International Seminar on Research of Information Technology and Intelligent Systems

HAT HAT HAT HAT HACHINE LEARNING

for DATA SCIENCE

isriti.akakom.ac.id

2021

2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) took place 16 December 2021 in Yogyakarta, Indonesia

IEEE catalog number:	CFP21AAH-ART
ISBN:	978-1-6654-0151-7

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. Copyright © 2020 by IEEE.

International Seminar on Research of Information Technology and Intelligent Systems

The 2021 4th ISRITI

16 December 2021

STMIK AKAKOM YOGYAKARTA

Jalan Raya Janti no 143, Karang Jambe, Banguntapan, Bantul Yogyakarta, Indonesia 55198 Phone: +<u>62 858-4813-5411</u> (whatsapp only) | Email: <u>isriti@akakom.ac.id</u> www.isriti.akakom.ac.id

WELCOME SPEECH FROM THE CHAIRMAN OF STMIK AKAKOM YOGYAKARTA

The honorable,

- Prof. Yoni Nazarathy, Associate Professor at the School of Mathematics and Physics of The University of Queensland, Australia.
- Ts. Dr. Madihah Mohd Saudi, Associate Professor/CIO at Universiti Sains Islam Malaysia (USIM)
- Director General of Higher Education, Research and Technology (Prof. Ir. Nizam, M.Sc., DIC, Ph.D., IPU, Asean Eng.),
- Head of Region V Higher Education Service Institution (Mr. Bimo Widyo Handoko, S.H., M.H.)
- Chairman of Yogyakarta Widya Bakti Education Foundation and staff,
- Deputy Chancellor and Structural Officer of Universitas Teknologi Digital Indonesia,
- Representatives from IEEE Indonesia Chapter and IEEE Central,
- Researchers and conference attendees,
- Ladies and Gentlemen,

Assalaamu'alaikum Wr. Wb.

May peace and health be upon us all.

First of all, let us praise the presence of God Almighty (SWT) for His blessings and grace, even though under the condition of the coronavirus pandemic, we can all still be given health and opportunity to be able to participate in the fourth iSriti international conference online.

On this occasion, allow me to express my sincere appreciation to the Keynote Speaker: Prof. Yoni Nazarathy as an Associate Professor in the School of Mathematics and Physics, The University of Queensland, Australia, and Ts. Dr. Madihah Mohd Saudi, Associate Professor/CIO at Universiti Sains Islam Malaysia (USIM), Malaysia, for willing to share his brilliant ideas and insights to present at this conference.

Dear ladies and gentlemen,

On this occasion, as the Rector of Universitas Teknologi Digital Indonesia (formerly STMIK AKAKOM) Yogyakarta, I would like to welcome you to the 2021 4th ISRITI international conference, I apologize that this year's conference is still being held online, considering that the coronavirus pandemic has not ended yet.

Alhamdulillah, although we are still dealing with the pandemic, the enthusiasm of the researchers can be seen from the number of research articles submitted to us. We accept up to 302 articles from 20 countries. Around 114 articles are accepted and ready to be presented online in a conference forum, with the theme: 'Machine Learning for Data Science'.

As organizers of ISRITI, we are very proud and grateful for the participation of researchers who have been willing to submit their research results, to be published in this international conference. We would also like to thank the keynote speakers, and IEEE, who have trusted and supported this conference from the very beginning.

We still hope that next year, when the conditions of the coronavirus pandemic are under control, we can meet again, face to face, to hold joint scientific conferences from researchers, academics, practitioners, and the government, as well as build networks and exchange scientific information.

Finally, ladies and gentlemen,

On this occasion, I would like to express my utmost gratitude to: • The distinguished keynote speakers, who have been willing to share their valuable knowledge in this conference;

- Director General of Higher Education, Research and Technology, who has provided support in this international conference
- Head of Region V Higher Education Service Institution, for the remarks given
- The fourth ISRITI researchers who have presented and will present their research results;
- The reviewers, who have carefully reviewed the articles from the researchers;
- The moderator, who are more than willing to lead the plenary session;
- IEEE for trusting us to hold this international conference; and
- The committee and the student branch, that has been working hard to prepare for this international conference according to the plan.

Last but not least, as the organizer, I would like to sincerely apologize for any shortcomings or inconveniences during this event.

Thank you very much for your attention, and Wassalamu'alaikum Wr. Wb. By saying "Bismillaahirrohmaanirrohiim", I officially open the fourth ISRITI international conference.

Thank You

Yogyakarta, 16 December 2021 Rector,

Totok Suprawoto

WELCOME SPEECH FROM THE GENERAL CHAIR OF THE 2021 4th ISRITI

Dear colleagues and friends.

On behalf of the organizing committee, I am delighted to welcome all participants to the 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI 2021). This conference is the fourth international conference held by Universitas Teknologi Digital Indonesia (formerly STMIK Akakom), and the second to be held by UTDI in virtual form on December 16th, 2021.

In this conference, the committee decided to choose the following theme: "Machine Learning for Data Science". This highlight was chosen because various advances in the field of AI have recently been attributed to Data Science in which Machine Learning is the core. Therefore, by highlighting that theme in ISRITI 2021, we hope we can raise awareness towards Machine Learning in Data Science.

The aim of the conference is to provide an interactive international forum for sharing and exchanging information on the latest research in the area of information technology, computer sciences, informatics, and related fields. Nearly 11 academicians, researchers, practitioners, and presenters from 20 countries (Indonesia, India, Srilanka, Malaysia, China, Jordan, UK, Canada, Philippines, Iraq, Israel, Thailand, Bangladesh, Poland, Rwanda, Malawi, Australia, Japan, Egypt, and Kuwait) gathered in this event. In total, there are 302 active papers submitted to this conference. Each paper has been reviewed with tight criteria from our invited reviewers. Based on the review result, 114 papers have been accepted, which lead to an acceptance rate of 37.75%.

This conference will not be successful without extensive effort from many parties. First, I would like to thank all keynote speakers for allocating their valuable time to share their knowledge with us. I would also like to express my sincere gratitude to all participants who participate in this conference. Special acknowledgment should go to the Technical Program Committee Chairs, Members, and Reviewers for their thorough and timely reviewing of the papers. We would also like to thank our sponsors: IEEE Indonesia Section and Research and Society Service Institution at Universitas Teknologi Digital Indonesia. Last but not least, recognition should also go to the Local Organizing Committee members who have put enormous effort and support for this conference. At last, we hope that you have an enjoyable and inspiring moment during our conference. Thank you for your participation in ISRITI 2021.

Dr. Bambang Purnomosidi D. P. Chair of Organizing Committee 2021 4th ISRITI

PREFACE

Machine learning is computer programming that uses a computational approach to optimize a criterion or parameter from a dataset or past data to determine performance and patterns. The targeted object can come from physical and non-physical things. The start of the initial successful computing machine created in 1946 changed the human paradigm in the use of technology. The computing machine is known as the first computer, ENIAC, which performed numerical computations capable of solving numerical problems. Although simple, the development of this machine was quite significant. In 1950, Alan Turing proposed a Turing test. Testing the interaction of humans and machines, whether machines can think like humans. This proposal did not stop there. In 1952, the first game program for checkers by embedding a knowledge base system on the machine welcomed this proposal. Various methods developed quite rapidly and continued. In 1957, the perceptron method emerged and was designed with several models to form a neural network. In the early 90s, statistical learning theory was added to the learning method for processing data by placing rule-based inference. Until now, the development and approach of the artificial intelligent model have been made drastically so that the military, industry, and all sectors can take full advantage of it. The input data becomes the main thing to become the object of observation so that it becomes information and experience becomes a valuable knowledge of a model. Suppose a data is assumed to represent a series of vectors of each dimensionality, where the vector is a set of numbers. It implies that each vector is a data point, and each dimension is a feature. Supporting devices from hardware and software are pretty massively developed. The development methods accompany these technologies, e.g., various stand-alone methods, method combinations, randomization methods, parameter tuning with an evaluation of its complexity, preprocessing of data, and feature selection which can separate data from noisy features.

This conference took the theme of machine learning for data science with a background in rapidly developing applications and methods in the data processing. Various approaches in optimization and modeling make building construction in the world of artificial intelligence get a higher place. Raw data is processed where it used to take a relatively long time to become information, and there is even data that is not utilized at all. Still, now it is a valuable material for processing. Current data trends trigger a flood of data from all aspects and dimensions of life. Big data becomes easy to process and display only numerical and graphical forms. Prediction by utilizing a data processor is quite capable of analyzing the future. However, not precisely, but it is pretty helpful to mitigate an event that will come. Information on growth in the 2000s increased by around 30%, and the estimate exceeds that percentage. Researchers and observers need knowledge discovery to make data display rational and its use reasonably practical. Hopefully, the papers in this conference have a meaningful contribution to life with various dimensions of its busyness during this pandemic. Although this conference is held online due to regulatory and transportation limitations, the power of innovation and creativity must always grow.

