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Abstract: In this paper, we investigate the Green measure for a class of non-Gaussian processes in &4
These measures are associated with the family of generalized grey Brownian motions By, 0 < f < 1,
0 < & < 2. This family includes both fractional Brownian motion, Brownian motion, and other
non-Gaussian processes. We show that the perpetual integral exists with probability 1 for da > 2 and
1< a < 2. The Green measure then generalizes those measures of all these classes.
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1. Introduction

In recent years, there has been a significant amount of research devoted to fractional
dynamics related to fractional Brownian motion and related processes. These processes
lack both the Markov and semimartingale properties from a mathematical standpoint.
As aresult, many traditional approaches in stochastic analysis do not apply, making their
analysis more challenging. These processes are capable of modeling systems that exhibit
long-range self-interaction and memory effects.

In 1992, Schneider introduced the grey Brownian motion [1], a class of non-Gaussian
processes, to solve the time-fractional diffusion equation with a Caputo-Djrbashian deriva-
tive of fractional order. During the 1990s, Mainardi and their co-authors conducted a
systematic investigation into fractional differential equations; see [2] and the references
therein. They introduced the notion of generalized grey Brownian motion (ggBm for
short), and the corresponding time-fractional differential equations governing its densities.
This family of processes is denoted by B.ﬁﬂ with parameters 0 < B < land 0 < a < 2.
If  # 1, the process By, is non-Gaussian with stationary increments and «/2-self-similar;
see Section 2 for details. The process B B admits different representations (cf. (12) and
(13) below) in terms of other known processes, which are useful for simulation and to
derive other properties. In a recent work, Grothaus et al. [3] elaborated an infinite dimen-
sional analysis for (non-Gaussian) measures of the Mittag-Leffler type. They used ggBm to
solve the time-fractional heat equation, extending the fractional Feynman-Kac formula of
Schneider [1].

The goal of this paper (see Theorem 1 and Corollary 1 below) is to prove the existence
of the Green measure for the class of non-Gaussian processes ggBm in R4, This result will
extend the results of Kondratiev et al. [4]. More precisely, for a Borel function f : R — E,
the potential of f (see [5,6] for details) is defined as

Vaulfi) = [ E[fG+ Bpa())] dr, x€ RY &
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We would like to investigate the class of functions f for which the potential of f has
the representation

Vaalf,x) = [, F1)Gpa(x,dv), @

where G(x, ) := Gpx(x, ) is a Radon measure on R called the Green measure correspond-
ing to the ggBm By ,; see Definition 2 below. If By, admits a generator Lg,, then the
potential V (x, f) can be obtained from the equation

—LV =f.

The Green measure can be seen as the fundamental solution for the generator Lg , of the
process By, First, we establish the existence of the perpetual integral (cf. Theorem 1):

[ Fxt Boa(t)) o

with probability one. This leads to an explicit representation of the Green measure for
ggBm, namely (cf. Corollary 1)

Gp,alx,dy) = dy, da>2, 1<a<2,

W
where D is a constant that depends on §, 1, and the dimension d; see (17) for the explicit
expression. Note thatas da > 2and 1 < a < 2, the Green measure g!;’“(x, -) exists for
d > 2,sinced > 2/a € [1,2). The Brownian case (o« = 1) is covered only for d > 3. We
emphasize that the existence of the Green measure for a given process X is not always
guaranteed. In addition, finding a proper space of functions f : R — R that guarantees
the existence of (1) is crucial. As an example, the d-dimensional Bm starting at x € B! has
a density given by pi(x,y) = (271t) " %exp ( — |x — yP/2), y e B4 It is not difficult
to see that [ p¢(x, y) dt does not exist for d = 1,2. Hence, the Green measure of Bm for
d = 1,2 does not exist. On the other hand, ford > 3, the Green measure of Bm on R exists
and is given by G(x,dy) = C(d)|x — y|>~ dy, where C(d) is a constant depending on the
dimension d; see [4] and the references therein for more details. In a two-dimensional
space, the Green measure of ggBm is determined by the parameter a that is related to the
roughness of the path. The Green measure of ggBm for d = 1 requires further analysis (for
Bm, see [7], Ch. 4), which we will postpone for a future paper.

