi-Bellman equation of this unconstrained problem is the following. 

 

 
𝜕𝑉

𝜕𝑡
+ 𝑚𝑖𝑛

𝑢
 (𝛻𝑉 • 𝑓(𝑥, 𝑢, 𝑡) + 𝐿(𝑥, 𝑢, 𝑡) + 𝜆 ℎ𝜀(𝑥, 𝑢, 𝑡)) = 0 

𝑉(𝑇, 𝑥) = 𝛷(𝑥(𝑇)) (3) 

 

The solution of Hamiton-Jacobi-Bellman equation is a robust solution because it is defined over a time-space region 

that the optimal trajectory lays. Hence, the corresponding optimal control still can be traced if the state is off the 

optimal path. However, the Hamilton-Jacobi-Bellman equation is generally unsolvable analytically. Therefore, we 

should solve it numerically. There are some methods for solving it such as in [1, 3] and [5] to name but a few. However, 

most of them are devoted to solve general Hamilton-Jacobi-Bellman equation without constraint on control and state. 

Our proposed numerical method is unique because it aims to solve constrained Hamilton-Jacobi-Bellman equation 

using a penalty method. 

MODIFIED ITERATIVE METHOD 

This modified iterative method is a modification of method in the article [4].  The old method uses an iterative 

finite upwind difference method to evaluate the value function on all grid points in the time and space domain.  The 

method we present here evaluate the value function on selected grid points in time and space domain without 

sacrificing accuracy of the computation. As a consequence, our new method will be faster and more efficient in terms 

of computational time.  In the following part, we describe the method in detail and give a numerical simulation to 

show the effectiveness of the method. 

First Iteration 

Without loss of generalization, let us simplify the notation by taking an optimal control problem with 1 control 

variable 𝑢 and 2 state variables 𝑥𝑝 ∈ [𝑎𝑝,  𝑏𝑝],  𝑝 = 1,  2. First, we will discretize space and time interval into 𝑚 and 

𝑛 partitions respectively. Therefore, we have 

 

 𝛥 𝑥𝑝 =
𝑏𝑝−𝑎𝑝

𝑚
,    𝑥𝑝,𝑖    =   𝑎𝑝   +    (𝑖 − 1) 𝛥 𝑥𝑝,  𝑝 = 1,2 , 𝑖 = 1,  2, … ,  𝑚 + 1 (4) 

An appropriate shifting needs to be done such that this spatial discretization in any case contains the initial point. Let  

 𝑠 = 𝑎𝑟𝑔   𝑚𝑖𝑛
𝑖

 | 𝑥𝑝,𝑖 − 𝑥𝑝(0) | (5) 

then, with some adjustment for 𝑖 = 1, 2, … , 𝑚 + 1 we obtain  

 

 𝑥𝑝,𝑖 ← 𝑥𝑝,𝑖 + (𝑥𝑝(0) − 𝑥𝑝(𝑠)), 𝑎𝑝 ← 𝑎𝑝 + (𝑥𝑝(0) − 𝑥𝑝(𝑠)),  𝑏𝑝 ← 𝑏𝑝 + (𝑥𝑝(0) − 𝑥𝑝(𝑠)) (6) 

 

In this scheme, in order to work well the upwind finite difference method that we use need a stability condition as 

reported in , i.e.  

 𝑛 ≥   ∑  
‖𝑓𝑝‖

∞

𝛥 𝑥𝑝

2
𝑝=1  (7) 

 Hence,  

 𝛥𝑡  = − 
1

𝑛
,  𝑡𝑘 = 1 + (𝑘 − 1) 𝛥𝑡,   𝑘 = 1,  2, … , 𝑛 (8) 

is the backward partition of time interval [0,1]. We set the initial value function and control value as follows. 