Editorial Boards,

Widyastuti Andriyani Ferry Wahyu Wibowo

THE COMMITTEE

STEERING COMMITTEE

Chuan-Ming Liu	(National Taipei University of Technology, Taiwan)
Totok Suprawoto	(STMIK AKAKOM Yogyakarta, Indonesia)
Setyawan Widyarto	(Universiti Selangor, Malaysia)

ORGANIZING COMMITTEE *General Chair*

General	Chair
Bambar	ng Purn

Bambang Purnomosidi Dwi Putranto	(STMIK AKAKOM Yogyakarta, Indonesia)
Co-Chair	
Maria Mediatrix	(STMIK AKAKOM Yogyakarta, Indonesia)
Secretary	
Sumiyatun	(STMIK AKAKOM Yogyakarta, Indonesia)
Treasury	
Muhammad Agung Nugroho	(STMIK AKAKOM Yogyakarta, Indonesia)
Program Chair	
Widyastuti Andriyani	(STMIK AKAKOM Yogyakarta, Indonesia)

TECHNICAL COMMITTEE

(STMIK AKAKOM Yogyakarta, Indonesia)
(STMIK AKAKOM Yogyakarta, Indonesia)

TECHNICAL PROGRAM COMMITTEE

Mohd Helmy Abd Wahab	Universiti Tun Hussein Onn Malaysia	Malaysia
Sukarya Ade	Indonesian Researcher and Scientist Institute	Indonesia
Hanung Adi Nugroho	Universitas Gadjah Mada	Indonesia
Teguh Adji	Universitas Gadjah Mada	Indonesia
Syed Ahmed	NED University of Engineering and Technology	Pakistan
Michele Albano	Aalborg University	Denmark
Baba Alhaji	Nigerian Defence Academy	Niger
Mustafa Ali	Mustansiriyah University, Baghdad	Iraq
Widyastuti Andriyani	STMIK AKAKOM	Indonesia
Gede Angga Pradiptha	Institut Teknologi dan Bisnis STIKOM Bali	Indonesia
Rakan Antar	Northern Technical University	Iraq
Eko Aribowo	Ahmad Dahlan University	Indonesia
Andria Arisal	Indonesian Institute of Sciences	Indonesia
Koichi Asatani	Nankai University	Japan
Ahmad Ashari	Gadjah Mada University	Indonesia
Azizul Azizan	Universiti Teknologi Malaysia (UTM)	Malaysia
Alessandro Carrega	CNIT	Italy
Tai-Chen Chen	MAXEDA Technology	Taiwan
Wichian Chutimaskul	King Mongkut's University of Technology Thonburi	Thailand
Domenico Ciuonzo	University of Naples Federico II	Italy
Akhmad Dahlan	Universitas Amikom Yogyakarta	Indonesia
Andreas Dewald	ERNW Research GmbH	Germany
Ni Ketut Dewi Ari Jayanti	Institute of Technology and Business STIKOM Bali	Indonesia
Noriko Etani	Kyoto University	Japan
Edi Faizal	STMIK AKAKOM Yogyakarta	Indonesia
Dhomas Hatta Fudholi	Universitas Islam Indonesia	Indonesia
Zoohan Gani	Victoria University	Australia
Alireza Ghasempour	University of Applied Science and Technology	USA
Javier Gozalvez	Universidad Miguel Hernandez de Elche	Spain
Gunawan Gunawan	Politeknik Negeri Medan	Indonesia
Ibnu Hadi Purwanto	Universitas AMIKOM Yogyakarta	Indonesia
Hamdani Hamdani	Universitas Mulawarman	Indonesia
Seng Hansun	Universitas Multimedia Nusantara	Indonesia
Lucia Nugraheni Harnaningrum	STMIK AKAKOM Yogyakarta	Indonesia
Cosmas Haryawan	STMIK AKAKOM Yogyakarta	Indonesia
Su-Cheng Haw	MMU	Malaysia
Purwono Hendradi	Universitas Muhammadiyah Magelang	Indonesia
Leonel Hernandez	ITSA University	Colombia
Roberto Carlos Herrera Lara	National Polytechnic School	Ecuador
Muhamad Syamsu Iqbal	University of Mataram	Indonesia
Nurulisma Ismail	Universiti Malaysia Perlis	Malaysia
Anggun Isnawati	Institut Teknologi Telkom Purwokerto	Indonesia

Iswandi Iswandi	Gadjah Mada University	Indonesia
Ramkumar Jaganathan	Dr NGP Arts and Science College	India
Shaidah Jusoh	Xiamen University Malaysia	Malaysia
Dimitrios Kallergis	University of West Attica	Greece
Nitika Kapoor	Chandigarh University	India
Rikie Kartadie	STMIK Akakom Jogjakarta	Indonesia
Sandy Kosasi	STMIK Pontianak	Indonesia
Danny Kriestanto	STMIK AKAKOM Yogyakarta	Indonesia
Domy Kristomo	Universitas Gadjah Mada	Indonesia
Domy Kristomo	Universitas Teknologi Digital Indonesia	Indonesia
Sumit Kushwaha	Kamla Nehru Institute of Technology, Sultanpur	India
Armin Lawi	Hasanuddin University	Indonesia
Chuan-Ming Liu	National Taipei University of Technology	Taiwan
Ziping Liu	Southeast Missouri State University	USA
Pavel Loskot	ZJU-UIUC Institute	China
Mahdin Mahboob	Stony Brook University	USA
Sukrisno Mardiyanto	Institut Teknologi Bandung	Indonesia
Prita Dewi Mariyam	Universitas Indonesia	Indonesia
Maria Mediatrix	STMIK AKAKOM	Indonesia
Ratheesh Kumar Meleppat	University of California Davis	USA
Othman Mohd	Universiti Teknikal Malaysia Melaka	Malaysia
Philip Moore	Lanzhou University	China
Aina Musdholifah	Universitas Gadjah Mada	Indonesia
Hu Ng	Multimedia University	Malaysia
Hanung Nugroho	Universitas Gadjah Mada	Indonesia
Muhammad Agung Nugroho	STMIK Akakom	Indonesia
Nitish Ojha	Sharda University, Greater Noida, UP	India
Sutarman PhD	Magister of Information Technology University Technoloy of Yogyakarta	Indonesia
Luthfan Hadi Pramono	Universitas Teknologi Digital Indonesia	Indonesia
Andri Pranolo	Universitas Ahmad Dahlan	Indonesia
Edy Prayitno	STMIK AKAKOM Yogyakarta	Indonesia
Tri Priyambodo	Universitas Gadjah Mada	Indonesia
Agfianto Putra	Universitas Gadjah Mada	Indonesia
Bambang Purnomosidi Dwi Putranto	STMIK Akakom	Indonesia
Yuansong Qiao	Athlone Institute of Technology	Ireland
Melky Radja	Universitas Flores	Indonesia
Ali Rafiei	University of Technology Sydney	Australia
Suwanto Raharjo	Institut Sains & Teknologi AKPRIND Yogyakarta	Indonesia
Sarni Rahim	Universiti Teknikal Malaysia Melaka	Malaysia
Rasim Rasim	Indonesia University of Education	Indonesia
Rianto Rianto	Universitas Teknologi Yogyakarta	Indonesia
Bagus Rintyarna	Universitas Muhammadiyah Jember	Indonesia
G. p. Sajeev	Amrita Vishwa Vidyapeetham	India

Amer Sallam	Taiz University	Yemen
Leo Santoso	Petra Christian University	Indonesia
Mithileysh Sathiyanarayanan	MIT Square	United Kingdom (Great Britain)
Vaibhav Saundarmal	Marathwada Institute of Technology, Aurangabad	India
Maria Sebatubun	University of Gadjah Mada	Indonesia
Enny Sela	Universitas Teknologi Yogyakarta	Indonesia
Amel Serrat	USTO MB	Algeria
Bayu Setiaji	Universitas AMIKOM Yogyakarta	Indonesia
Emy Setyaningsih	Institute of Science & Technology AKPRIND	Indonesia
Iwan Setyawan	Satya Wacana Christian University	Indonesia
Aditi Sharma	Parul University, Vadodara	India
Sanggyu Shin	Tokai University	Japan
Amit Singh	Guru Gobind Singh Indraprastha University	India
Maria Siregar	UIN Sunan Kalijaga Yogyakarta, Facuty of Science and Technology	Indonesia
Karthik Sivarama Krishnan	Rochester Institute of Technology	USA
Achmad Solichin	Universitas Budi Luhur	Indonesia
Endah Sudarmilah	Universitas Muhammadiyah Surakarta	Indonesia
Sritrusta Sukaridhoto	Politeknik Elektronika Negeri Surabaya	Indonesia
Sumiyatun Sumiyatun	STMIK AKAKOM	Indonesia
Totok Suprawoto	STMIK AKAKOM Yogyakarta	Indonesia
Edhy Sutanta	Institut Sains & Teknologi AKPRIND Yogyakarta	Indonesia
Chakib Taybi	Mohammed First University	Morocco
Ivanna Timotius	Satya Wacana Christian University	Indonesia
Leonardo Tomassetti Ferreira Neto	University of Sao Paulo	Brazil
Evi Triandini	Institut Teknologi dan Bisnis STIKOM Bali	Indonesia
Dario Vieira	EFREI	France
Mochammad Wahyudi	Universitas Gadjah Mada	Indonesia
Addy Wahyudie	UAE University	United Arab Emirates
Oyas Wahyunggoro	UGM	Indonesia
Ratna Wardani	Yogyakarta State University	Indonesia
Ferry Wahyu Wibowo	Universitas Amikom Yogyakarta	Indonesia
Teguh Wibowo	Gadjah Mada University	Indonesia
Setyawan Widyarto	Universiti Selangor	Malaysia
Wihayati	Satya Wacana Christian University	Indonesia
Thaweesak Yingthawornsuk	King Mongkut's University of Technology Thonburi	Thailand
Uky Yudatama	Universitas Muhammadiyah Magelang	Indonesia
Sri Zuliana	UIN Sunan Kalijaga	Indonesia
Nur Zareen Zulkarnain	Universiti Teknikal Malaysia Melaka	Malaysia

REVIEWERS

Hanung Adi Nugroho	Universitas Gadjah Mada	Indonesia
Syed Umaid Ahmed	NED University of Engineering and Technology	Pakistan
Michele Albano	Aalborg University	Denmark
Baba Alhaji	Nigerian Defence Academy	Niger
Mustafa H. Ali	Mustansiriyah University, Baghdad	Iraq
Gede Angga Pradiptha	Institut Teknologi dan Bisnis STIKOM Bali	Indonesia
Rakan Khalil Antar	Northern Technical University	Iraq
Andria Arisal	Indonesian Institute of Sciences	Indonesia
Koichi Asatani	Nankai University	Japan
Ahmad Ashari	Gadjah Mada University	Indonesia
Alessandro Carrega	CNIT	Italy
Wichian Chutimaskul	King Mongkut's University of Technology Thonburi	Thailand
Noriko Etani	Kyoto University	Japan
Edi Faizal	STMIK AKAKOM Yogyakarta	Indonesia
Zoohan Gani	Victoria University	Australia
Alireza Ghasempour	University of Applied Science and Technology	USA
Ibnu Hadi Purwanto	Universitas AMIKOM Yogyakarta	Indonesia
Seng Hansun	Universitas Multimedia Nusantara	Indonesia
Lucia Nugraheni Harnaningrum	STMIK AKAKOM Yogyakarta	Indonesia
Su-Cheng Haw	MMU	Malaysia
Purwono Hendradi	Universitas Muhammadiyah Magelang	Indonesia
Leonel Hernandez	ITSA University	Colombia
Nurulisma Ismail	Universiti Malaysia Perlis	Malaysia
Anggun Fitrian Isnawati	Institut Teknologi Telkom Purwokerto	Indonesia
Iswandi Iswandi	Gadjah Mada University	Indonesia
Shaidah Jusoh	Xiamen University Malaysia	Malaysia
Nitika Kapoor	Chandigarh University	India
Rikie Kartadie	STMIK Akakom Jogjakarta	Indonesia
Sandy Kosasi	STMIK Pontianak	Indonesia
Domy Kristomo	Universitas Teknologi Digital Indonesia	Indonesia
Sumit Kushwaha	Kamla Nehru Institute of Technology, Sultanpur	India
Pavel Loskot	ZJU-UIUC Institute	China
Sukrisno Mardiyanto	Institut Teknologi Bandung	Indonesia
Prita Dewi Mariyam	Universitas Indonesia	Indonesia
Maria Mediatrix	STMIK AKAKOM	Indonesia
Ratheesh Kumar Meleppat	University of California Davis	USA
Othman Mohd	Universiti Teknikal Malaysia Melaka	Malaysia
Philip T Moore	Lanzhou University	China
Aina Musdholifah	Universitas Gadjah Mada	Indonesia
Hu Ng	Multimedia University	Malaysia
Hanung Adi Nugroho	Universitas Gadjah Mada	Indonesia
Edy Prayitno	STMIK AKAKOM Yogyakarta	Indonesia
Tri K Priyambodo	Universitas Gadjah Mada	Indonesia
Agfianto Eko Putra	Universitas Gadjah Mada	Indonesia
Melky Radja	Universitas Flores	Indonesia
Suwanto Raharjo	Institut Sains & Teknologi AKPRIND Yogyakarta	Indonesia

