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ABSTRACT 
Processing data for specific purposes requires an understanding of the data itself. 
A special investigation is needed to understand the data. Liquid Chromatography-
Mass Spectrometry data are the results of material sample examination, which, in 
this case, was the sample of Rodent Tuber plants. The data need to be examined 
and understood whether they are timeseries or not, which is important for further 
processing. In this paper, we examined the data visually with graphs extracted 
from the data by human eyes and examination using the Augmented Dickey Fuller 
Test conducted by python programming with its library. From human eyes visual 
observations and computation using ADF Test, it can be concluded that Liquid 
Chromatography-Mass Spectrometry data are stationary timeseries. 
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INTRODUCTION 
Liquid Chromatography-Mass Spectrometry (LCMS) is a 
technology for physical separation of thousands of more-
comprehensive metabolites [1]–[6] because of its wide 
scope and high sensitivity to recognize chemical 
compounds in a sample of plant [7], [8]. 
Analyzing the plants using LCMS is essential since plant 
biochemistry is very rich and they have many semipolar 
compounds, including the main secondary metabolite 
groups, which can be separated and detected by LCMS [9]. 
LCMS signals provide information about the mass/charge 
ratio (m/z) of ionized molecules or fragments of molecules 
with their retention times. They need to be mapped into 
metabolites form to understand the produced biochemical 
processes. The mapping process is still an interpretation 
and it is complex for it requires an efficient and accurate 
identification. If it is done manually, it will take a lot of time 
[8], [10], [11]. This is a barrier in LCMS-based studies [7]. 
Thus, computing and algorithms are needed in order to 
simplify and speed up the analysis and interpretation of 
LC-MS data to extract the existing information [12]. 
Processing the LCMS data, whether it is done manually or 
computationally by using certain algorithms, depends on 
how the researcher understands the data itself; while 
understanding the data is not an easy process as it 
requires a lot of time, even for researchers in the domain 
of their own disciplines [13]. 
This paper is the product of the researchers’ 
understanding of the LCMS dataset obtained from the 
studies of Rodent Tuber plants [14]–[21].The dataset has 
a Retention Time feature. Thus, based on the definition of 
time series by Shumway et. al, which defines time series as 
a collection of random variables obtained in time order 
[22], the dataset can be concluded as time series. We are 
not yet convinced of this conclusion, although LCMS data 
analysis software provide the features for time series data 
analysis [23], [24], [25].  This paper provides the visual 
and computational evidence, which show that the dataset 
is considered as time series. This is important for further 
processing even to initiate pre-processing. 

Basic Principles of Liquid Chromatography-Mass 
Spectrometer (LC-MS) 
Separating components in a mixture in which they are 
selectively distributed between two phases which are not 
amalgamated: the mobile phase through the stationary 
phase is a method called Chromatography [26]. The 
mobile phase is described as "fluid that seeps through or 
along a heap of stationary phases in a fixed direction". The 
fluid can be liquid, gas or supercritical fluid, while the 
stationary phase can be solid, gel or liquid. If the stationary 
phase is a liquid, it can be distributed to solids, which may 
not contribute to the separation process [27]. It is called 
Liquid Chromatography (LC) since the mobile phase is 
liquid to transport sample molecules through the 
stationary phase  [12], [23]. The Chromatography process 
occurs as a result of repetitive absorption or discharge 
during the process of analyte’s movement pass through 
the stationary phase. The differences in the distribution 
coefficients of each analyte in the sample causes 
separation  [23]. Liquid Chromatography is a basic 
separation technique in chemistry and related natural 
sciences and a universal technique used for separating 
compounds from mixtures [28]. It separates various 
organic compounds safely, from tiny molecules of drug 
metabolites to peptides and proteins [29]. Commonly, 
recent Liquid Chromatography utilize the High 
Performance Liquid Chromatography (HPLC) instrument 
[30]. HPLC facilitates the analysis of chemical compounds 
with higher polarity and lower volatility in a wider range 
of mass without derivatization [31].  
It is difficult on Liquid Chromatography to make sure 
specific compounds at a peak, even if there is only one 
compound in the sample. Mass spectrometry needs to be 
added as it will provide information at the peak about the 
mass of all compounds so it can be used to identify the 
compounds [30]. Mass Spectrometry is based on ions 
analysis that budge through a vacuum. This produces a 
mass spectrum, which informs about molecular weight, 
structure, identity, number, and purity of the sample. This 
is valuable information that can be utilized to help identify 
compounds [30], [32]. 
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Figure 1: Diagram of LC-MS instrument with quadrupole for 
mass analyzer [32] 