 

 𝑉𝑖,𝑗
1 = 𝛷(�⃗�𝑖,𝑗(1)),  𝑖, 𝑗 = 1,  2, … ,  𝑚 + 1 (9) 
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 𝑢𝑖,𝑗
1 = 𝑎𝑟𝑔   𝑚𝑖𝑛

𝑢
 (𝑓1(𝑡1, �⃗�𝑖,𝑗 , 𝑢)

𝑉𝑖,𝑗
1 −𝑉𝑖−1,𝑗

1

𝛥 𝑥1
+ 𝑓2(𝑡1, �⃗�𝑖,𝑗 , 𝑢)

𝑉𝑖,𝑗
1 −𝑉𝑖,𝑗−1

1

𝛥 𝑥2
+ 𝐿(𝑡1, �⃗�𝑖,𝑗, 𝑢) 

  +𝜆 ℎ𝜀(𝑡1, �⃗�𝑖,𝑗 , 𝑢),  𝑖, 𝑗 = 2,  3, … ,  𝑚 + 1. (10) 

 

In the above formulas, 𝑉𝑖,𝑗
𝑘 ≈ 𝑉(𝑡𝑘, �⃗�𝑖,𝑗) and 𝑢𝑖,𝑗

𝑘   ≈ 𝑢 (𝑡𝑘, �⃗�𝑖,𝑗) are value function and control variable at point �⃗�𝑖,𝑗   =

(𝑥1,𝑖 , 𝑥2,𝑗) and time 𝑡𝑘 . The function ℎ𝜀(𝑡1, �⃗�𝑖,𝑗 , 𝑢) is smoothed form of constrain ℎ(𝑡, 𝑥, 𝑢) evaluated at (𝑡1, �⃗�𝑖,𝑗 , 𝑢) and 

𝜆is a constant of explicit penalty term used to embed constraint to the objective function.  

To prevent a trapezoidal propagation on the boundary of space domain for each time step, we add some artificial 

boundary conditions for control function. This boundary values are predicted using a linear extrapolation of the closest 

known points as the following. 

 

 𝑢𝑖,1
1 = 2 𝑢𝑖,2

1 − 𝑢𝑖,3
1 ,  𝑢1,𝑗

1 = 2 𝑢2,𝑗
1 − 𝑢3,𝑗

1  (11) 

  

To update value function for 𝑖, 𝑗 = 1,  2, … , 𝑚 + 1,  𝑘 = 1,  2, … , 𝑛
 

 

 𝑉𝑖,𝑗
𝑘+1 = −

1+𝑠𝑖𝑔𝑛 𝑓1

2
𝛽1 𝑓1(𝑡𝑘 , �⃗�𝑖,𝑗, 𝑢𝑖,𝑗

𝑘 ) 𝑉𝑖+1,𝑗
𝑘 −

1+𝑠𝑖𝑔𝑛 𝑓2

2
𝛽2 𝑓2(𝑡𝑘, �⃗�𝑖,𝑗, 𝑢𝑖,𝑗

𝑘 ) 𝑉𝑖,𝑗+1
𝑘  

  +
1 − 𝑠𝑖𝑔𝑛 𝑓1

2
𝛽1 𝑓1(𝑡𝑘, �⃗�𝑖,𝑗 , 𝑢𝑖,𝑗

𝑘 ) 𝑉𝑖−1,𝑗
𝑘 +

1 − 𝑠𝑖𝑔𝑛 𝑓2

2
𝛽2 𝑓2(𝑡𝑘, �⃗�𝑖,𝑗 , 𝑢𝑖,𝑗

𝑘 ) 𝑉𝑖−1,𝑗
𝑘  

  +(1 + ∑ 𝛽𝑝
2
𝑝=1  |𝑓𝑝(𝑡𝑘, �⃗�𝑖,𝑗 , 𝑢𝑖,𝑗

𝑘 )| ) 𝑉𝑖,𝑗
𝑘 − 𝛥𝑡 𝐿(𝑡𝑘, �⃗�𝑖,𝑗, 𝑢𝑖,𝑗

𝑘 )  − 𝛥𝑡 𝜆 ℎ𝜀(𝑡𝑘, �⃗�𝑖,𝑗 , 𝑢𝑖,𝑗
𝑘 ) (12) 

where 𝑠𝑖𝑔𝑛 𝑓𝑝 denotes the sign of 𝑓𝑝(𝑡𝑘, �⃗�𝑖,𝑗, 𝑢𝑖,𝑗
𝑘 ) and  𝛽𝑝 =

𝛥𝑡

𝛥 𝑥𝑝
,  𝑝 = 1,  2.

