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Native and artificial extracellular matrices (ECMs) have been widely applied in biomedical fields as!vz of the most effective
components in tisste regeneration. In particular, ECM-based drugs are expected to be applied to treat diseases in organs rele-
vant to urology, because tissue regeneration is particularly important for preventing the recurrence of these diseases. Native
ECMSs provide a complex in vivo architecture and native physical and mechanical properties that support high biocompatibili-
ty. However, the applications of native ECMs are limited due to their tissue-specificity and chemical complexity. Artificial
ECMs have been fabricated in an attempt to create a broadly applicable scaffold by using controllable components and a uni-
form formulation. On the other hands, artificial ECMs fail to mimic the properties of a native ECI
cations in tissues are also limited. For that reason, the design of a versatile, hybrid ECM that can be
ous tissues is an emerging area of interest in the biomedical field.
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versally applied to vari-

INTRODUCTION

The extracellular matpee FCM) in animal cells is a vital extra-
cellular scaffold that Eﬂmpused of various protein compo-
nents, such as fibronectin, laminin, collagen, proteoglycans, and
soluble molecules [1]. The constituent macromolecules of

ECM have structural and chemical properties that are func-
tionally suited to their native functions in their respective tis-
sues [2]. These multimolecular structures are interconnected
with each other and build a complex 3-dimensional (3D) ma-

trix network [3]. The%d is a dynamic network that provides
support and biomechanical cues to cells and is in in sig-

naling, homeostasis, differentiation, migration, and irof a
wvariety of tissues [4,5]. Both in physiological conditions and dur-

ing disease development, the processes, structures, and proper-

ties of ECMs are remodeled in multiple ways [3,6,7].

Based on their source, ECMs can be classified as native ECMs,
which are isolated from cells, tissues, or organs, and artificial
ECMs, which are fabricated by mimicking the natural process of
fibrillogenesis. In recent years, numerous studies on the role of
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native ECMs in biomedicine have been published, showing that
native ECMs suppaort 3D tissue culturing, promote wound heal-
ing, trigger stem cell differentiation, and have applications as
drug screening tools. In particular, ECMs are expected to be ap-
plied to urology-related organs (Le, the kidneys, adrenal glands,
and reproductive organs) [7-14). Native ECMs trigger stem cell
differentiation and wound healing by seeding specific cells onto
native tissues or cells {15—1@ advantages of native ECMs lie
in their ability to provide the necessary environmental cues to
stimulate cell-based repair pathways and to promote adaptive re-
modeling toward functional recovery [18]. In addition, native
ECMs can also be used as drug screening tools that support re-
search into the molecular mechanisms of cancer cells by clinical-
ly and naturally mimicking the tumors’ microenvironments. Na-
tive ECMs have many applications because of their high biocom-
patibility, ability to replicate complex in vive architectures, and
native physical and mechanical properties. Nonetheless, the ap-
plications of native ECMs remain limited due to their tissue-
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specificity, multiple and heterogeneous components, and com-
plex nonuniform structure [8,19-21]. The qualitative and quanti-
tative chemical composition of a native ECM determines its vis-
coelastic character, mechanical properties, and native function
[22,23]. Current studies are emphasizing the synthesis of scaf-
folds that mimic the chemical complexity and architecture of na-
tive ECMSs in efforts to overcome their limitations.

In previous studies, artificial scaffolds were successfully fabri-
cated by adopting the processes of fibrillogenesis and morpho-
genesis that occur in the human body [7,24,25]. Current artifi-
cial ECMs that mimg ive ECMs are composed of artificial
polymers or selected components, such as elastin, co ,lam-
inin, and fibronectin. Such artificial scaffolds have a range
of applications due to the controllability of their components,
the useful properties of their various components, and their uni-
form formulations. However, artificial ECMs often have the dis-
advantage of failing to have the highly variable biochemical
properties and architecture of the native ECM of each tissue.