 
Figure 2:  3D Visualization LC-MS data [33] 

 
 
Mass Spectrometers usually consist of three main parts: 
ion source, mass analyzer, and detector. During the 
process of converting sample molecules into ions, the 
mass analyzer separates them, in an electromagnetic field 
and/or in a tube while floating in the air before being 
measured by the detector. There are available some 
options for ion sources, which are Electrospray Ionization 
(ESI), Atmospheric Pressure Chemical Ionization (APCI), 
Atmospheric Pressure Photoionization (APPI), and Fast 
Atomic Bombardment (FAB). Mass analyzers can be 
categorized into quadrupoles, ion traps, Time-Of-Flight 
(TOF), Orbitrap, and Fourier Transform Ion Cyclotron 
(FTICR) [34]. The simplest and cheapest mass analyzer 
tend to Quadrupoles [29]. Mass Spectrometry technology 
enables development of simultaneous quantification of 
low and high molecular weight analytes in various 
concentrations and it is flexible and reliable method [28]. 
Briefly, Mass Spectrometry is utilized to measure ratio of 
mass to charge of charged particles namely mass-to-
charge (m/z) ratio [30]. 
Liquid Chromatography combine with Mass Spectrometry 
(LC-MS) facilitates quantitative determination of 
compounds and more definite identification [27]. Figure 1 

shows LC-MS device’s general overview diagram with 
quadrupole. Output of the LC-MS instrument is a scattered 
3D signal with features namely m/z, retention time, and 
intensity for each feature detected in peak [12] as shown 
in Figure 2. 
Typhonium Flagelliforme (Rodent Tuber) 
Typhonium Flagelliforme, known as Rodent Tuber has 
been recognized as a potent medicinal herb from the 
family Araceae (Arum) [35]–[37]. Southeast Asian 
countries, including India and China, utilize this plant for 
years as alternative cancer therapy. Typhonium 
Flagelliforme is a potential health supplement for 
treatment lung, breast, rectum, liver, prostate, cervical and 
pancreatic cancer and leukemia [37]–[43]. 
Characteristics of this plant can be seen on its leaves. 
Typhonium Flagelliforme leaves vary greatly, from 
elliptical to ovoid, heart-shaped or arrow-like with 30 cm 
long petioles. The height of the plant can reach 30 cm with 
whitish and oval tubers [36], [37] as shown in figure 3. 
This plant is very beneficial and has been used as local 
wisdoms. However, there is not much information related 
to its existing chemical compounds. 

 

 
 

Figure 3: Typhonium Flagelliforme plant [17]  
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MATERIALS AND METHOD 
Data Colelction 
The data of the study were obtained from research [14]–
[21]. Those researches produce 10 datasets from outputs 
of LCMS instrument. These datasets are in form of raw data 
proprietary, that the information is important and crucial, 
which only can be read by the instrument that produced 
them. In a computer operating system, this proprietary 

dataset is read as folders with several files that can be read 
by a text processing application although the important 
and crucial data still cannot be read. 
These datasets need to be converted into .xlsx files so that 
they can be read by human and it becomes easier to 
analyze. There are two stages of doing this, which are (1) 
conversion of the raw data to open format, and (2) 
conversion of the open format to .xlsx. 