This paper is organized as follows. In Section 2, we recall the definition and main
properties of ggBm that will be needed later. In Section 3, we show the existence of the
perpetual integral with probability one, which leads to the explicit formula for the Green
measure for ggBm. In Section 4, we discuss the obtained results, connect them with other
topics, and draw conclusions.

2. Generalized Grey Brownian Motion

We recall the class of non-Gaussian processes, called generalized grey Brownian mo-
tion, which we study below. This class of processes was first introduced by Schneider [8,9],
and was generalized by Mura et al. (see [10,11]) as a stochastic model for slow /fast anoma-
lous diffusion described by the time-fractional diffusion equation.

2.1. Definition and Properties
For 0 < B < 1, the (entire) Mittag-Leffler function E,B is defined by the Taylor series

oo -

Eg(z) =), m z€C, 4

mn=(l
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where

is the Euler gamma function.
The M-Wright function is a special case of the class of Wright functions W) ;,, A > -1,
peC,via
- _ &0 (—Z}"
Mpg(z) :=W_g,1p(~2) = E} AT+ 1=F)"

The special choice p = 1/2 yields the Gaussian density on [0, co):

2
z

M) = =ep (-5 ). ®

The Mittag-Leffler function Eg is the Laplace transform of the M-Wright function, that is,

Ep(—s) = Am T My () dr. )

The generalized moments of the density Mﬁ of order & > —1 are finite and are given
(see [10]) by
rs+1)

Fp-1) v

/-m P Mg(t)dT =
Jo A

Definition 1. Let 0 < § < land 0 < a < 2 be given. A d-dimensional continuous stochastic
process Bg, = {Bg,(t), t = 0}, starting at 0 € R and defined on a complete probability space

(O, F,P), isa ggBmin B (see [11] for d = 1) if the following is satisfied:

1. P(Bg,(0) = 0) =1, thatis, By, starts at zero P-almost surely (F-a.s.).

2. Any collection {Bﬁ,ﬂ(tl},...,Bﬁﬂ(rn}} with0 < t) < tp < -+- < t, < oo has a char-
acteristic function given, for any 8 = (61,...,84) € (RN with 6, = (Brir-.Bra)
k=1,...,nby

E

1 d
exp (i Y (61 Bg (fk}}[m:f)} =Eg {—% Y (9.,,*:’?«9.,;}[1111]; (8)

k=1 j=1

where E denotes the expectation with regard to T and
e e ay
Ya '= VYan 1= (f‘f + r;ﬂ - |rk - r}' )k,j—l'

3. The joint probability density function of (Bg(t1), ..., Bga(tu)) is equal to

nd

Pp(8,va) = [(Zn}_T

o md o L A
dety }af,fz/u v He TR py (1) e ©)
NS

The following are the most important key properties of ggBm:
(P1). Foreach t > 0, the moments of any order of By, (t) are given by

E[|Bg.(t)***1] =0,
" _ 2n)! "
E[|Bea()*] = it
(P2). The covariance function has the form

E[(Bga(t), Bpals))] = W‘:l}(r“ s —|t—s[*), ts>0. (10)
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(P3). For each t,5 > 0, the characteristic function of the increments is

[k[?

E [ei(kBia (01-B54(6))] = E, (__
L 2

|r—s|“‘), ke R (11)

(P4). The process B pa 1S non-Gaussian and «/2-self-similar with stationary increments.

(P5). The ggBm is not a semimartingale. Furthermore, B, 5 cannot be of finite variation in
[0,1] and, by the scaling and stationarity of the increment, on any interval in R™.

(P5). For n = 1, the density pﬁ(x, t), x € B, t > 0 is the fundamental solution of the
following fractional differential equation (see [12]):

]Dfﬁpﬁ(x, t) = Avpp(x,t),

where A, is the d-dimensional Laplacian in x and ]Df'g is the Caputo-Dzherbashian
fractional derivative; see [13] for the definition and properties.