 For both ends of spatial domain, the value functions at those points are extrapolated using method similar to the (11).  

 

 𝑉𝑖,1
𝑘+1 = 2 𝑉𝑖,2

𝑘+1 − 𝑉𝑖,3
𝑘+1,  𝑉𝑖,𝑚+1

𝑘+1 = 2 𝑉𝑖,𝑚
𝑘+1 − 𝑉𝑖,𝑚−1

𝑘+1  

𝑉1,𝑗
𝑘+1 = 2 𝑉2,𝑗

𝑘+1 − 𝑉3,𝑗
𝑘+1,  𝑉𝑚+1,𝑗

𝑘+1 = 2 𝑉𝑚,𝑗
𝑘+1 − 𝑉𝑚−1,𝑗

𝑘+1 (13) 

In addition, to update control values for 𝒊, 𝒋 = 𝟐,  𝟑, … , 𝒎 + 𝟏,  𝒌 = 𝟏,  𝟐, … , 𝒏 

𝑢𝑖,𝑗
𝑘+1 = 𝑎𝑟𝑔   𝑚𝑖𝑛

𝑢
 (𝑓1(𝑡𝑘+1, �⃗�𝑖,𝑗, 𝑢)

𝑉𝑖,𝑗
𝑘+1 − 𝑉𝑖−1,𝑗

𝑘+1

𝛥 𝑥1

+ 𝑓2(𝑡𝑘+1, �⃗�𝑖,𝑗 , 𝑢)
𝑉𝑖,𝑗

𝑘+1 − 𝑉𝑖,𝑗−1
𝑘+1

𝛥 𝑥2

 

   +𝐿(𝑡𝑘+1, �⃗�𝑖,𝑗 , 𝑢) + 𝜆 ℎ𝜀(𝑡𝑘+1, �⃗�𝑖,𝑗 , 𝑢). (14) 

For left and right boundaries for control value 

 𝑢𝑖,1
𝑘+1 = 2 𝑢𝑖,2

𝑘+1 − 𝑢𝑖,3
𝑘+1,  𝑢1,𝑗

𝑘+1 = 2 𝑢2,𝑗
𝑘+1 − 𝑢3,𝑗

𝑘+1 (15) 

Up to this point, we already have 𝑉𝑖,𝑗
𝑘  and 𝑢𝑖,𝑗

𝑘  for 𝑖, 𝑗 = 1,  2, … , 𝑚 + 1,  𝑘 = 1,  2, … , 𝑛 + 1. To find the optimal 

trajectory and control, we need to integrate forward the state equation from the starting point 

 

 
𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, �⃗�,  𝑢),  �⃗� = (𝑥1, 𝑥2),  𝑓 = (𝑓1,  𝑓2) (16) 

 

using predictor-corrector method as follows. Let us label the resultant path and control for predictor       �⃗�𝑞 =

(𝑦𝑞,1, 𝑦𝑞,2), 𝑢𝑞 and  �⃗�𝑐 = (𝑦𝑐,1, 𝑦𝑐,2), 𝑢𝑐 for corrector with �⃗�𝑞(1) = �⃗�𝑐(1) = �⃗�0 and  𝑢𝑐(1) = 𝑢 (�⃗�0, 𝑡𝑛+1) 

respectively.  The control value used during the integration is the optimal control value from the closest grid point to 

the resultant state. Then, for 𝑙 = 2, . . . , 𝑛 + 1              

 