Advantages

- Reliable high biocompatibility

- Replicat ion of comples in wivo architectures

- Biological native physical- mechanical properties

Stem cdl differentiation

Native architecture

———
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Fig. 1. Hybrid extracellular matrix (ECM }-architecture for next-generation tissue engineering, The hybrid ECM, which can be broad-
ly applied to all tissues and organs, is a strategy for adopting the advantages of native ECMs and artificial ECMs.
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The simple architectures of artificial ECMs cause limited bio-
compatibility in tissue applications (Fig. 1). The challenges in
achieving the high variability of native ECM for specific tissues
have led to efforts to develop hybrid ECM architectures that can
be applied to all tissues and organs. However, the lack of re-
search characterizing the chemical complexity and components
of the native ECM in each tissue has limited the development of
hybrid ECMs. In this review, in order to highlight the crucial
components for hybrid ECMs, we focus on the main differences
between native and artificial ECMs in terms of chemical com-
plexity, structure, synthesis, and purification. Although studies
have yet to be conducted with the goal of designing versatile,
hybrid ECM architectures, we are confident that attempis at re-
search in this area will be made in the near future.

6]
NATIVE AND ARTIFICIAL ECMs AND THEIR
APPLICATIONS IN TISSUE ENGINEERING

Chemical Complexity and Tissue Variation of Native ECM
Native ECM representgmabiomaterial scaffold that is generated
from tissues or typical such as fibroblasts, endothelial cells,
keratinocytes, and mesenchymal stem celks, and is then purified.
Recently, some studies have reported that both cancer cell lines
and s 1 cells deposited ECMs. The major constituents are fi-
brous proteins, such as collagen, fibronectin, laminin, and elas-
tin, and nenfibrous proteins, such as proteoglycans and glycos-
aminoglycans, which are connected to each other to build a
complex 3D matrix network [3.26]. Even though these compo-
nents form the basic structure of native ECMs, the proportion of
each component varies considerably across tissue types and can
change considerably due to pathological conditions. In particu-
lar, ghins]mthesis and structure of collagen are modified dur-
ing ing of the ECM in several pathologies, including tu-
morigenesis. A further example of variability is furnished by the
distribution of laminin isoforms, which vary greatly from tissue
to tissue, suggesting that laminin has tissue-specific functions [8].
The ECM forms a tissue or an organ that has an enormous di-
il*,- of shapes and functions. Cell- and tissue-dgmved ECMs
are present in various tissues in the human body, such as skin,
car bones, teeth, and the extracellular space. More specifi-
cally, the structure, viscoelastic character, mechanical properties,
and native functionality of an ECM are determined by its chemi-
cal complexity [22,23]. An ECM derived from a specific tissue,
however, consists of a large variety of macromolecules, with not
only a precise tissue-specific composition but also a particular

S68 www.einjorg

architecture. Therefore, it is important to summarize and com-
pare the chemical complexities of and variations in the ECM g
many different tissues. For example, as described in Table 1,
ECM of adipose tissue is mainly composed of collagen IV, while
the ECMs of bone and teeth tissues are composed of calcified
ECM compounds (Table 1). Collagen IV is specific to the ECM
of human adipocytes, which controls the pathology of obesity-
related diseases [27]. The ratio between elastin and collagen in
the ECM derived from human adipocyte tissue determines its
biomechanical properties [28]. Bones and teeth are composed of
calcified ECM (Table 1), which undergo mineralization to sup-
port the structure. In contrast, the ECM in ligaments or tendons
is mostly composed of collagen (75%-85% of dry tissue weight).
Collagen forms a fibrous architecture that confers outstanding
mechanical strength to tendons. Furthermore, collagen has been
found to be the most ab chemical in the ECM derived
from human skin. Collagen d I11 are major components of
the interstitial matrix, while collagen IV is the major component
of the basement membrane. A defect in Abrillogenesis can lead
to abnormal collagen fibers, which, in turn, alter the properties
of the skin, clinically manifesting as skin disease [29].