Rasim Rasim	Indonesia University of Education	Indonesia
Rianto Rianto	Universitas Teknologi Yogyakarta	Indonesia
Sirimonpak S	KMUTT	Thailand
Amer Sallam	Taiz University	Yemen
Leo Santoso	Petra Christian University	Indonesia
Amel Serrat	USTO MB	Algeria
Bayu Setiaji	Universitas AMIKOM Yogyakarta	Indonesia
Iwan Setyawan	Satya Wacana Christian University	Indonesia
Aditi Sharma	Parul University, Vadodara	India
Sanggyu Shin	Tokai University	Japan
Achmad Solichin	Universitas Budi Luhur	Indonesia
Endah Sudarmilah	Universitas Muhammadiyah Surakarta	Indonesia
Sritrusta Sukaridhoto	Politeknik Elektronika Negeri Surabaya	Indonesia
Raden Sumiharto	Universitas Gadjah Mada	Indonesia
Edhy Sutanta	Institut Sains & Teknologi AKPRIND Yogyakarta	Indonesia
Ivanna Timotius	Satya Wacana Christian University	Indonesia
Leonardo Henrique Tomassetti Ferreira Neto	University of Sao Paulo	Brazil
Evi Triandini	Institut Teknologi dan Bisnis STIKOM Bali	Indonesia
Oyas Wahyunggoro	UGM	Indonesia
Ratna Wardani	Yogyakarta State University	Indonesia
Wihayati Wihayati	Satya Wacana Christian University	Indonesia
Thaweesak Yingthawornsuk	King Mongkut's University of Technology Thonburi	Thailand
Uky Yudatama	Universitas Muhammadiyah Magelang	Indonesia
Sri Utami Zuliana	UIN Sunan Kalijaga	Indonesia
Nur Zareen Zulkarnain	Universiti Teknikal Malaysia Melaka	Malaysia

AUTHOR INDEX

Author	Session	Start page	Title
A	L	1	
Abdel-Majeed, Mohammad	1F.6	257	Sentiment Analysis for Twitter Chatter During the Early Outbreak Period of COVID-19
Abdulsalam, Yassine	2A.1	287	HELIUS: A Blockchain Based Renewable Energy Trading System
Adi, Kusworo	2D.1	412	Tableware Ceramics Defect Detection Using Morphological Operation Approach
Adilaksa, Yusfi	1B.1	51	Recommendation System for Elective Courses using Content- based Filtering and Weighted Cosine Similarity
Affandi, Achmad	3D.4	618	Application of Clustering Method on Vehicular Ad-hoc Network (VANET) on Mobility of Medical Vehicles in Urban Environment
Ahmad, Tohari	1A.8	35	Sensor Placement Strategy to Detect Corrosion in Water Distribution Networks
	1A.9	41	Forensic Event Reconstruction for Drones
Aisuwarya, Ratna	2D.1	440	A slow Cooker Design based on Fuzzy Logic Control Temperature System
Alsuwarya, Katila	2F.3	514	(CFR) Fractice 1001
Aji, Achmad Fahrul	2D.1	435	Influence of Wind Turbine Pitch Angle on DFIG Output Stability under Load Changes
Aji, Wahyu	1C.3	119	Images Using Deep Learning
Akbar, Son	1C.3	119	An Enhanced Classification of Bacteria Pathogen on Microscopy Images Using Deep Learning
Al Kanani, Iden	1F.7	263	Estimate the Survival and Hazard functions by using the Simulation Technique for Modified Weibull Extension Distribution
Al Maki, Wikky	1E.5	206	Improving Clustering Method Performance Using K-Means, Mini batch K-Means, BIRCH and Spectral
Al-karadsheh, Omar	1F.6	257	Sentiment Analysis for Twitter Chatter During the Early Outbreak Period of COVID-19
Al-Khowarizmi, Al- Khowarizmi	1B.1	68	Similarity Normalized Euclidean Distance on KNN Method to Classify Image of Skin Cancer
Alasiry, Ali	2B.1	329	Implementation of the Bresenham's Algorithm on a Four-Legged Robot to Create a KRPAI Arena Map
Alfani Putera, Ihsan	1F.4	247	Prediction of Bontang City COVID-19 Data Time Series Using the Facebook Prophet Method
Alqindi, Nurrizal	1C.1	97	Odor Source Localization in Low Computational Controller Micro Quadrotor
Amalia, Andika	1B.1	86	Mining User Reviews for Software Requirements of A New Mobile Banking Application
Andono, Pulung Nurtantio	1C.4	124	The handwriting of Image Segmentation Using the K-Means Clustering Algorithm with Contrast Stretching and Histogram Equalization

Andriyani, Widyastuti	1C.1	108 Comparison of Case-Based Reasoning and Certainty Factor Methods for Dengue Diagnosis
Anggreainy, Maria Susan	3A.2	556 Pneumonia Detection using Dense Convolutional Network (DenseNet) Architecture
	2E.2	464 Multi Label Classification Of Retinal Disease On Fundus Image Using AlexNet And VGG16 Architectures
Anki, Prasnurzaki	2E.4	Retinal Disease for Clasification Multilabel with Applying 475 Convolutional Neural Networks Based Support Vector Machine and DenseNet
Aprilianto, Rizky Ajie	2A.5	312 <i>Review on Control Strategy for Improving The Interleaved</i> <i>Converter Performances</i>
Ardiyanto, Igi	1D.1	150 East Nusa Tenggara Weaving Image Retrieval Using Convolutional Neural Network
Ariyadi, Ariyadi	2E.8	498 <i>Implementation of Fuzzy Logic on Microcontroller for Quails</i> <i>Coop Temperature Control</i>
Arymurthy, Aniati	1C.1	91 Vessel Detection Based on Deep Learning Approach
Ashari, Mochamad	2D.1	423 Fuzzy Based Wide Range Voltage Control Of DC Step-Up Zeta Converter For Energy Management System
Asri, Sri Dhuny Atas	2D.1	446 An XGBoost Model for Age Prediction from COVID-19 Blood Test
Assaidah, Assaidah	2C.4	384 Non-Hermitian Symmetry(NHS)-OFDM Application in MIMO-NOMA-VLC System
Astriani, Maria	3E.1	<i>Eye Tracking and Head Movement-Orientation Solution Design</i> 624 <i>To Perceive People's Mind While Seeing COVID-19</i> <i>Advertisements</i>
Seraphina	2D.1	446 An XGBoost Model for Age Prediction from COVID-19 Blood Test
Ayvacı, Ömer	2E.7	492 Mechanical vibration control and second-order LTI system analysis of an SDOF with harmonic motion
В		
	3B.1	570 Text-Based Emotion Recognition in Indonesian Tweet using BERT
Bachtiar, Fitra	2F.1	Classification of Stress in Office Work Activities Using Extreme 503 Learning Machine Algorithm and One-way ANOVA F-Test Feature Selection
Bakunzibake, Pierre	3E.2	629 Design of an IoT-based Body Mass Index (BMI) Prediction Model
Ballado, Alejandro	3A.1	Development of a Non-contact Two-Tier Biometric Security 550 System for the DSWD 4Ps using Iris recognition and Speech Recognition
Bayu Murti, Budi	3D.3	614 <i>Spectrum Sensing Using Adaptive Threshold Based Energy</i> <i>Detection in Cognitive Radio System</i>
binti Monong, Hayati	1F.2	235 Study on Factors Affecting Purchase Intention of Indonesian Consumers on Instagram
Binugroho, Eko	2B.1	329 Implementation of the Bresenham's Algorithm on a Four-Legged Robot to Create a KRPAI Arena Map
Bustamam, Alhadi	2E.2	464 Multi Label Classification Of Retinal Disease On Fundus Image Using AlexNet And VGG16 Architectures