  �⃗�𝑞(𝑙) = �⃗�𝑐(𝑙 − 1) − 𝛥𝑡 𝑓 (𝑡−𝑙+𝑛+3,   �⃗�𝑞(𝑙), 𝑢𝑐(𝑙 − 1)) 

𝑢𝑞(𝑙) = 𝑢(�⃗�𝑖∗,𝑗∗(𝑙), 𝑡−𝑙+𝑛+3),  (𝑖 ∗, 𝑗 ∗) = 𝑎𝑟𝑔 𝑚𝑖𝑛
(𝑖,𝑗)

‖�⃗�𝑞(𝑙) − �⃗�𝑖,𝑗‖ 

�⃗�𝑐(𝑙) = �⃗�𝑐(𝑙 − 1) −
1

2
𝛥𝑡 (𝑓 (𝑡−𝑙+𝑛+3,�⃗�𝑐(𝑙 − 1), 𝑢𝑐(𝑙 − 1)) + 𝑓 (𝑡−𝑙+𝑛+3, �⃗�𝑞(𝑙), 𝑢𝑞(𝑙)) 
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𝑢𝑐(𝑙) = 𝑢(�⃗�𝑖∗,𝑗∗, 𝑡−𝑙+𝑛+3),  (𝑖 ∗, 𝑗 ∗) = 𝑎𝑟𝑔 𝑚𝑖𝑛
(𝑖,𝑗)

‖�⃗�𝑐(𝑙) − �⃗�𝑖,𝑗‖ (17) 

 

The resultant pair (�⃗�𝑐(𝑙), 𝑢𝑐(𝑙)),   𝑙 = 1,  2, … 𝑛 + 1constitutes an optimal trajectory and control for all time stages. 

Moreover, the value function along the optimal trajectory can be obtained using the value function of the 

corresponding closest grid points. Similarly, the penalty value and objective function value can be determined by 

forward integration along the optimal trajectory of corresponding terms.  

  

Second Iteration 

   Next, for the second iteration we firstly reduce the domain based on the optimal trajectory and control found in the 

first iteration. This reduction will save a lot of computational time and is done as following. First, we determine the 

maximum and the minimum value of resultant path and control. For 𝒑 = 𝟏,  𝟐 and 𝒍 = 𝟏,  𝟐, … 𝒏 + 𝟏 

 
)(min),(max

)(min),(max

minmax

,min,,max,
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 (18) 

 

For this iteration we double the number interval partitions 𝑚 and set the region as follows.  
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where ⌊𝑧⌋ fungsi floor, ⌈𝑧⌉ fungsi ceiling and 𝑑some given constant. This constant𝑑 is a prescribed distance for selected 

grid points from the optimal trajectory. The shrinkage factor 𝜌𝑝

 

can be evaluated using the following formula. 

 𝜌𝑝 =
𝑏𝑝,𝑛𝑒𝑤−𝑎𝑝,𝑛𝑒𝑤

𝑏𝑝−𝑎𝑝
,  𝑝 = 1,  2. (20) 

 

This shrinkage factor will be used to update distance 𝑑. 
   Then, we determine the number of time stages as previously explained in (7) and discretize the spatial domain as in 

(4). Shifting the spatial discretization to include the initial value using (5) and (6) can be done if needed. We select 

some grid points among the existing ones in the space domain based on the distance from the optimal trajectory 

resulted from the first iteration. In principle, we choose points �⃗�𝑑 closed to the optimal trajectory �⃗�𝑐 within some given 

distance𝑑.