The chemical complexity of a native ECM also determines
the native function of the tissue. In human mesenchymal stem
cells, the ECM supports stemness and enhances cell prolifera-
tion [30]. In particular, fibronectin plays the role of a mechano-
regulator, translating the microenvironmental signals that regu-
late stem-cell differentiation [31]. In particular, fibronectin and
collagen can be utilized as valuable markers of tumor develop-
ment in urology-related organs, such as the Hadd@l,.’ﬁ].
Similarly, hyaluronan and matricellular proteins are important
constituents of metastatic niches in patients with breast cancer.
Moreover, specific ECM molecules and their receptors or enzy-
matic modifiers play important roles in therapeutic resistance
[34]. In human corneal tissue, the composition of the ECM in-
fluences fibroblast migration. Laminin-5- and laminin-10-me-
diated cell migration occurs through the binding of integrin
a3pl in corneal epithelial cells [35]. Fibronectin and chondroi-
tin sulfate significantly increase migration; however, collagens
W and V1 serve as poor substrates for cell attachment, which is
important for cell migration [35]. Dysregulation of the struc-
ture and chemical composition of the ECM leads to disease.
For instance, urinary fibronectin concentrations were found to
be significantly higher in patients with bladder cancer and lithi-
asis than in healthy individuals [36].

In the fabrication of a native ECM from cell- and tissue-de-
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rived ECMs, decellularization is an important process for re-
moving cells from the scaffold without disturbing the chemical
complexity and the mechanical structure of the matrix, includ-
ing its microstructure and stiffness. Decellularized ECM scaf-
folds have broad applications in tissue engineering, wound heal-
ing, and disease modeling [9,16,18,37-40]. The characteristics of
those decellularized ECM scaffolds, such as their good biocom-
patibility, nontoxic catabolites, and microinflammatory charac-
teristics, as well as their regenerative ability, hold great potential
for tissue engineering and wound healing [40]. The decellular-
ization of sterilized porcine bladder and urologic ECM as a ma-
terial for bladder scaffolding and lower urinary trgmireconstruc-
tion has shown promising results [41],Thcmf0re.ﬁa ial
applications in general tissue engineering. and especially in the
treatment of stress urinary incontinence [42]. Furthermore, a
decellularized ECM can favorably support 3D cell culture setups
that mimic the microenvironment of cancer, with potential ap-
plications in cancer modeling for drug screening [38].

ificial ECM as a Broadly Applicable Scaffold

ty, in the field of tissue engineering, increasing interest is
emerging in artificial ECMs for remodeling, regenerating, or re-
placing damaged tissues and organs. Artificial ECMs that are ap-
propriately prepared can physically mimic native ECMs and can
functionally support cell growth and maintain homeostasis [13].
Many different types of ECM scaffolds have been constructed us-
ing a variety of materials, ranging from tissue- and cell-derived
materials to synthetic biomaterials [9]. Artificial ECMs have
many advantages in terms of reproducibility and cost compared
to native ECMs. However, compared to tissue- or cell-derived
ECMs, artificial E@yls may not be fully biocompatible and bio-
functional [4344]. Therefore, artificial ECMs should be designed
by adopting the real chemical complexity and structure (scaffold)
of a native ECM. In nature, native ECMs are fundamentally made
by a process known fibrillogenesis, suggesting that it is possible,
in principle, to synthesize complex ECM architectures using these
biochemical reactions,

Previous studies, in fact, revealed that artificial ECMs could
be constructed using a fibrillogenesis-mimicking reaction and
could successfully support cardiomyocytes and neonatal neu-
rons [24,25]. Roy etal. [45], by directl ling the open hepa-
rin-binding fibronectin I11 fragment ( 1H) to the integrin-
binding domain (FNIII8-10), developed a fibronectin matrix
mimetic that had regulatory effects similar to those of ECM fi-
bronectin on cell function. This matrix supported cell spreading,