 

 
Figure 4: Data Collection Flowchart 

 
The conversion to open format utilized open source 
namely Proteowizard version 3 for Windows, which is 
developed by Chambers, et.al. [44]. The ten raw datasets 
were successfully converted to. mzXML format. Here are 
names of the files U-BM 8-1_170818_4. mzXML, U-BM 8-
2_170818_5. mzXML, U-BM 8-3_170818_11.mzXML, U-BM 
8-5_170818_6.mzXML, U-BM 8-8_170818_7.mzXML, U-
KB_170818_8.mzXML, U-KB + KP_170818_9.mzXML, U-
PM 8-2_170818_1.mzXML, U-PM 8-3_170818_2.mzXML, 
U-PM 8-4_170818_3.mzXML. All datasets, which are in the 

.mzXML open format, then were converted to .xlsx file 
using the Python language by pyopenms library, which is 
developed by Rost et.al. [45]. Flowchart of this data 
collection can be seen in Figure 4. 
The conversion this dataset is used to get the data 
representation in matrix form with dimensions m/z, 
intensity, and retention time. This 3D matrix 
representation is often used for LC-MS data processing 
[31].  

 

 
Figure 5: 3D visualization of U-BM 8-1_170818_4 dataset 

 
 
Dataset Characteristics dan Visualization 
All datasets that have been converted to .xlsx are processed using Python to obtain their features. All datasets are matrices 
with 3 columns, namely m/z, intensity, and retention time. 
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Figure 6a: m/z vs. Retention Time visualization of U-BM 8-1_170818_4 dataset Figure 6b: Intensity vs. Retention Time visualization of U-BM 8-1_170818_4 dataset 

 

 
Figure 6c: Intensity vs. m/z visualization of U-BM 8-1_170818_4 dataset 

 
The Retention Time column contains times that have 
periods with start on 5,022 seconds and a final on 2401 
seconds. One time period is 5,022 seconds; so, there are 
478 periods. A period has many m/z values with different 
intensities, so one period has a lot of Retention Time 
duplication. One Retention Time, for example 5.022 has 
1224 duplication. For that reason, one period of Retention 
Time must be made single. Processing of Retention Time 
to be single is carried out by utilizing pivoting techniques 
which are done using Python. The Intensity column 
contains long integer numbers that describe the existing 
peaks; while the m/z column is the mass of the molecules 
present in one sample of the plant being tested. This paper 

only presents one dataset as discussion material, namely 
U-BM dataset 8-1_170818_4.xlsx because all existing 
datasets have the same features which are Retention Time, 
m/z, and Intensity. There is only the number of rows that 
are different. Dataset selection for this discussion is done 
randomly, which means that there are no specific criteria. 
U-BM 8-1_170818_4.xlsx has 752,365 lines. To make it 
easier to understand this dataset, a visualization is needed. 
The visualization of the data is essential to understand and 
explore the data since it can explain the structure of the 
data and the existing patterns, as well as a form of data 
communication to a wide audience [24], [33]. Figure 5 is 
the data visualization from the existing features. 

  
Figure 7a: Pivoted m/z vs. Retention Time visualization of U-BM 8-

1_170818_4 dataset 
Figure 7b: Pivoted Intensity vs. Retention Time visualization of U-BM 8-

1_170818_4 dataset 
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Besides the data visualization shown in Figure 5., 2D 
visualization with m/z vs. Retention Time, Intensity vs. 
Retention Time, and Intensity vs. m/z are done as shown 
in Figure 6a., Figure 6b., Figure 6c. Figure 6a. shows that, 
from the beginning, during a period of Retention Time, 
many molecular masses were detected. Almost all periods 
have m/z from small to large so that the graph becomes 
full and difficult to analyze and understand. In Figure 6b, 
there is a high intensity at a certain Retention Time. The 
highest intensity was 98,656,256 at Retention Time in 
1029.71 seconds. In figure 6b, the intensity is high at 
98,656,256 for m/z 348,2371826171875. These numbers 
are obtained from the dataset extraction using Python. 