 

 

 ‖�⃗�𝑐 − �⃗�𝑑‖1 < 𝑑 (21) 

 

Afterwards, we set the value function and control for these selected grid points. There are two kinds of grid points that 

need to be considered, i.e. interior and border points. Interior points are points that are surrounded by other selected 

points and therefore their initial value function is determined following (10). For border points, points that are directly 

adjacent to unselected points, at position (𝑖, 𝑗) and time 𝑘 = 1the value function will be one of the following possible 

linear extrapolation 

 

 𝑉𝑖,𝑗
𝑘 = 𝑉𝑖,𝑗−1

𝑘 + 𝑉𝑖−1,𝑗
𝑘 − 𝑉𝑖−1,𝑗−1

𝑘  

𝑉𝑖,𝑗
𝑘 = 𝑉𝑖−1,𝑗

𝑘 + 𝑉𝑖,𝑗+1
𝑘 − 𝑉𝑖−1,𝑗+1

𝑘  

𝑉𝑖,𝑗
𝑘 = 𝑉𝑖,𝑗−1

𝑘 + 𝑉𝑖+1,𝑗
𝑘 − 𝑉𝑖+1,𝑗−1

𝑘  

𝑉𝑖,𝑗
𝑘 = 𝑉𝑖+1,𝑗

𝑘 + 𝑉𝑖,𝑗+1
𝑘 − 𝑉𝑖+1,𝑗+1

𝑘  

𝑉𝑖,𝑗
𝑘 = 2 𝑉𝑖,𝑗−1

𝑘 − 𝑉𝑖,𝑗−2
𝑘  

𝑉𝑖,𝑗
𝑘 = 2 𝑉𝑖−1,𝑗

𝑘 − 𝑉𝑖−2,𝑗
𝑘  

𝑉𝑖,𝑗
𝑘 = 2 𝑉𝑖,𝑗+1

𝑘 − 𝑉𝑖,𝑗+2
𝑘  
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𝑉𝑖,𝑗
𝑘 = 2 𝑉𝑖+1,𝑗

𝑘 − 𝑉𝑖+2,𝑗
𝑘  (22) 

 

The right hand sides of the above formulas are the value function of the interior points set before. One of these value 

functions always exist due to the compactness of points close to the optimal trajectory for some (big enough) given 

distance 𝑑.  Which extrapolation we choose really depends on the availability of interior points. Nevertheless, 

extrapolation involving more points is preferable because we want to have a better approximation to the true value.  

   Analogously, the initial control for interior points is determined using formula in (10) and for border points at 

position (𝑖, 𝑗) and time 𝑘 = 1will be one of the following possible linear extrapolation 

 

 𝑢𝑖,𝑗
𝑘 = 𝑢𝑖,𝑗−1

𝑘 + 𝑢𝑖−1,𝑗
𝑘 − 𝑢𝑖−1,𝑗−1

𝑘  

𝑢𝑖,𝑗
𝑘 = 𝑢𝑖−1,𝑗

𝑘 + 𝑢𝑖,𝑗+1
𝑘 − 𝑢𝑖−1,𝑗+1

𝑘  

𝑢𝑖,𝑗
𝑘 = 𝑢𝑖,𝑗−1

𝑘 + 𝑢𝑖+1,𝑗
𝑘 − 𝑢𝑖+1,𝑗−1

𝑘  

𝑢𝑖,𝑗
𝑘 = 𝑢𝑖+1,𝑗

𝑘 + 𝑢𝑖,𝑗+1
𝑘 − 𝑢𝑖+1,𝑗+1

𝑘  

𝑢𝑖,𝑗
𝑘 = 2 𝑢𝑖,𝑗−1

𝑘 − 𝑢𝑖,𝑗−2
𝑘  

𝑢𝑖,𝑗
𝑘 = 2 𝑢𝑖−1,𝑗

𝑘 − 𝑢𝑖−2,𝑗
𝑘  

𝑢𝑖,𝑗
𝑘 = 2 𝑢𝑖,𝑗+1

𝑘 − 𝑢𝑖,𝑗+2
𝑘  

𝑢𝑖,𝑗
𝑘 = 2 𝑢𝑖+1,𝑗

𝑘 − 𝑢𝑖+2,𝑗
𝑘  (23) 