S70  wwweinjorg

growth, migration, and contraction through a FNIIITH-depen-
dent mechanism to a greater extent than cellular fibronectin
[46]. A sigsdlar result was reported by Dubey and Mequanint
[47], who conjugated fibronectin onto highly porous 3D poly
(carbonate) urethane scaffolds through grafted poly (acrylic
acid) spacers on the urethane backbone; this modified scaffold
promoted coronary artery smooth muscle cells better than a
scaffold without fibronectin conjugation. Adding fibronectin to
elastin-like protein also enhanced endothelial cell and mesen-
chymal stem cell compatibility through increased cell adsorp-
tion and viability [48]. Moreover, fibronectin and hydroxyapatite
coatings increased the efficiency of fibroblast attachment and
cellular activities [49]. A fibronectin-based artificial matrix was
also successfully constructed on a titanium surface using an
electro-dropping technique. This engineered matrix significant-
ly promoted preostecblast proliferation and had potential bone
regeneration applications [50]. In injured bladders, fibronectin
showed higher adherence, proving that it exerted a protective ef
fect in hybrid urologic tissue engineering applications [51,52).
The ability of fibronectin to incorporate a myri strates
and to direct cell proliferation makes it a favorable candidate for
a bioactive material in cell culture and tissue regeneration.
inin-derived peptides and laminin-peptide-conjugated
scaffolds are also considered to be promising materials for tissue
engimeering [11,30,53]. Because laminin exists in various types
of isoforms in each tissue, incorporating an integrated laminin
isoform into the scaffold has been considered as a strategy for
overcoming the variability of the artificial matrix. Incorporating
laminin into the scaffold could reduce inflammation and foster
re-epithelialization, differentiation, angiogenesis, and cell migra-
tion [54,55]. Laminin absorbed into micropattern surface poly
(L-lactic acid) nanofibers enhanced neuron viability [56]. The
coupled laminin and other chemical cues exerted synergistic ef-
fects to enhance directional neurite outgrowth. Another strategy
for producing an artificial cell-mimicking basement membrane
lor a cell-derived ECM involves isolating a number of laminin-
derived peptides and coating them with chitosan and algin
[57]. The laminin-coated scaffold improved the infiltration o
human-induced pluripotent stem cells, promoting the recovery

aﬂﬁm‘:ﬂﬁaﬂm of neurons [58,59].
lagen type Lis a componentgivat is commonly used to con-
struct ECM-mimicking scaff tissue engineering. Yuan et

al. [60] designed a scaffold of collagen type I'hydrogel that had
fewer immunogenicity effects on engineered cartilage based on
chondrocytes, thus making it a potential biomaterial for use in

Int Neurourol J 2018;22(5uppl 2).566-75




tissue engineering. Collagen-based collagen fiber anaug]ass
show good biocompatibility and promote the spread, as well as
the proliferation, of bone cells; thus, they are considered
to form an ideal scaffold for bone tissue engineering [61]. A col-
lagen-in-hydroxyapatite scaffold comple increased cell at-

tachment was reported by Villa et al. [62]. -embedded
collagen scaffolds coated with either lamjpsm or laminin and fi-
bronectin have also been reported to be @ in promoting

generation and recovery [63). The growth rates of Ger-
man urothelial cells and smooth muscle cells were sig-
nificantly higher gyacollagen-composed scaffolds. This growth
behavior showed that these collagen scaffolds were adequate for
urologic tissue regeneration [64,65].

Artificial biopolymers and composites, such as chitosan, al-
ginate, silk, fibrin and hydrogels, are promising biomaterials
that promote wound healing due to their appropriate properties
for tissue regeneration. Chitosan, in a scaffold combination, is
one of the most widely used materials that suppo
nection of cultured Schwann cells. Cells seeded on chitosan
scaffalds produced higher amounts of laminin and collagen IV
than those grown on a plane, thereby creating favorable condi-
tions for nerve regeneration [60,66]. Moreover, a chitosan scaf-

fold with incorporated collagen 1 has been proposed asa pug

C recon-

tial material for wound healing [67]. Another scaffold that
been widely used in tissue engineering is silk fibroin, which
been used clinically in surgical silk sutures for years. However,
the nanofibrous structure of ECMs remains a challenge to fab-
ricate [68]. As a solution to this problem, chitosan and silk fi-
broin have been merged to yield better cell-culture performance
[69]. A chitosan hybrid ECM was developed to improve adhe-
sion capacity in comparison with alginate (polysaccharide iso-
lated from seaweed) polymer fibers [70], Another biomaterial
scaffold was derived from gelatin in a collagen scaffold; that
scaffold was found to have better physical properties than a
scaffold of collagen only [71]. Furthermore, fibrin is another
biopolymer with characteristics suggesting that it may have the
potential to mimic a functional ECM; furthermore, it is associ-
ated with other ECM compaonents [72,73].