	2E.4	475 C	etinal Disease for Clasification Multilabel with Applying Sonvolutional Neural Networks Based Support Vector Machine nd DenseNet
С			
Cahyani, Denis	2E.1	$458 \begin{bmatrix} C \\ to \end{bmatrix}$	Comparison of Renewable Energy Output Power Transmission Deads Via HVAC and HVDC
Caturdewa, Anggoro	2C.5	389 ai	heat Detection on Online Chess Games using Convolutional nd Dense Neural Network
Christian, George	1D.1	166 A	utomatic Personality Prediction using Deep Learning Based on ocial Media Profile Picture and Posts
Clara, Christina	1E.3		Customized DeepICF+a with BiLSTM for Better Decommendation
Cyr, Shaun	2A.1		IELIUS: A Blockchain Based Renewable Energy Trading ystem
D			
Dahlan, Akhmad	1D.5		Detection of Fake News and Hoaxes on Information from Web craping using Classifier Methods
Damanik, Hillman	2A.3	299 E	ast-Recovery and Optimization Multipath Circuit Networks Invironments Using Routing Policies Different Administrative Distance and Internal BGP
Darmawan, Adytia	2B.1		nplementation of the Bresenham's Algorithm on a Four-Legged lobot to Create a KRPAI Arena Map
Dewanta, Favian	2C.7	401 A	nalysis of Fuzzy Logic Algorithm for Load Balancing in SDN
Dimaunahan, Ericson	3A.1	550 S	Development of a Non-contact Two-Tier Biometric Security system for the DSWD 4Ps using Iris recognition and Speech decognition
Djamari, Djati Wibowo	1C.1	9/1	dor Source Localization in Low Computational Controller Aicro Quadrotor
E	<u></u>		
Ekosputra, Michael Jonathan	2C.6	396 Si	upervised Machine Learning Algorithms to Detect Instagram ake Accounts
Endroyono, E	3D.4	618 (1	pplication of Clustering Method on Vehicular Ad-hoc Network VANET) on Mobility of Medical Vehicles in Urban Invironment
Enriquez, Alfonso	3A.1	550 S	Development of a Non-contact Two-Tier Biometric Security ystem for the DSWD 4Ps using Iris recognition and Speech decognition
Eranmus Ndolu, Fajar	3D.1	603 D	Developing NEO Smart Contract for Weather-Based Insurance
Eriđani, Dania	1E.8	224 ai	Comparison of Kernels Function between of Linear, Radial Base nd Polynomial of Support Vector Machine Method Towards COVID-19 Sentiment Analysis
F			
Fadhliana, Nisa	2E.8	498 <i>L</i>	nplementation of Fuzzy Logic on Microcontroller for Quails Soop Temperature Control
Fakhry, Mahmoud	3A.4		pectro-temporal Filtering based on The Beta-divergence for peech Separation using Nonnegative Matrix Factorization
Fatichah, Chastine	1D.1		Detection of Covid-19 Based on Lung Ultrasound Image Using Convolutional Neural Network Architectures

Fatmi, Yulia	1B.1	68 Similarity Normalized Euclidean Distance on KNN Method to Classify Image of Skin Cancer
Fauzi, Adnan	1A.7	Design and Implementation of Post-Detection of Denial of Service (DoS) as a Mitigation System (PDDMS) Based on Dynamic Access Control List Algorithm
Fauzia, Lia	2C.2	373 <i>Implementation of Chatbot on University Website Using RASA</i> <i>Framework</i>
Fauziah, Syifa	3B.3	581 <i>Efficient Scaling of Convolutional Neural Network for Detecting and Classifying Pneumonia Disease</i>
Favian, Sean	2C.5	389 <i>Cheat Detection on Online Chess Games using Convolutional</i> <i>and Dense Neural Network</i>
Fikri, Muhamad	1C.1	97 Odor Source Localization in Low Computational Controller Micro Quadrotor
Firmansyah, Eka	2A.5	312 <i>Review on Control Strategy for Improving The Interleaved</i> <i>Converter Performances</i>
Fitri, Rahimi	2B.1	334 Integration CLAHE and Seeded Region Growing for Segmentation Of Rubber Tree in HSI Color Space
Frannita, Eka	2B.1	351 Intelligent Diabetic Retinopathy Detection using Deep Learning
G		
G, Sumathi	1C.5	132 Semantic Inpainting of Images using Deep Learning
Ghazali, Kamarul	1C.3	119 An Enhanced Classification of Bacteria Pathogen on Microscopy Images Using Deep Learning
	2D.1	417 <i>Interline Feeder of Shunt Passive Harmonic Filter and Detuned</i> <i>Reactor to Reduce Harmonic Distortion</i>
	2A.6	318 Power Flow Analysis in Centralized and Distributed Renewable Energy Placement
Gumilar, Langlang	2D.1	435 Influence of Wind Turbine Pitch Angle on DFIG Output Stability under Load Changes
	2E.1	458 Comparison of Renewable Energy Output Power Transmission to Loads Via HVAC and HVDC
	2D.1	429 <i>Analysis of Short Circuit Current Fault Components on</i> <i>Centralized and Distributed Renewable Energy</i>
Gunawan, Ridowati	1F.3	242 Online Retail Pattern Quality Improvement: From Sequential Pattern to High-Utility Sequential Pattern
Gunawan, Teddy	2F.7	539 Development of Intrusion Detection System using Residual Feedforward Neural Network Algorithm
Gupta, Yash	2A.1	287 <i>HELIUS: A Blockchain Based Renewable Energy Trading</i> System
Н		
Habibi, Muhammađ	2E.1	458 Comparison of Renewable Energy Output Power Transmission to Loads Via HVAC and HVDC
Hadinrakosa Dadan	2C.3	379 Twitter Bot Account Detection Using Supervised Machine Learning
Hadiprakoso, Raden	2C.2	373 <i>Implementation of Chatbot on University Website Using RASA</i> <i>Framework</i>
Halbouni, Asmaa Hani	2F.7	539 Development of Intrusion Detection System using Residual Feedforward Neural Network Algorithm

Halim, Albert	2F.6	532 COVID-19 Detection Model on Chest CT Scan and X-ray Images Using VGG16 Convolutional Neural Network
	1D.1	138Detection pests system for Local Mayas Rice Plants EastKalimantan using Dempster Shafer
Hamdani, Hamdani	1C.1	102 <i>Analysis of Color and Texture Features for Samarinda Sarong</i> <i>Classification</i>
	1C.1	108 Comparison of Case-Based Reasoning and Certainty Factor Methods for Dengue Diagnosis
Hamidah, Hamidah	1E.7	217 Data Mining Using Apriori Algorithm and Linear Regression in Product Recommendations
Haqiqi, Briliant	1C.2	113 Unmanned Surface Vehicle Autopilot and Guidance System Design with Disturbance Using Fuzzy Logic Sliding Curve
Hartanto, Rudy	1D.1	150 East Nusa Tenggara Weaving Image Retrieval Using Convolutional Neural Network
Haryanto, Ferdiana	2C.6	396 <i>Supervised Machine Learning Algorithms to Detect Instagram</i> <i>Fake Accounts</i>
Hasan, Habsah	1C.3	An Enhanced Classification of Bacteria Pathogen on Microscopy Images Using Deep Learning
Hassona, Yazan	1F.6	257 Sentiment Analysis for Twitter Chatter During the Early Outbreak Period of COVID-19
Hastuti, Khafiizh	3D.2	609 <i>A Conceptual Digital Library Model for Validated Content-based</i> <i>Preservation of Traditional Javanese Songs</i>
	1C.1	108 Comparison of Case-Based Reasoning and Certainty Factor Methods for Dengue Diagnosis
Hatta, Heliza	1D.1	138 Detection pests system for Local Mayas Rice Plants East Kalimantan using Dempster Shafer
Hayati, Nur	2F.7	539 Development of Intrusion Detection System using Residual Feedforward Neural Network Algorithm
Helen, Helen	2C.1	367 <i>The Intention to Use Online Groceries Shopping during the COVID19 Pandemic</i>
Hengki, Hengki	1E.7	217 Data Mining Using Apriori Algorithm and Linear Regression in Product Recommendations
Hersyah, Mohammad Hafiz	2F.3	514 Design of Microcontroller-Based Cardiopulmonary Resuscitation (CPR) Practice Tool
Hertiana, Sofia	2C.7	401 Analysis of Fuzzy Logic Algorithm for Load Balancing in SDN
Hidayanto, Nurdeka	2F.8	544 Peatland Data Fusion for Forest Fire Susceptibility Prediction Using Machine Learning
Hidayat, Risanuri	3D.3	614 Spectrum Sensing Using Adaptive Threshold Based Energy Detection in Cognitive Radio System
Hidayat, Taufik	1E.6	211 NFR Classification using Keyword Extraction and CNN on App Reviews
Hidayati, Shintami Chusnul	1D.1	155 Detection of Covid-19 Based on Lung Ultrasound Image Using Convolutional Neural Network Architectures
Hosen, Md Sabbir	2E.5	480 <i>Virtual Inertia Enhancement using DC-Link Capacitors in</i> <i>Wind Integrated Power Plants</i>
Hostiadi, Dandy	1A.4	18 A New Approach for ARP Poisoning Attack Detection Based on Network Traffic Analysis

Hudiyanti, Cinthia	1F.1	229	Input Feature Selection in ECG Signal Data Modelling using Long Short Term Memory
Ι	-		
Ihsanto, Eko	2F.7	539	Development of Intrusion Detection System using Residual Feedforward Neural Network Algorithm
Ijtihadie, Royyana	1A.8	35	Sensor Placement Strategy to Detect Corrosion in Water Distribution Networks
Ilham Suparman, Andre	2B.1	329	Implementation of the Bresenham's Algorithm on a Four-Legged Robot to Create a KRPAI Arena Map
Iswanto, Irene	1F.5	252	Indonesian Clickbait Detection Using Improved Backpropagation Neural Network
J			
Javista, Yohanes Krisna Yana	1A.1	1	Firebase Authentication Cloud Service for RESTful API Security on Employee Presence System
Javorac, Marko	2A.1	287	HELIUS: A Blockchain Based Renewable Energy Trading System
Jeremy, Nicholaus	1D.1	166	Automatic Personality Prediction using Deep Learning Based on Social Media Profile Picture and Posts
Jimmy, Jimmy	2B.1	324	ENT Randomness Test on DM-PRESENT-80 and DM- PRESENT-128-based Pseudorandom Number Generator
Jubair, Fahed	1F.6	257	Sentiment Analysis for Twitter Chatter During the Early Outbreak Period of COVID-19
Jumiyatun, Jumiyatun	2D.1	423	Fuzzy Based Wide Range Voltage Control Of DC Step-Up Zeta Converter For Energy Management System
К	,	<u>. </u>	
	1D.1	144	<i>Object Detection for Autonomous Vehicle using Single Camera</i> <i>with YOLOv4 and Mapping Algorithm</i>
Kadir, Rusdhianto	1C.2	113	Unmanned Surface Vehicle Autopilot and Guidance System Design with Disturbance Using Fuzzy Logic Sliding Curve
Kamal, Muhammad	1D.1	166	Automatic Personality Prediction using Deep Learning Based on Social Media Profile Picture and Posts
Kartika, Dhian Satria Yudha	2F.2	509	Classification Of Covid Patients Based On Detection Of Lung X- Rays Using Local Binary Pattern Method
Kasturi, Kurnia	1F.4	247	Prediction of Bontang City COVID-19 Data Time Series Using the Facebook Prophet Method
	2B.1	356	Utilizing Chest X-rays for Age Prediction and Gender Classification
Kazakov, Dimitar	2D.1	446	An XGBoost Model for Age Prediction from COVID-19 Blood Test
Khomsah, Siti	1E.5	206	Improving Clustering Method Performance Using K-Means, Mini batch K-Means, BIRCH and Spectral
Khotimah, Bain	1B.1	74	Region Proposal Convolutional Neural Network with augmentation to identifying Cassava leaf disease
Kirsan, Aidil	1F.8	269	Analysis of Factors on Continuance Intention in Mobile Payment DANA Using Structural Equation Modeling
Kristomo, Domy	3A.3	560	Classification of Speech Signal based on Feature Fusion in Time and Frequency Domain