     

The value function at next time stages follows from (12) for interior points and (22) for border points. Similarly, 

control for later time stages can be updated using (15) for interior points and (23) for border points. So far, we have 

𝑉𝑖,𝑗
𝑘  and 𝑢𝑖,𝑗

𝑘  for 𝑖, 𝑗 = 1,  2, … , 𝑚 + 1,  𝑘 = 1,  2, … , 𝑛 + 1, and therefore we have already updated all values. Next, 

we integrate forward the dynamical system to obtain optimal pair (�⃗�𝑐, 𝑢𝑐) for all time stages using predictor-corrector 

method as before. If during the integration, the resultant trajectory is off the selected grid points, we enlarge the 

distance 𝑑 by one grid spacing and start again the integration with this new distance. 

   Like in the first iteration, next, we need to reduce the region size. To include these selected points for the next 

iteration the distance is updated as follows. 

 𝛾 = 𝑚𝑎𝑥(
1

𝜌1
,

1

𝜌2
),  𝑑𝑛𝑒𝑤 = 2 𝛾 𝑑. (24) 

 where 𝜌𝑝, 𝑝 = 1,2  is the shrinkage factor of space interval between two consecutive iterations. 

Next Iteration 

   Repeat all steps in the second iteration for later iterations. We stop the iteration if maximum iteration is reached or 

the difference between two consecutive value function at the initial state point are less than some prescribed tolerance.  

NUMERICAL SIMULATION 

   In this section we will run a numerical simulation to show the effectiveness of the proposed method. The example 

taken from [4] is as follows. 

 𝑚𝑖𝑛
𝑢

 𝐽(𝑢) = ∫ (𝑥1
2 + 𝑥2

2 + 0.005 𝑢2)
1

0
 

subject to 
𝑑𝑥1

𝑑𝑡
= 𝑥2,  𝑥1(0) = 0 

𝑑𝑥2

𝑑𝑡
= −𝑥2 + 𝑢,  𝑥2(0) = −1 

𝑔 (𝑡, 𝑥) = −8(𝑡 − 0.5)2 + 0.5 + 𝑥2 ≤ 0,  𝑡 ∈ [0,1](25) 

The last constraint constitutes a purely state constraint so that it does not give any information on how to choose a 

control that satisfies it. Therefore, it should be changed to a new constraint according to as following. 

 ℎ (𝑡, 𝑢, 𝑥) = 0.9 𝑔 (𝑡, 𝑥) + 0.1 
𝑑𝑔 (𝑡,𝑥)

𝑑𝑡
 (26) 
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Furthermore, in order to be able to work with optimization routine this constraint need to be smoothed as follows. 

 ℎ𝜀 = {

0,  ℎ < −𝜀
1

4

(ℎ+𝜀)2

𝜀

ℎ,  ℎ > 𝜀 

,  −𝜀 ≤ ℎ ≤ 𝜀 (27) 

 

The above optimal control problem can be converted into Hamilton-Jacobi-Bellman (HJB) equation 

 
𝜕𝑉

𝜕𝑡
+ 𝑚𝑖𝑛

𝑢
 (𝑥2  

𝜕𝑉

𝜕𝑥1
+ (𝑢 − 𝑥2) 

𝜕𝑉

𝜕𝑥2
+ 𝑥1

2 + 𝑥2
2 + 0.05 𝑢2 + 𝜆 ℎ𝜀(𝑡, 𝑥, 𝑢)) = 0 

𝑉(1, 𝑥) = 0 (28) 

In this numerical simulation we set 𝜆 = 2,  𝜀 = 10−2and at the first iteration, we choose the region −1 ≤ 𝑥1 ≤
1, −3 ≤ 𝑥2 ≤ 1, −20 ≤ 𝑢 ≤ 20,  𝑚 = 8. For various values of  𝑚 the result of the computational results are 

displayed in Table 1 and Table 2. 