RESULTS AND ANALYSIS  
To facilitate visual analysis, graphics with Retention Time 
feature will be processed further, since they will be 
analyzed as timeseries or not. We can see that, from Figure 
6a. and 6b., the Retention Time feature has a lot of 
duplication dipivoted to be single by calculating the mean 
of the value of other features. The results are shown in 
Figure 7a. and 7b. In Figure 7a. and 7b. shows that data in 
this dataset were obtained over time.  So, the dataset is 
timeseries based on the definitions from Shumway et. al. 
[22]. 

 
  

                    
Figure 8a: ADF Test result for m/z Figure 8b: ADF Test result for intensity 

 
To make sure that the dataset is timeseries, we utilized the 
Augmented Dickey Fuller (ADF) Test to see whether the 
timeseries are stationary or not. The ADF test was done in 
Python by using statsmodels.tsa.stattools.adfuller library 
[46]. The tested features were m/z and intensity. The time 
needed for the ADF test using this library was about 25 
minutes with a 2.8 GHz i7 processor and 16GB RAM. The 
ADF test result shows that both stationaries are timeseries 
and they are shown in Figure 8a. and 8b. 
 
CONCLUSION 
In this paper, we have described a set of visualizations and 
Augmented Dickey Fuller Test results for U-BM 8-
1_170818_4 dataset which is dataset from LC-MS process of 
Rodent Tuber plant. After observing and visually analyzing 
dataset by human eyes, and also after seeing the results of 
ADF test, it is concluded that the dataset examined in this 
study is a timeseries with stationary. It makes sure 
researchers that the LCMS data is time series data. Thus, 
for further processing, it is better to use algorithms 
intended for timeseries data. 
 
REFERENCES  
1. I. Blaženović, T. Kind, J. Ji, and O. Fiehn, “Software 

tools and approaches for compound identification of 
LC-MS/MS data in metabolomics,” Metabolites, vol. 8, 
no. 2, 2018, doi: 10.3390/metabo8020031. 

2. M. Katajamaa, J. Miettinen, and M. Orešič, “MZmine: 
Toolbox for processing and visualization of mass 
spectrometry based molecular profile data,” 
Bioinformatics, vol. 22, no. 5, pp. 634–636, 2006, doi: 
10.1093/bioinformatics/btk039. 

3. S. Y. Lee et al., “Comparison of GC/MS and LC/MS 
methods for the analysis of propofol and its 
metabolites in urine,” J. Chromatogr. B Anal. Technol. 
Biomed. Life Sci., vol. 900, pp. 1–10, 2012, doi: 
10.1016/j.jchromb.2012.05.011. 

4. E. R. Perez, J. A. Knapp, C. K. Horn, S. L. Stillman, J. E. 
Evans, and D. P. Arfsten, “Comparison of LC-MS-MS 
and GC-MS analysis of benzodiazepine compounds 

included in the drug demand reduction urinalysis 
program,” J. Anal. Toxicol., vol. 40, no. 3, pp. 201–207, 
2016, doi: 10.1093/jat/bkv140. 

5. B. Rushing, A. Wooten, M. Shawky, and M. I. Selim, 
“Comparison of LC – MS and GC – MS for the Analysis 
of Pharmaceuticals and Personal Care Products in 
Surface Water and Treated Wastewaters,” Curr. 
Trends Mass Spectrom., no. July, pp. 14–17, 2016. 

6. A. Zhang, H. Sun, P. Wang, Y. Han, and X. Wang, 
“Modern analytical techniques in metabolomics 
analysis,” Analyst, vol. 137, no. 2, pp. 293–300, 2012, 
doi: 10.1039/c1an15605e. 

7. B. Zhou, “Computational Analysis of LC-MS/MS Data 
For Metabolite Identification,” Virginia Polytechnic 
Institute and State University, 2012. 

8. A. Vaniya and O. Fiehn, “Using fragmentation trees 
and mass spectral trees for identifying unknown 
compounds in metabolomics,” TrAC - Trends Anal. 
Chem., vol. 69, pp. 52–61, 2015, doi: 
10.1016/j.trac.2015.04.002. 