xviii

	·		
Kumar U, Sampat	3C.3	598	(ARIMA)
Kurniawan, Ade	1D.1	144	<i>Object Detection for Autonomous Vehicle using Single Camera</i> <i>with YOLOv4 and Mapping Algorithm</i>
Kusrahardjo, Gatot	3D.4	618	Application of Clustering Method on Vehicular Ad-hoc Network (VANET) on Mobility of Medical Vehicles in Urban Environment
Kustini, Siti	2B.1	334	Integration CLAHE and Seeded Region Growing for Segmentation Of Rubber Tree in HSI Color Space
Kusumaningrum, Retno	2D.1	412	Tableware Ceramics Defect Detection Using Morphological Operation Approach
Kusumawardana, Arya	2A.6	318	Power Flow Analysis in Centralized and Distributed Renewable Energy Placement
Kusumawaruana, Arya	2E.1	458	Comparison of Renewable Energy Output Power Transmission to Loads Via HVAC and HVDC
L			
Langgawan Putra, Muhammad Gilvy	1F.8	269	Analysis of Factors on Continuance Intention in Mobile Payment DANA Using Structural Equation Modeling
Lase, Yuyun	1B.1	68	Similarity Normalized Euclidean Distance on KNN Method to Classify Image of Skin Cancer
Latisha, Shannen	2F.6	532	COVID-19 Detection Model on Chest CT Scan and X-ray Images Using VGG16 Convolutional Neural Network
Laurentinus, Laurentinus	1E.7	217	Data Mining Using Apriori Algorithm and Linear Regression in Product Recommendations
Liu, Jian	2B.1	362	A Multi-channel Adaptive Equalization Method
Liu, Ying	2B.1	362	A Multi-channel Adaptive Equalization Method
Lubis, Arif Ridho	1B.1	68	Similarity Normalized Euclidean Distance on KNN Method to Classify Image of Skin Cancer
Lumbantoruan, Alicia	2E.4	475	Retinal Disease for Clasification Multilabel with Applying Convolutional Neural Networks Based Support Vector Machine and DenseNet
М		,	
M, UmaDevi	1C.5	132	Semantic Inpainting of Images using Deep Learning
Ma, Wanzhi	2B.1	362	A Multi-channel Adaptive Equalization Method
Mahmudi, Irwan	2D.1	423	Fuzzy Based Wide Range Voltage Control Of DC Step-Up Zeta Converter For Energy Management System
Mailinda, Icha	1E.2	189	Stock Price Prediction During the Pandemic Period with the SVM, BPNN and LSTM Algorithm
Manullang, Maria	1E.3	195	A Customized DeepICF+a with BiLSTM for Better Recommendation
Mark, Glorious	3E.2	629	Design of an IoT-based Body Mass Index (BMI) Prediction Model
Maulana, Hendra	2F.2	509	Classification Of Covid Patients Based On Detection Of Lung X- Rays Using Local Binary Pattern Method
Maulana Syarif, Arry	3D.2	609	A Conceptual Digital Library Model for Validated Content-based Preservation of Traditional Javanese Songs

Meivitawanli, Bryna	1F.2	235	Study on Factors Affecting Purchase Intention of Indonesian Consumers on Instagram
Mikeka, Chomora	3E.2	629	Design of an IoT-based Body Mass Index (BMI) Prediction Model
Min Robby, Muhammad Fadhlan	1D.1	155	Detection of Covid-19 Based on Lung Ultrasound Image Using Convolutional Neural Network Architectures
Mochtar, Fahmi	1A.7	29	Design and Implementation of Post-Detection of Denial of Service (DoS) as a Mitigation System (PDDMS) Based on Dynamic Access Control List Algorithm
Mohamed, Zeehaida	1C.3	119	An Enhanced Classification of Bacteria Pathogen on Microscopy Images Using Deep Learning
Monika, Dezetty	2D.1	435	Influence of Wind Turbine Pitch Angle on DFIG Output Stability under Load Changes
Wollika, Dezetty	2D.1	429	Analysis of Short Circuit Current Fault Components on Centralized and Distributed Renewable Energy
MT, Hozairi	1B.1	56	Solving the Capacitated Vehicle Routing Problem (CVRP) with Guided Local Search and Simulated Annealing for Optimizing the Distribution of Fishing Vessels
Mujahidin, Irfan	3E.4	640	The Compact 2.4 GHz Hybrid Electromagnetic Solar Energy Harvesting (HES-EH) circuit using Seven Stage Voltage Doubler and Organic Thin Film Solar Cell
Muljono, Muljono	1C.4	124	The handwriting of Image Segmentation Using the K-Means Clustering Algorithm with Contrast Stretching and Histogram Equalization
Munsarif, Muhammad	1C.4	124	The handwriting of Image Segmentation Using the K-Means Clustering Algorithm with Contrast Stretching and Histogram Equalization
Musthalifah Aira	1E.1	184	Sentiments Analysis of Indonesian Tweet About Covid-19 Vaccine Using Support Vector Machine and Fasttext Embedding
Musdholifah, Aina	1B.1	51	Recommendation System for Elective Courses using Content- based Filtering and Weighted Cosine Similarity
Muslih, Muslih	3D.2	609	A Conceptual Digital Library Model for Validated Content-based Preservation of Traditional Javanese Songs
Mustakim, Mustakim	3C.2	593	Data Distribution Modelling in Supervised Learning Algorithm is for The Classification of Prospective Recipient Candidate
Mustaqim, Tanzilal	1D.1	155	Detection of Covid-19 Based on Lung Ultrasound Image Using Convolutional Neural Network Architectures
N			
Nadia, Bellatasya	1F.5	252	Indonesian Clickbait Detection Using Improved Backpropagation Neural Network
Nafan, Muhammad Zidny	1B.1	86	Mining User Reviews for Software Requirements of A New Mobile Banking Application
Nashiruddin,	1A.3	12	Performance Evaluation of Visible Light Communication System Deployment using Multipower Multiple LED Scenario
Muhammad Imam	2A.1	275	Performance Evaluation of Visible Light Communication System Design in Indoor Scenario
Nasution, Zikri	2B.1	329	Implementation of the Bresenham's Algorithm on a Four-Legged Robot to Create a KRPAI Arena Map

Natasia, Sri	1F.8	269	Analysis of Factors on Continuance Intention in Mobile Payment DANA Using Structural Equation Modeling
Nevia, Febriora	2C.3	379	Twitter Bot Account Detection Using Supervised Machine Learning
Noersasongko, Edi	1C.4	124	The handwriting of Image Segmentation Using the K-Means Clustering Algorithm with Contrast Stretching and Histogram Equalization
Noto, Giri	2C.3	379	Learning
	2C.2	373	Implementation of Chatbot on University Website Using RASA Framework
Nugraha, Muhammad	1A.3	12	Performance Evaluation of Visible Light Communication System Deployment using Multipower Multiple LED Scenario
Adam	2A.1	275	Performance Evaluation of Visible Light Communication System Design in Indoor Scenario
Nugroho, Agus	2B.1	334	Integration CLAHE and Seeded Region Growing for Segmentation Of Rubber Tree in HSI Color Space
Nugroho, Bayu	1D.1	161	An Improved Algorithm for Chest X-Ray Image Classification
Nugroho, Fx. Henry	3A.3	560	Classification of Speech Signal based on Feature Fusion in Time and Frequency Domain
Nugroho, Hanung	2B.1	351	Intelligent Diabetic Retinopathy Detection using Deep Learning
Nugroho, Kuncahyo	3B.1	570	Text-Based Emotion Recognition in Indonesian Tweet using BERT
March thilth Devilian	1A.3	12	Performance Evaluation of Visible Light Communication System Deployment using Multipower Multiple LED Scenario
Nurfadhilah, Berlian	2A.1	275	Performance Evaluation of Visible Light Communication System Design in Indoor Scenario
Nurhayati, Oky	1B.1	80	Filter Selection And Feature Extraction To Distinguish Types Of CT Scan Images
Nuryanto, Danang	2F.8	544	Peatland Data Fusion for Forest Fire Susceptibility Prediction Using Machine Learning
Р			
Pamukti, Brian	1A.3	12	Performance Evaluation of Visible Light Communication System Deployment using Multipower Multiple LED Scenario
raillukti, bilali	2A.1	275	Performance Evaluation of Visible Light Communication System Design in Indoor Scenario
Pamungkas, Yuri	2B.1	345	EEG Data Analytics to Distinguish Happy and Sad Emotions Based on Statistical Features
Pan, Wensheng	2B.1	362	A Multi-channel Adaptive Equalization Method
Pane, Zulkarnaen	3E.3	635	Optimization Placement of SVC and TCSC in Power Transmission Network 150 kV SUMBAGUT using Artificial Bee Colony Algorithm
Panggabean, Teamsar	1E.3	195	A Customized DeepICF+a with BiLSTM for Better Recommendation
Panthangi, Aanandhi	3C.3	598	Cryptocurrency Price Prediction using Time Series Forecasting (ARIMA)