2.2. Representations of Generalized Grey Brownian Motion

The ggBm admits different representations in terms of well-known processes. It
follows from (8) that ggBm has an elliptical distribution; see Section 3 in [3]. On the other
hand, ggBm is also given as a product (see [10] for d = 1) of two processes, as follows:

{Bgalt), t=0} £ {\/YT;BMZU}, t>0). (12)

Here, £ means equality in law, the non-negative random variable Yy has density Mg, and
B*/2 is a d-dimensional fBm with Hurst parameter & /2 and is independent of Yg.

We give another representation of ggBm B, as a subordination of fBm (see Section 2.14
in [14] for d = 1) which is used below. For completeness, we give a short proof.
Proposition 1. The ggBm has the following representation:

{Bga(t), t > 0} = {BY2(1Y}/%), 1 > 0}. (13)

Proof. We must show that both representations (12) and (13) have the same finite-dimensional
distribution. For every 8 = (8y,...,6,) € (B}, we have

E

.AWE{EKP (i i (Br. B“”Z(fky”“}))] Mpg(y)dy

k=1

/U“’E{exp(i)f (ek,ymsﬂﬂfrk}))]Mﬁ(y} dy
E k=1

exp (i Y (6 y;;ZBﬂfZ(rk}))].

k=1

exp(i y (ek,B«fZ(rky;;fﬂ}))]

k=1

E

In the second equality, we use the a/2-self-similarity of fBm. This completes the proof. [

3. The Green Measure for Generalized Grey Brownian Motion

In this section, we show the existence of the Green measure for ggBm; see (1) and
(2). Let us begin by discussing the existence of the Green measure for a general stochastic
process X.

Let X = {X(t), t > 0} be a stochastic process in B starting from x € R4, If X(t),
t > 0, has a probability distribution px (¥, ), then Equation (1) becomes

Vx(x.f) = [ [ F0)pxc(x dy) (14)
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Then, applying the Fubini theorem, the Green measure Gy (x, -) of X is given by
Gx(x,dy) = A Pxp (x,dy)dt,

assuming the existence of Gx(x,-) as a Radon measure on B4 That is, for every bounded
Borel set B € By(R?) we have

Gx(x,B) = /ﬂ Px(t) (%, B)dt < co.

If the probability distribution px ;) (x, -) is also absolutely continuous with respect to the
Lebesgue measure, say py 4 (x, dy) = p;(x,y) dy, then the function

gx(x,y}:/ﬂ p(xy)dt, vy e R, (15)

is called the Green function of the stochastic process X. Moreover, the Green measure in
this case is given by Gx (x,dy) = gx (x, y) du.
This leads us to the following definition of the Green measure of a stochastic process X.

Definition 2. Let X = {X(£), t > 0} be a stochastic process on B! starting from x € B and
Px(1)(x, ) be the probability distribution of X(f), t = 0. The Green measure of X is defined as a

Radon measure on B by

Ox(3,B) = [ pxy (v B)dt, Be By(RY,
or .
LS 0Gx(rdy) = [ Fw) [ px (v dt, f € o)

whenever these integrals exist.

In other words, Gy (x, B) is the expected length of time the process remains in B.

To state the main theorem that establishes the existence of the Green measure for
ggBm, first, we introduce a proper Banach space of functions f : B — R such that the
perpetual integral (3) is finite P-a.s. Without a loss of generality, we can assume that f > 0
above. We define the space CL(R"), of continuous real valued, on RY by

CL(RY):= {f:R? — R | f is continuous, bounded and f € L'(R7)}.
The space CL(R?) becomes a Banach space with the norm
Ifllce =l fllw +[Ifll1, ¥f € CL(RY),

where || - || denotes the sup-norm and || - ||; is the norm in L' (R9). The choice of CL({R%)
allows us to show that the family of random variables (3) with f € CL(RY) have finite
expectations P-a.s.

Theorem 1. Let f € CL(RY) and x € B be given and consider ggBm By, with da > 2 and

1 < & < 2. Then, the perpetual integral functional [ f(x+ B(t))dt is finite P-a.s. and its
expectation equals

e _p[ faiw

E[/(-] Flx+Bga(t)) di‘} = D‘ ot Ty dy, (16)
where ( !
— o e o fd INT(1—¢

D= oiped) =2 (5 2)Rish "
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Proof. Given that x € R? and f € CL(R?) are non-negative, let pg (-, t*) denote the density
of Bg(t), t >0, which is given by (see (9) with n = 1)

1 © g .
Plﬁ(y;fﬂ} = W A T H,Z(:‘ 2f“TMIﬁ(T} dr, ye R{.