9. R. C. H. De Vos, S. Moco, A. Lommen, J. J. B. Keurentjes, 
R. J. Bino, and R. D. Hall, “Untargeted large-scale plant 
metabolomics using liquid chromatography coupled 
to mass spectrometry,” Nat. Protoc., vol. 2, no. 4, pp. 
778–791, 2007, doi: 10.1038/nprot.2007.95. 

10. R. J. M. Weber et al., “Computational tools and 
workflows in metabolomics: An international survey 
highlights the opportunity for harmonisation through 
Galaxy,” Metabolomics, vol. 13, no. 12, pp. 1–5, 2017, 
doi: 10.1007/s11306-016-1147-x. 

11. P. J. Ulintz, J. Zhu, Z. S. Qin, and P. C. Andrews, 
“Improved Classification of Mass Spectrometry 
Database Search Results Using Newer Machine 
Learning Approaches,” Mol. Cell. Proteomics, vol. 5, no. 
3, pp. 497–509, 2006, doi: 10.1074/mcp.M500233-
MCP200. 
 



Binanto et al. /Understanding LCMS Data for Identification of Chemical Compounds Contained in Rodent Tuber: Timeseries or 
Not 

 

653                                                                     Systematic Reviews in Pharmacy                                 Vol 12, Issue 1, January 2021 

12. F. Fernández-Albert, “Machine Learning Methods for 
the Analysis of Liquid Chromatography-Mass 
Spectrometry datasets in Metabolomics,” 
UNIVERSITAT POLIT` ECNICA DE CATALUNYA, 2014. 

13. L. Koesten, K. Gregory, P. Groth, and E. Simperl, 
“Talking datasets: Understanding data sensemaking 
behaviours,” arXiv:1911.09041v3 [cs.HC], pp. 1–26, 
2020, [Online]. Available: 
http://arxiv.org/abs/1911.09041. 

14. D. Laurent, N. F. Sianipar, Chelen, Listiarini, and A. 
Wantho, “Analysis of Genetic Diversity of Indonesia 
Rodent Tuber (Typhonium flagelliforme Lodd.) 
Cultivars Based on RAPD Marker),” in The 3rd 
International Conference on Biological Science 2013 
(The 3rd ICBS-2013), 2015, vol. 2, pp. 139–145. 

15. N. F. Sianipar, W. Maarisit, and A. Valencia, “Toxic 
Activities Of Hexane Extract And Column 
Chromatography Fractions Of Rudent Tuber Plant 
(Typhonium Flagelliforme Lodd.) On Artemia Salina,” 
Indones. J. Agric. Sci., vol. 14, no. 1, pp. 1–6, 2013. 

16. N. F. Sianipar and R. Purnamaningsih, “Enhancement 
of the Contents of Anticancer Bioactive Compounds in 
Mutant Clones of Rodent Tuber ( Typhonium 
flagelliforme Lodd .) based on GC-MS Analysis,” 
Pertanika J. Trop. Agric. Sci., vol. 41, no. 1, pp. 305–
320, 2018. 

17. R. Purnamaningsih and N. F. Sianipar, “Analysis Of 
Bioactive Compounds And Morphological Traits In 
Indonesian Rodent Tuber Mutant Clones Of 
Pekalongan Accession Using GC-MS,” J. Teknol., vol. 
80, no. 2, pp. 131–136, 2018. 

18. N. F. Sianipar, Ariandana, and W. Maarisit, “Detection 
of Gamma-Irradiated Mutant of Rodent Tuber ( 
Typhonium flagelliforme Lodd) In Vitro Culture by 
RAPD Molecular Marker,” Procedia Chem., vol. 14, pp. 
285–294, 2015, doi: 10.1016/j.proche.2015.03.040. 