			Cryptocurrency Price Prediction using Time Series Forecasting
Panthangi, Akhilaa	3C.3	598	(ARIMA)
Patria, Reyhan	2C.5	389	Cheat Detection on Online Chess Games using Convolutional and Dense Neural Network
Penangsang, Ontoseno	2D.1	423	Fuzzy Based Wide Range Voltage Control Of DC Step-Up Zeta Converter For Energy Management System
Perangin-Angin, Dariswan	2F.1	503	Classification of Stress in Office Work Activities Using Extreme Learning Machine Algorithm and One-way ANOVA F-Test Feature Selection
Prakoso, Ian	2C.7	401	Analysis of Fuzzy Logic Algorithm for Load Balancing in SDN
Pramana, Deddy	1A.8	35	Sensor Placement Strategy to Detect Corrosion in Water Distribution Networks
Pramono, Luthfan Hadi	1A.1	1	Firebase Authentication Cloud Service for RESTful API Security on Employee Presence System
Pramudya, Sakti	2C.1	367	<i>The Intention to Use Online Groceries Shopping during the</i> <i>COVID19 Pandemic</i>
Prasetyo, Giffar Aji	2B.1	329	Implementation of the Bresenham's Algorithm on a Four-Legged Robot to Create a KRPAI Arena Map
	1A.9	41	Forensic Event Reconstruction for Drones
Pratomo, Baskoro	1A.8	35	Sensor Placement Strategy to Detect Corrosion in Water Distribution Networks
Prawira, Reyhansyah	2E.2	464	Multi Label Classification Of Retinal Disease On Fundus Images Using AlexNet And VGG16 Architectures
Prayudani, Santi	1B.1	68	Similarity Normalized Euclidean Distance on KNN Method to Classify Image of Skin Cancer
Priyanto, Irwan	1C.1	91	Vessel Detection Based on Deep Learning Approach
Priyo Atmojo, Yohanes	1A.4	18	A New Approach for ARP Poisoning Attack Detection Based on Network Traffic Analysis
Pujiono, Pujiono	1C.4	124	The handwriting of Image Segmentation Using the K-Means Clustering Algorithm with Contrast Stretching and Histogram Equalization
Purwadi, Agus	2A.4	306	Improved HEVC Video Encoding Quality With Multi Scalability Techniques
Purwita, Ardimas	2D.1	446	An XGBoost Model for Age Prediction from COVID-19 Blood Test
Puspita, Fitri Maya	2F.5	525	Quasi Linear Utility Function Based-Wireless Internet Incentive- Pricing Models
	1C.1	102	Analysis of Color and Texture Features for Samarinda Sarong Classification
Puspitasari, Novianti	1C.1	108	Comparison of Case-Based Reasoning and Certainty Factor Methods for Dengue Diagnosis
	1D.1	138	Detection pests system for Local Mayas Rice Plants East Kalimantan using Dempster Shafer
Q			
Qomariasih, Nurul	2C.3	379	Twitter Bot Account Detection Using Supervised Machine Learning

Qomariyah, Nunung Nurul	2D.1	446	An XGBoost Model for Age Prediction from COVID-19 Blood Test
R	<u>.</u>		
Rahayu Natasia, Sri	1F.4	247	Prediction of Bontang City COVID-19 Data Time Series Using the Facebook Prophet Method
Rahmayuna, Novita	2D.1	412	Tableware Ceramics Defect Detection Using Morphological Operation Approach
Ramli, Kalamullah	2F.7	539	Development of Intrusion Detection System using Residual Feedforward Neural Network Algorithm
Ricardo, Regan	2F.6	532	COVID-19 Detection Model on Chest CT Scan and X-ray Images Using VGG16 Convolutional Neural Network
Risqi Hidayatullah, Diar	3D.1	603	Developing NEO Smart Contract for Weather-Based Insurance
Riyadi, Slamet	2E.6	487	Operating Switched Reluctance Motor in Proper Excitation Angles
Rizan, Okkita	1E.7	217	Data Mining Using Apriori Algorithm and Linear Regression in Product Recommendations
D. 1. A.1.	1A.7	29	Design and Implementation of Post-Detection of Denial of Service (DoS) as a Mitigation System (PDDMS) Based on Dynamic Access Control List Algorithm
Rochim, Adian	1E.8	224	Comparison of Kernels Function between of Linear, Radial Base and Polynomial of Support Vector Machine Method Towards COVID-19 Sentiment Analysis
Rochimah, Siti	1E.6	211	NFR Classification using Keyword Extraction and CNN on App Reviews
Dumakan Stimum	2D.1	435	Influence of Wind Turbine Pitch Angle on DFIG Output Stability under Load Changes
Rumokoy, Stieven	2D.1	429	Analysis of Short Circuit Current Fault Components on Centralized and Distributed Renewable Energy
Rustam, Rushendra	2F.7	539	Development of Intrusion Detection System using Residual Feedforward Neural Network Algorithm
Rustandi Mulyana, Aton	3D.2	609	A Conceptual Digital Library Model for Validated Content-based Preservation of Traditional Javanese Songs
S			
Sa'idah, Sofia	3B.3	581	Efficient Scaling of Convolutional Neural Network for Detecting and Classifying Pneumonia Disease
Safitri, Eristya	2F.2	509	Classification Of Covid Patients Based On Detection Of Lung X- Rays Using Local Binary Pattern Method
Sahal Mochammad	1D.1	144	<i>Object Detection for Autonomous Vehicle using Single Camera</i> <i>with YOLOv4 and Mapping Algorithm</i>
Sahal, Mochammad	1C.2	113	Unmanned Surface Vehicle Autopilot and Guidance System Design with Disturbance Using Fuzzy Logic Sliding Curve
Saifan, Ramzi	1F.6	257	Sentiment Analysis for Twitter Chatter During the Early Outbreak Period of COVID-19
Saikhu, Ahmad	1F.1	229	Input Feature Selection in ECG Signal Data Modelling using Long Short Term Memory
Salem, Mukuan	3D.1	603	Developing NEO Smart Contract for Weather-Based Insurance

Salim, Nesreen	1F.6	257	Sentiment Analysis for Twitter Chatter During the Early Outbreak Period of COVID-19
Salsabila, Rizkya	1F.8	269	Analysis of Factors on Continuance Intention in Mobile Payment DANA Using Structural Equation Modeling
Santoso, Bagus	1A.8	35	Sensor Placement Strategy to Detect Corrosion in Water Distribution Networks
	1A.9	41	Forensic Event Reconstruction for Drones
Saputra, Rizqi	1C.1	102	Analysis of Color and Texture Features for Samarinda Sarong Classification
Saputra, Wanvy	2B.1	334	Integration CLAHE and Seeded Region Growing for Segmentation Of Rubber Tree in HSI Color Space
Saputro, Adhi	2F.8	544	Peatland Data Fusion for Forest Fire Susceptibility Prediction Using Machine Learning
Saputro, Dewi	2D.1	453	Sentiment Analysis Of Indonesian Government Policies In Handling Covid 19 Through Twitter Data
Sari, Riri	3D.1	603	Developing NEO Smart Contract for Weather-Based Insurance
Sarwindah, Sarwindah	1E.7	217	Data Mining Using Apriori Algorithm and Linear Regression in Product Recommendations
Sathiyanarayanan, Mithileysh	3C.3	598	(ARIMA)
Satoto, Budi	1B.1	74	Region Proposal Convolutional Neural Network with augmentation to identifying Cassava leaf disease
	1C.1	102	Analysis of Color and Texture Features for Samarinda Sarong Classification
Septiarini, Anindita	1C.1	108	Comparison of Case-Based Reasoning and Certainty Factor Methods for Dengue Diagnosis
	1D.1	138	Detection pests system for Local Mayas Rice Plants East Kalimantan using Dempster Shafer
	3C.1	587	High Detection of Hydroponic Plant Pak Choy Using Morphological Image Processing
Setianingsih, Casi	3B.2	575	Sentiment Analysis on Social Security Administrator for Health Using Recurrent Neural Network
Setijadi, Eko	3D.4	618	Application of Clustering Method on Vehicular Ad-hoc Network (VANET) on Mobility of Medical Vehicles in Urban Environment
Shao, Shihai	2B.1	362	A Multi-channel Adaptive Equalization Method
Shiddiqi, Ary Mazharuddin	1A.8	35	Sensor Placement Strategy to Detect Corrosion in Water Distribution Networks
	1A.9	41	Forensic Event Reconstruction for Drones
Silmee, Sidratul Montaha	2E.5	480	Virtual Inertia Enhancement using DC-Link Capacitors in Wind Integrated Power Plants
Simaremare, Mario	1E.3	195	A Customized DeepICF+a with BiLSTM for Better Recommendation
Sirait, Rummi	1A.2	7	Capacity Analysis of Non-Orthogonal Multiple Access (NOMA) Network over Rayleigh Fading Channel with Dynamic Power Allocation and Imperfect SIC

Siregar, Reza	1E.3	195	A Customized DeepICF+a with BiLSTM for Better Recommendation
	2B.1	339	Design of Transformer Oil Purification Equipment
Siregar, Yulianta	2E.3	469	Analysis of Resistivity, Dielectric Strength and Tensibility of Insulator Materials of A Mixture of Epoxy Resin, Silicone Rubber, and Coal Ash
	3E.3	635	Optimization Placement of SVC and TCSC in Power Transmission Network 150 kV SUMBAGUT using Artificial Bee Colony Algorithm
Siswanto, Boby	1B.1	46	Sentiment Analysis in Indonesian on Jakarta Culinary as A Recommender System
Soedibyo, Soedibyo	2D.1	423	Fuzzy Based Wide Range Voltage Control Of DC Step-Up Zeta Converter For Energy Management System
Soeleman, Moch Arief	1C.4	124	The handwriting of Image Segmentation Using the K-Means Clustering Algorithm with Contrast Stretching and Histogram Equalization
Solomou, Chris	2B.1	356	Utilizing Chest X-rays for Age Prediction and Gender Classification
Studiawan, Hudan	1A.8	35	Sensor Placement Strategy to Detect Corrosion in Water Distribution Networks
	1A.9	41	Forensic Event Reconstruction for Drones
Suardi, Devon	3D.4	618	Application of Clustering Method on Vehicular Ad-hoc Network (VANET) on Mobility of Medical Vehicles in Urban Environment
	2C.5	389	Cheat Detection on Online Chess Games using Convolutional and Dense Neural Network
Subartana Damin	1D.1	166	Automatic Personality Prediction using Deep Learning Based on Social Media Profile Picture and Posts
Suhartono, Derwin	2F.6	532	COVID-19 Detection Model on Chest CT Scan and X-ray Images Using VGG16 Convolutional Neural Network
	2C.6	396	Supervised Machine Learning Algorithms to Detect Instagram Fake Accounts
Sujiwo, Bagus	2D.1	453	Sentiment Analysis Of Indonesian Government Policies In Handling Covid 19 Through Twitter Data
Sulaiman, Rahmat	1E.7	217	Data Mining Using Apriori Algorithm and Linear Regression in Product Recommendations
Sulistiowati, Andina	2C.1	367	<i>The Intention to Use Online Groceries Shopping during the</i> <i>COVID19 Pandemic</i>
Sulistyo Rini, Erma	1A.4	18	A New Approach for ARP Poisoning Attack Detection Based on Network Traffic Analysis
Suparta, I	3B.3	581	<i>Efficient Scaling of Convolutional Neural Network for Detecting and Classifying Pneumonia Disease</i>
Supriadi, Ono	1F.2	235	Study on Factors Affecting Purchase Intention of Indonesian Consumers on Instagram
Suradarma, Ida Bagus	1A.4	18	A New Approach for ARP Poisoning Attack Detection Based on Network Traffic Analysis
Surarso, Bayu	1B.1	80	Filter Selection And Feature Extraction To Distinguish Types Of CT Scan Images