First, we show equality (16). It follows from the above considerations that

E[/ / “‘”Mﬂ?df] = [ [ fx=vestu ) vt
m 1 i W
- /(-1 wa(x+y}mﬂ] T UZMﬁ(T}f’ == drdydt.

Using Fubini’s Theorem, we first compute the t-integral and use the assumption da > 2.

We obtain .

T &

[m U g = Claa)
Jo | o T yld -2

e
2rtier)ds2

where p
1 d 1

Cla,d) := =27 Veg=ir( =2 - 2 ).

(a,d) o T (2 :x}

Next, we compute the T-integral using (7) so that

/ r‘”"‘Mﬁ(r}dr = -z x> 1
Jo (1

-8
1
Combining them gives the equality (16) where D = D(B, a, d) = C(a, d}H
)

Now, we show that the right-hand side of (16) is finite for every non-negative f € CL(R).
To see this, we can use the local integrability of |y|Y~2/* in y and obtain
flxty) / flxty) fxty)
———dy = ———=d ———d
oo P Y Sy e Y Sy e Y
Cillflle + Gllfll < Cliflle-

Therefore, the integral in (16) is, in fact, well defined. In other words, the integral jaw f (1‘ +
B (1)) dt exists with probability one. This completes the proof. [

1A

As a consequence of the above theorem, we immediately obtain the Green measure of
ggBm Blﬁ’ﬂ, that is, comparing (2) and (16).

Corollary 1. The Green measure of ggBm By, for da > 2 is given by

. D
Gpalx,dy) = PR dy,

where D is given by (17).

Remark 1.

1. It is possible to show that, given f # 0, the perpetual integral (3) is a non-constant random
variable. As a consequence, for f > 0 the variance of the random variable (3) is strictly
positive. The proof uses the notion of conditional full support of ggBm. We do not provide a
detailed explanation of this result that closely follows the ideas of Theorem 2.2 in [4], to which
we address interested readers.
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2. Note also that the functional in (1),
Vga(-,x) : CL(RY) — R
is continuous. In fact, from the proof of Theorem 1, any f € CL(R?) yields

IVea(f %) < K||f

where K is a constant depending on the parameters B, «, and d.

CL-

4. Discussion and Conclusions

We derived the Green measure for the class of stochastic processes called generalized
grey Brownian motion in Euclidean space R? for d > 2. This class includes, in particular,
fractional Brownian motion and other non-Gaussian processes. To address the case where
d = 1, a renormalization process is needed. However, this will be postponed to future
work. For f = a = 1 ggBm, By ; is nothing but a Brownian motion. In this case, the Green
measure exists for d > 3. Green measures and Green functions are well known to be
intrinsically connected and applied to (stochastic partial) differential equations. In this
context, the Green measures discussed in this paper play the same role for space-time-
fractional derivatives. The presented method can be applied to other processes with
sufficient information on the density and existence of the integrals. 1f we consider a
Markov process X that admits a Green measure and T, a random time change given by an
inverse subordinator, then the Green measure of the subordinated process X(T(t)), ¢t = 0
exists only after renormalization. Mixing different types of processes, e.g., fBm and scaled
Bm, as described in [15], or Markovian and non-Markovian, as in [16], may lead us to a
renormalization procedure to guarantee the existence of the Green measure.

The relationship between the Green measure and the local time of the ggBm can be
described as follows. For any T > 0 and a continuous function f : Y — R, the integral
functional

[ Bt a )

is well defined. For d = 1, the integral (18) with f € L}(R) is represented as

T
| FBoa®)dt = [ fx)Lpa(T,x)dx,

where LI(;’“ (T, x) is the local time of ggBm up to time T at the point x (see [3]). The Green
measure corresponds to the asymptotic behaviour in T of the expectation of local time
Lg. (T, x). The existence of this asymptotic depends on the dimension d and the transient
or recurrent properties in the process.
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