19. N. F. Sianipar, D. Laurent, R. Purnamaningsih, and I. 
Darwati, “Genetic Variation of the First Generation of 
Rodent Tuber ( Typhonium flagelliforme Lodd .) 
Mutants Based on RAPD Molecular Markers,” HAYATI 
J. Biosci., vol. 22, no. 2, pp. 98–104, 2015, doi: 
10.4308/hjb.22.2.98. 

20. N. F. Sianipar, R. Purnamaningsih, D. L. Gumanti, 
Rosaria, and M. Vidianti, “Analysis Of Gamma 
Irradiated Fourth Generation Mutant Of Rodent 
Tuber (Typhonium Flagelliforme Lodd.) Based On 
Morphology And RAPD Markers,” J. Teknol., vol. 78, 
no. 5–6, pp. 41–49, 2016. 

21. N. F. Sianipar, R. Purnamaningsih, and Rosaria, 
“Bioactive compounds of fourth generation gamma-
irradiated Typhoniumflagelliforme Lodd . mutants 
based on gas chromatography-mass spectrometry,” 
2016, doi: 10.1088/1755-1315/41/1/012025. 

22. R. H. Shumway and D. S. Stoffer, Time Series Analysis 
and Its Applications With R Examples, 3rd ed. Springer 
Science+Business Media New, 2011. 

23. J. Xia, N. Psychogios, N. Young, and D. S. Wishart, 
“MetaboAnalyst: A web server for metabolomic data 

analysis and interpretation,” Nucleic Acids Res., vol. 
37, no. SUPPL. 2, pp. 652–660, 2009, doi: 
10.1093/nar/gkp356. 

24. J. Xia, R. Mandal, I. V. Sinelnikov, D. Broadhurst, and D. 
S. Wishart, “MetaboAnalyst 2.0-a comprehensive 
server for metabolomic data analysis,” Nucleic Acids 
Res., vol. 40, no. W1, pp. 127–133, 2012, doi: 
10.1093/nar/gks374. 

25. J. Xia, I. V. Sinelnikov, B. Han, and D. S. Wishart, 
“MetaboAnalyst 3.0-making metabolomics more 
meaningful,” Nucleic Acids Res., vol. 43, no. W1, pp. 
W251–W257, 2015, doi: 10.1093/nar/gkv380. 

26. W. M. A. Niessen, Liquid chromatography-mass 
spectrometry Third Edition. 2006. 

27. R. E. Ardrey, Liquid Chromatography –Mass 
Spectrometry: An Introduction. 2003. 

28. M. Ludovici, C. Ialongo, and E. Camera, “Principles, 
current applications, and future perspectives of liquid 
chromatography-mass spectrometry in clinical 
chemistry,” in Liquid Chromatography: Applications: 
Second Edition, Second Edi., vol. 2, Elsevier Inc., 2017, 
pp. 727–751. 

29. Hewlett Packard, Basics of LC/MS. 2001. 
30. P. R. Kumar, S. R. Dinesh, and R. Rini, “Lcms- A Review 

and a Recent Update,” J. Pharm. Pharm. Sci., vol. 5, no. 
5, pp. 377–391, 2016, doi: 10.20959/wjpps20165-
6656. 

31. R. Tautenhahn, C. Bottcher, and S. Neumann, “Highly 
sensitive feature detection for high resolution 
LC/MS,” BMC Bioinformatics, vol. 9, no. 504, pp. 1–16, 
2008, doi: 10.1186/1471-2105-9-504. 

32. Agilent Technologies Inc., Agilent 6100 Series 
Quadrupole LC / MS Systems. 2010. 

33. L. Gatto, L. M. Breckels, T. Naake, and S. Gibb, 
“Visualization of proteomics data using R and 
Bioconductor,” Proteomics, vol. 15, no. 8, pp. 1375–
1389, 2015, doi: 10.1002/pmic.201400392. 

34. B. Zhou, J. F. Xiao, L. Tuli, and H. W. Ressom, “LC-MS-
based metabolomics,” Mol. Biosyst., vol. 8, no. 2, pp. 
470–481, 2012, doi: 10.1039/C1MB05350G. 