Suryaningrum, Kristien	1D.1	166 <i>Automatic Personality Prediction using Deep Learning Based on</i> Social Media Profile Picture and Posts
Suryawan, Sayekti	2E.8	498 Implementation of Fuzzy Logic on Microcontroller for Quails Coop Temperature Control
Susanti, Bety	2B.1	324 ENT Randomness Test on DM-PRESENT-80 and DM- PRESENT-128-based Pseudorandom Number Generator
Susanto, Angela	2C.6	396 Supervised Machine Learning Algorithms to Detect Instagram Fake Accounts
Susila, I Made	1A.4	18 A New Approach for ARP Poisoning Attack Detection Based on Network Traffic Analysis
	2F.4	519 Polynomial Tope (PT) Key Group Generation Based Received Signal Strength (RSS)
Suwadi, Suwadi	2A.2	293 Discrete Cosine Transform-Based Key Generation Scheme for Indoor Environment
	2A.4	306 <i>Improved HEVC Video Encoding Quality With Multi</i> Scalability Techniques
Suyanto, Suyanto	1E.5	206 Improving Clustering Method Performance Using K-Means, Mini batch K-Means, BIRCH and Spectral
	2A.1	281 The Effect of Discounting Actor-loss in Actor-Critic Algorithm
Syarief, Mohammad	1B.1	74 <i>Region Proposal Convolutional Neural Network with</i> augmentation to identifying Cassava leaf disease
Szulczyński, Paweł	2E.7	492 Mechanical vibration control and second-order LTI system analysis of an SDOF with harmonic motion
Т	<u>. </u>	
Tang, Pei	1A.6	24 <i>Channel Characteristics for 5G Systems in Urban Rail Viaduct Based on Ray-Tracing</i>
Tejawati, Andi	1C.1	102 Analysis of Color and Texture Features for Samarinda Sarong Classification
Tena, Silvester	1D.1	East Nusa Tenggara Weaving Image Retrieval Using Convolutional Neural Network
Thamrin, Husni	1E.4	201 Text Classification and Similarity Algorithms in Essay Grading
Thong, Li Wah	2C.8	407 Modeling of Multiple Cantilevers System for Broadband Vibration Energy Harvester
Triharto, Rachmat	2A.6	318 Power Flow Analysis in Centralized and Distributed Renewable Energy Placement
Triyono, Agus	1E.4	201 Text Classification and Similarity Algorithms in Essay Grading
Tuazon, Gerard Edilbert	3A.1	Development of a Non-contact Two-Tier Biometric Security 550 System for the DSWD 4Ps using Iris recognition and Speech Recognition
U	<u>د الم</u> ال	
Utamii, Nurfadila	3C.2	593 Data Distribution Modelling in Supervised Learning Algorithm is for The Classification of Prospective Recipient Candidate
V	·	
Varadarajan, Vijayakumar	3C.3	598 <i>Cryptocurrency Price Prediction using Time Series Forecasting</i> (ARIMA)
Verdikha, Naufal	1E.4	201 Text Classification and Similarity Algorithms in Essay Grading
W	· /	

xxvi

Wahyu Ardyani, Mareta	2B.1	324	ENT Randomness Test on DM-PRESENT-80 and DM- PRESENT-128-based Pseudorandom Number Generator	
Wahyuningrum, Tenia	1E.5	206	Improving Clustering Method Performance Using K-Means, Mini batch K-Means, BIRCH and Spectral	
Wati, Masna	1C.1	102	Analysis of Color and Texture Features for Samarinda Sarong Classification	
Wati, Masna	1D.1	138	Detection pests system for Local Mayas Rice Plants East Kalimantan using Dempster Shafer	
Wibawa, Adhi	2B.1	345	EEG Data Analytics to Distinguish Happy and Sad Emotions Based on Statistical Features	
Wibowo, Antoni	2D.1	453	Sentiment Analysis Of Indonesian Government Policies In Handling Covid 19 Through Twitter Data	
Wibowo, Dikih	1E.1	184	Sentiments Analysis of Indonesian Tweet About Covid-19 Vaccine Using Support Vector Machine and Fasttext Embedding	
	1D.5	178	Detection of Fake News and Hoaxes on Information from Web Scraping using Classifier Methods	
Wibowo, Ferry Wahyu	1D.2		Classification of Lung Opacity, COVID-19, and Pneumonia from Chest Radiography Images Based on Convolutional Neural Networks	
Wibowo, Nur Cahyo	2F.2	509	Classification Of Covid Patients Based On Detection Of Lung X- Rays Using Local Binary Pattern Method	
Wibowo, Sigit	3D.3	614	Spectrum Sensing Using Adaptive Threshold Based Energy Detection in Cognitive Radio System	
Widyaningrum, Khoirunisa	1E.8		Comparison of Kernels Function between of Linear, Radial Base and Polynomial of Support Vector Machine Method Towards COVID-19 Sentiment Analysis	
	1D.5	178	Detection of Fake News and Hoaxes on Information from Web Scraping using Classifier Methods	
Wihayati	1D.2	173	Classification of Lung Opacity, COVID-19, and Pneumonia from Chest Radiography Images Based on Convolutional Neural Networks	
Wijaya, Arya	1F.1	229	Input Feature Selection in ECG Signal Data Modelling using Long Short Term Memory	
Wijaya, Danang	2A.5	312	Review on Control Strategy for Improving The Interleaved Converter Performances	
Wijaya, Lianna	2C.1	367	<i>The Intention to Use Online Groceries Shopping during the</i> <i>COVID19 Pandemic</i>	
	2F.4	519	Polynomial Tope (PT) Key Group Generation Based Received Signal Strength (RSS)	
Wirawan, Iwan	2A.2	293	Discrete Cosine Transform-Based Key Generation Scheme for Indoor Environment	
Wirawan	2A.4	306	Improved HEVC Video Encoding Quality With Multi	
Wulandari, Ajeng	3A.2	556	Pneumonia Detection using Dense Convolutional Network (DenseNet) Architecture	
Wulansari, Anita	2F.2	509	Classification Of Covid Patients Based On Detection Of Lung X- Rays Using Local Binary Pattern Method	
X	J	J		

xxvii

Xiao, Shanghui	2B.1	362	A Multi-channel Adaptive Equalization Method	
Xu, Qiang	2B.1	362	A Multi-channel Adaptive Equalization Method	
Y				
Yaputra, Jordi	2A.1	281	The Effect of Discounting Actor-loss in Actor-Critic Algorithm	
Yass, Shaimaa	1F.7	263	Estimate the Survival and Hazard functions by using the Simulation Technique for Modified Weibull Extension Distribution	
Yossy, Emny	1B.1	62	Sentiment Analysis on Social Media (Twitter) about Vaccine-19 Using Support Vector Machine Algorithm	
Vuliana Mika	2A.2	293	Discrete Cosine Transform-Based Key Generation Scheme for Indoor Environment	
Yuliana, Mike	2F.4	519	Polynomial Tope (PT) Key Group Generation Based Received Signal Strength (RSS)	
Yuliza, Evi	2F.5	525	Quasi Linear Utility Function Based-Wireless Internet Incentive- Pricing Models	
Yunanto, Prasti Eko	1E.5	200	Improving Clustering Method Performance Using K-Means, Mini batch K-Means, BIRCH and Spectral	
Yuningsih, Lilis	1A.4	18	A New Approach for ARP Poisoning Attack Detection Based on Network Traffic Analysis	
Ζ				
Zhang, Mengyao	2B.1	362	A Multi-channel Adaptive Equalization Method	

xxviii

PAPER TITLES

Α

A Conceptual Digital Library Model for Validated Content-based Preservation of Traditional Javanese Songs

A Customized DeepICF+a with BiLSTM for Better Recommendation

A Multi-channel Adaptive Equalization Method

A New Approach for ARP Poisoning Attack Detection Based on Network Traffic Analysis

A slow Cooker Design based on Fuzzy Logic Control Temperature System

An Enhanced Classification of Bacteria Pathogen on Microscopy Images Using Deep Learning

An Improved Algorithm for Chest X-Ray Image Classification

An XGBoost Model for Age Prediction from COVID-19 Blood Test

Analysis of Color and Texture Features for Samarinda Sarong Classification

Analysis of Factors on Continuance Intention in Mobile Payment DANA Using Structural Equation Modeling

Analysis of Fuzzy Logic Algorithm for Load Balancing in SDN

Analysis of Resistivity, Dielectric Strength and Tensibility of Insulator Materials of A Mixture of Epoxy Resin, Silicone Rubber, and Coal Ash

Analysis of Short Circuit Current Fault Components on Centralized and Distributed Renewable Energy Application of Clustering Method on Vehicular Ad-hoc Network (VANET) on Mobility of Medical Vehicles in Urban Environment

Automatic Personality Prediction using Deep Learning Based on Social Media Profile Picture and Posts

С

Capacity Analysis of Non-Orthogonal Multiple Access (NOMA) Network over Rayleigh Fading Channel with Dynamic Power Allocation and Imperfect SIC

Channel Characteristics for 5G Systems in Urban Rail Viaduct Based on Ray-Tracing

Cheat Detection on Online Chess Games using Convolutional and Dense Neural Network

Classification Of Covid Patients Based On Detection Of Lung X-Rays Using Local Binary Pattern Method Classification of Lung Opacity, COVID-19, and Pneumonia from Chest Radiography Images Based on Convolutional Neural Networks

Classification of Speech Signal based on Feature Fusion in Time and Frequency Domain

Classification of Stress in Office Work Activities Using Extreme Learning Machine Algorithm and One-way ANOVA F-Test Feature Selection

Comparison of Case-Based Reasoning and Certainty Factor Methods for Dengue Diagnosis

Comparison of Kernels Function between of Linear, Radial Base and Polynomial of Support Vector Machine Method Towards COVID-19 Sentiment Analysis

Comparison of Renewable Energy Output Power Transmission to Loads Via HVAC and HVDC COVID-19 Detection Model on Chest CT Scan and X-ray Images Using VGG16 Convolutional Neural Network Cryptocurrency Price Prediction using Time Series Forecasting (ARIMA)