Overall, artificial ECMs have broader applications, such as
3D bio-inks, cell sheets, scaffolds, and multicomposites, owing
to the controllability of their components and their uniform
formulation. However, when an artificial ECM fails to adopt
the highly variable biochemical characteristics and architecture
of native ECM in each tissue, it has limited biocompatibility in
tissue applications (Fig. 1).

Int Meuroural J 2018;22(5uppl 2):566-75
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CONCLUSION AND FUTURE PERSPECTIVES

A number of strategies that rely on different targets of the dis-
ease have been pursued to t and kill cancer cells. Most
anticancer drug candidates fm approved for dlinical appli-
cations because of inadequacies in the study of the molecular
mechanism of cancer progression, identification of therapeutic
targets, and tests of drug candidates using tissue culture models
that cannot precisely mimic the native microenvironment.
Drug candidates often reveal in vitro cytotoxicity with a loss of
in vivo activity, and in many cases, this results from a poor un-
derstanding of the effects of chemoresistance in the environ-
ment of cancer [74]. A 2-dimensional (2D) cell culture cannot
mimic the real environment in which cancer cells grow and
proliferate. Therefore, constructing an appropriate cell culture
system, similar t actual microenvironment, is important if
the gap between i vifro and in vive experiments in preclinical
trials is to be removed. Three-dimensional cell cultures are
more natively and dinically similar to the native environment
of cancer cells than 21D models. Even though the idea of 3D cul -
turing is not novel, some difficulties in mimicking a native
ECM biophysically and biochemically still remain [75,76].
Biomaterial scaffolds have been applied for wound healing,
restoration and reconstruction. These biomaterial scaffolds have
good biocompatibility, nontoxic catabolites, microinflammatory
characteristics, and regenerative ability, which give them great
potential for use in tissue repair [39]. Both natural polymers and
ECMs exhibit the ability to regenerate cells. Native ECMs de-
rived from adipocyte stem cells have been reported to exert a re-
generative effect on chrggiy wounds [16]. Cell-derived, native
ECMs are also regularly used in tissue engineering applications
because they have the advantages of allowing pathogen-control-
lable ECM harvesting and providing the same geometries and
porosities without the limitation of poor cell penetration. Other
advantages of cell-derived ECMs include the possibility for them

to be anchored with ECMs from other cells and gge prepared
from autologous cells [77,78]. Native ECMs have shown to
support adhesion, to cell proliferation and differentia-

tion, and to facilitate tissue regeneration in cartilage and in
esophageal and skin cells [15,79,80]. The challenge in tissue re-
generation is that tissues must match between the recipient and
the donor in order to avoid immune rejection [12,81,82]. There-
fore, methods have been developed to decellularize tissue and
whole organs, leaving the native ECM to create tissue and whole-
organ scaffolds that can be reseeded with host cells.

wwweinjorg S71
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Recently, artificial ECMs composed of artificial polymers or
selected controllable components and with uniform and homog-
enous formulations have been fabricated and shown to have pos-
sible applications in various tissues. Even with these advances, it
is difficult to mimic native ECMs, which have complex chemical
and architectural structures that are tissue-specific. In particular,
ECM-based tissue engineering is promising in the field of urolo-
gy, in response to the need to regenerate anatomic and functional
tissues, and we believe that these approaches will provide alter-
native cures to millions of people suffering from urologic incon-
tinence or cancers [83-85], The advantages and limitations of
each system provide a direction for new research. If an artificial
ECM can be fabricated with a precise and diverse combination
of components, the native ECM can provide a complex structure.
The combination of these 2 systems is predicted to yield a new
versatile, hybrid ECM system. Understanding the structures and
functions of ECMs in each tissue, controlling the fibrillogenesis
mechanism using individual ECM components, and the recent
development of new tools for bio-printing and imaging will
greatly help to implement such a hybrid ECM in tissue engineer-
ing in the near future.
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