35. D. H. Nicolson and M. Sivadasan, “Four frequently 
confused species of Typhonium Schott (Araceae),” 
Blumea J. plant Taxon. plant Geogr., vol. 27, no. 2, pp. 
483–497, 1981. 

36. N. I. Rezali, N. Jaafar Sidik, A. Saleh, N. I. Osman, and N. 
A. Mohd Adam, “The effects of different strength of MS 
media in solid and liquid media on in vitro growth of 
Typhonium flagelliforme,” Asian Pac. J. Trop. Biomed., 
vol. 7, no. 2, pp. 151–156, 2017, doi: 
10.1016/j.apjtb.2016.11.019. 

37. M. Singh, D. Kumar, D. Sharma, and G. Singh, 
“Typhonium Flagelliforme: a Multipurpose Plant,” Int. 
Res. J. Pharm., vol. 4, no. 3, pp. 45–48, 2013, doi: 
10.7897/2230-8407.04308. 

38. C. Y. Choo, K. L. Chan, K. Takeya, and H. Itokawa, 
“Cytotoxic activity of Typhonium flagelliforme 
(Araceae),” Phyther. Res., vol. 15, no. 3, pp. 260–262, 
2001, doi: 10.1002/ptr.717. 



Binanto et al. /Understanding LCMS Data for Identification of Chemical Compounds Contained in Rodent Tuber: Timeseries or 
Not 

 

654                                                                     Systematic Reviews in Pharmacy                                 Vol 12, Issue 1, January 2021 

39. S. T. Gopukumar, P. Alexander, T. K. S. Fathima, R. 
Jeniffa, and P. K. Praseetha, “Typhonium Divaricatum : 
a Promising Endangered Anti-Cancer,” Med. Plants 
Their Conserv. Manag., no. July, pp. 114–119, 2015. 

40. C. K. Neoh, “Typhonium divaricatum (rodent tuber): A 
promising local plant in the fight against cancer,” Med. 
J. Malaysia, vol. 47, no. 1, pp. 86–88, 1992. 

41. S. Mohan, A. Bustaman, S. Ibrahim, A. S. Al-Zubairi, and 
M. Aspollah, “Anticancerous Effect of Typhonium 
flagelliforme on Human T-Lymphoblastoid Cell Line 
CEM-ss,” J. Pharmacol. Toxicol., vol. 3, no. 6, pp. 449–
456, 2008, doi: 10.3923/jpt.2008.449.456. 

42. A. Bustamam et al., “In vitro ultramorphological 
assessment of apoptosis on CEMss induced by linoleic 
acid-rich fraction from Typhonium flagelliforme 
tuber,” Evidence-based Complement. Altern. Med., vol. 
2011, 2011, doi: 10.1093/ecam/neq010. 

43. S. Mohan et al., “Typhonium flagelliforme inhibits the 
proliferation of murine leukemia WEHI-3 cells in vitro 
and induces apoptosis in vivo,” Leuk. Res., vol. 34, no. 
11, pp. 1483–1492, 2010, doi: 
10.1016/j.leukres.2010.04.023. 

44. M. C. Chambers et al., “A cross-platform toolkit for 
mass spectrometry and proteomics,” Nat. Biotechnol., 
vol. 30, no. 10, pp. 918–920, 2012, doi: 
10.1038/nbt.2377. 

45. H. L. Röst et al., “OpenMS: A flexible open-source 
software platform for mass spectrometry data 
analysis,” Nat. Methods, vol. 13, no. 9, pp. 741–748, 
2016, doi: 10.1038/nmeth.3959. 

46. J. Perktold, S. Seabold, and J. Taylor, 
“statsmodels.tsa.stattools.adfuller — statsmodels,” 
https://www.statsmodels.org/, 2020. 
https://www.statsmodels.org/devel/generated/stat
smodels.tsa.stattools.adfuller.html#statsmodels.tsa.s
tattools.adfuller (accessed Aug. 01, 2020). 

 
 