 

TABLE 1. Computational value function  

 
Iterations Distance 

d 

m n Penalty Objective function Value 

function 

Control 

range 

1 - 8 46 0.204 0.1763 0.4378 [-20,20] 

2 2.00 16 164 0.020 0.2016 0.2186 [-6,14] 

3 4.65 32 331 0.024 0.1921 0.2141 [-3,14] 

4 9.26 64 658 0.003 0.2044 0.2099 [-3,14] 

5 19.13 128 1331 0.003 0.2025 0.2078 [-3,14] 

 

   Columns in Table 1 shows us respectively the number iterations, distance, the number of partitions for space and 

time domain, penalty and objective value along the optimal path, value function at the initial point and control range 

that we used. We see that from iteration to iteration penalty value and value function decreases as expected. 

Meanwhile, the value function increases and the discrepancy between the value function and the objective function is 

getting smaller.     

 TABLE 2. Computational shrinkage factors 

 

Iterations Distance 

d 

m n x1 range x2 range 𝜌1 𝜌2 % 

m 

1 - 8 46 [-1, 1] [-3,1] 0.14 0.44 - 

2 2.00 16 164 [-0.243, 0.034] [-1.217,0.523] 1.24 0.86 60 

3 4.65 32 331 [-0.310,0.034] [-1.217,0.281] 1.06 1 65 

4 9.26 64 658 [-0.316,0.050] [-0.217,0.286] 1.06 0.97 63 

5 19.13 128 1331 [-0.334,0.053] [-0.217,0.238] 1.02 1 63 

 

   Table 2 provides some information related to the range of spatial domain and the shrinkage factor, i.e. the ratio of 

latter space interval length to former. The smaller the shrinkage factor is, the larger the reduction for the next iteration. 

The shrinkage factor nearly 1 indicates that the length of the space interval for the next iteration will not change much. 

Moreover, if the control range is fixed, this also means that the iteration is almost convergent and further improvement 

will be impossible. On the contrary, the shrinkage factor exceeding 1 indicates that the previous interval length is too 

short so that the method automatically adapts it to restore. The last column informs us the percentage of grid point 

evaluation compared to method without grid selection. It can be seen that for this simulation the method only evaluate 

not more than 65% of the complete set of grid points. Consequently, the efficiency of computational time can be 

increased about 35% and the best value function found is just insignificantly different from the result reported in.  

   The following figures shows the comparison between the optimal path generated by two consecutive iterations and 

MISER 3.3, a reliable software for solving optimal control problem in [7]. 
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(a) (b) 

FIGURE 1. Optimal path comparison of two consecutive iterations, i.e. iteration 2 in (a) and last iteration in (b) 
 

Figure 1(a) shows optimal paths produced by first iteration (-+), second iteration (-) and MISER 3.3 (- -). It is noted 

that the optimal paths from the first two iterations and MISER 3.3 are different. However, in the last iteration in figure 

1(b) this discrepancy disappears and the optimal finally coincide. This indicates that from time to time the method 

could improve the computation such that the optimal paths produced converge to the true solution. 

   Figures 2 below show the computational result from the last iteration for value function at initial time (t=0) in (a) 

and at the final time (t=1) in (b) . The similar basic S-shape in the figures indicate that the method is quite stable under 

proposed distance d. 

 

  

(a) (b) 

FIGURE 2.  The value function in the last iteration at initial time (t=0) in (a) and final time (t=1) in (b) 

 

CONCLUSION 

   In this article, we modify the method of iterative upwind finite difference method in order to improve the speed of 

computation. From the numerical simulation the new proposed method is much more efficient than the previous one. 

This is due to the selection of grid points evaluated in each iteration. Furthermore, in higher dimensions using the 

proposed method the computation could be even more efficient. However, it is necessary to investigate the minimal 

value of distance d further because choosing d too small will likely result in instability of the scheme. 
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