D

Data Distribution Modelling in Supervised Learning Algorithm is for The Classification of Prospective Recipient Candidate

Data Mining Using Apriori Algorithm and Linear Regression in Product Recommendations Design and Implementation of Post-Detection of Denial of Service (DoS) as a Mitigation System (PDDMS) Based on Dynamic Access Control List Algorithm

Design of an IoT-based Body Mass Index (BMI) Prediction Model

Design of Microcontroller-Based Cardiopulmonary Resuscitation (CPR) Practice Tool

Design of Transformer Oil Purification Equipment

Detection of Covid-19 Based on Lung Ultrasound Image Using Convolutional Neural Network Architectures

Detection of Fake News and Hoaxes on Information from Web Scraping using Classifier Methods

Detection pests system for Local Mayas Rice Plants East Kalimantan using Dempster Shafer

Developing NEO Smart Contract for Weather-Based Insurance

Development of a Non-contact Two-Tier Biometric Security System for the DSWD 4Ps using Iris recognition and Speech Recognition

Development of Intrusion Detection System using Residual Feedforward Neural Network Algorithm Discrete Cosine Transform-Based Key Generation Scheme for Indoor Environment

Ε

East Nusa Tenggara Weaving Image Retrieval Using Convolutional Neural Network

EEG Data Analytics to Distinguish Happy and Sad Emotions Based on Statistical Features Efficient Scaling of Convolutional Neural Network for Detecting and Classifying Pneumonia Disease ENT Randomness Test on DM-PRESENT-80 and DM-PRESENT-128-based Pseudorandom Number Generator Estimate the Survival and Hazard functions by using the Simulation Technique for Modified Weibull Extension Distribution

Eye Tracking and Head Movement-Orientation Solution Design To Perceive People's Mind While Seeing COVID-19 Advertisements

F

Fast-Recovery and Optimization Multipath Circuit Networks Environments Using Routing Policies Different Administrative Distance and Internal BGP Filter Selection And Feature Extraction To Distinguish Types Of CT Scan Images Firebase Authentication Cloud Service for RESTful API Security on Employee Presence System Forensic Event Reconstruction for Drones Fuzzy Based Wide Range Voltage Control Of DC Step-Up Zeta Converter For Energy Management System

Н

HELIUS: A Blockchain Based Renewable Energy Trading System High Detection of Hydroponic Plant Pak Choy Using Morphological Image Processing

Ι

Implementation of Chatbot on University Website Using RASA Framework Implementation of Fuzzy Logic on Microcontroller for Quails Coop Temperature Control Implementation of the Bresenham's Algorithm on a Four-Legged Robot to Create a KRPAI Arena Map Improved HEVC Video Encoding Quality With Multi Scalability Techniques Improving Clustering Method Performance Using K-Means, Mini batch K-Means, BIRCH and Spectral Indonesian Clickbait Detection Using Improved Backpropagation Neural Network Influence of Wind Turbine Pitch Angle on DFIG Output Stability under Load Changes Input Feature Selection in ECG Signal Data Modelling using Long Short Term Memory Integration CLAHE and Seeded Region Growing for Segmentation Of Rubber Tree in HSI Color Space Intelligent Diabetic Retinopathy Detection using Deep Learning Interline Feeder of Shunt Passive Harmonic Filter and Detuned Reactor to Reduce Harmonic Distortion

М

Mechanical vibration control and second-order LTI system analysis of an SDOF with harmonic motion Mining User Reviews for Software Requirements of A New Mobile Banking Application Modeling of Multiple Cantilevers System for Broadband Vibration Energy Harvester Multi Label Classification Of Retinal Disease On Fundus Images Using AlexNet And VGG16 Architectures

Ν

NFR Classification using Keyword Extraction and CNN on App Reviews Non-Hermitian Symmetry(NHS)-OFDM Application in MIMO-NOMA-VLC System

0

Object Detection for Autonomous Vehicle using Single Camera with YOLOv4 and Mapping Algorithm Odor Source Localization in Low Computational Controller Micro Quadrotor Online Retail Pattern Quality Improvement: From Sequential Pattern to High-Utility Sequential Pattern Operating Switched Reluctance Motor in Proper Excitation Angles Optimization Placement of SVC and TCSC in Power Transmission Network 150 kV SUMBAGUT using Artificial Bee Colony Algorithm

P

Peatland Data Fusion for Forest Fire Susceptibility Prediction Using Machine Learning Performance Evaluation of Visible Light Communication System Deployment using Multipower Multiple LED Scenario Performance Evaluation of Visible Light Communication System Design in Indoor Scenario Pneumonia Detection using Dense Convolutional Network (DenseNet) Architecture Polynomial Tope (PT) Key Group Generation Based Received Signal Strength (RSS) Power Flow Analysis in Centralized and Distributed Renewable Energy Placement Prediction of Bontang City COVID-19 Data Time Series Using the Facebook Prophet Method Q

Quasi Linear Utility Function Based-Wireless Internet Incentive-Pricing Models

R

Recommendation System for Elective Courses using Content-based Filtering and Weighted Cosine Similarity Region Proposal Convolutional Neural Network with augmentation to identifying Cassava leaf disease Retinal Disease for Clasification Multilabel with Applying Convolutional Neural Networks Based Support Vector Machine and DenseNet

Review on Control Strategy for Improving The Interleaved Converter Performances

S

Semantic Inpainting of Images using Deep Learning Sensor Placement Strategy to Detect Corrosion in Water Distribution Networks Sentiment Analysis for Twitter Chatter During the Early Outbreak Period of COVID-19 Sentiment Analysis in Indonesian on Jakarta Culinary as A Recommender System Sentiment Analysis Of Indonesian Government Policies In Handling Covid 19 Through Twitter Data Sentiment Analysis on Social Media (Twitter) about Vaccine-19 Using Support Vector Machine Algorithm Sentiment Analysis on Social Security Administrator for Health Using Recurrent Neural Network Sentiments Analysis of Indonesian Tweet About Covid-19 Vaccine Using Support Vector Machine and Fasttext Embedding Similarity Normalized Euclidean Distance on KNN Method to Classify Image of Skin Cancer

Similarity Normalized Euclidean Distance on KNN Method to Classify Image of Skin Cancer Solving the Capacitated Vehicle Routing Problem (CVRP) with Guided Local Search and Simulated Annealing for Optimizing the Distribution of Fishing Vessels

Spectro-temporal Filtering based on The Beta-divergence for Speech Separation using Nonnegative Matrix Factorization

Spectrum Sensing Using Adaptive Threshold Based Energy Detection in Cognitive Radio System Stock Price Prediction During the Pandemic Period with the SVM, BPNN and LSTM Algorithm Study on Factors Affecting Purchase Intention of Indonesian Consumers on Instagram Supervised Machine Learning Algorithms to Detect Instagram Fake Accounts

Т

 Tableware Ceramics Defect Detection Using Morphological Operation Approach

 Text Classification and Similarity Algorithms in Essay Grading

 Text-Based Emotion Recognition in Indonesian Tweet using BERT

 The Compact 2.4 GHz Hybrid Electromagnetic Solar Energy Harvesting (HES-EH) circuit using Seven Stage Voltage

 Doubler and Organic Thin Film Solar Cell

 The Effect of Discounting Actor-loss in Actor-Critic Algorithm

 The handwriting of Image Segmentation Using the K-Means Clustering Algorithm with Contrast Stretching and

 Histogram Equalization

 The Intention to Use Online Groceries Shopping during the COVID19 Pandemic

 Twitter Bot Account Detection Using Supervised Machine Learning

U

Unmanned Surface Vehicle Autopilot and Guidance System Design with Disturbance Using Fuzzy Logic Sliding Curve

Utilizing Chest X-rays for Age Prediction and Gender Classification

v

Vessel Detection Based on Deep Learning Approach Virtual Inertia Enhancement using DC-Link Capacitors in Wind Integrated Power Plants

Online Retail Pattern Quality Improvement: From Frequent Sequential Pattern to High-Utility Sequential Pattern

Ridowati Gunawan Informatics Study Program Sanata Dharma University Yogyakarta, Indonesia rido@usd.ac.id

Abstract—There has been a change in people's shopping behavior, especially during the Covid-19 pandemic, from what traditionally requires direct face-to-face meetings between sellers and buyers, to virtual face-to-face through various shopping media. All activities carried out by customers, click streams performed, items purchased, the number of items including the price will be recorded in a log. Activity records in the log are very useful to be able to find out the pattern of activity sequences from customers, especially the order of items purchased by customers. However, the management certainly needs more knowledge, not just the order of goods that are often purchased by customers. Does the order of items purchased also provide maximum profit? There have been many methods to get frequent sequential patterns from customer activities, but getting a pattern that chooses more quality by adding utility value needs to be considered. In this research, the method used to obtain frequent sequential patterns is using PrefixSpan (Prefixprojected Sequential PAtterN) and the method used to obtain a high-utility sequential pattern is the USpan (Utility Sequential PAtterN) method. USpan is applied to the BMS (Blue Martini DataSet) dataset, which is the dataset used in KDD (Knowledge Discovery in Databases) CUP 2000 which consists of clickstream data from an e-commerce. The experimental results show that the frequent sequential pattern will always appear in the highutility sequential pattern but not vice versa. It is certain that a high-utility pattern must be sequential, but a sequential pattern is not necessarily a high-utility sequential. From the results of the high-utility sequential pattern, it can be used as input to provide recommendations to customers to carry out the shopping process on items that can provide greater profits. The conclusion of the research conducted is that the high-utility sequential pattern mining can produce a higher quality pattern than just getting a frequent sequential pattern.

Index Terms—online retail, frequent sequential pattern, highutility, high-utility sequential pattern, e-commerce

I. INTRODUCTION

One of the impacts of increasing internet access and adoption is the increasing number of digital buyers every year. In 2020, more than two billion people bought goods or services online. The transaction value of e-retail sales exceeds US\$ 4.2 trillion. The COVID-19 pandemic has had a significant impact on e-commerce and online consumer behaviour worldwide. Digital channels are becoming the most crowded stores amid the people's need to stay at home during the pandemic. In June 2020, e-commerce activity reached a record 22 billion visits per month. During the pandemic, e-commerce sales increased by more than 25 percent. In the 3rd quarter of 2020 Indonesia was reported as the country that ranks the highest in terms of online purchases using mobile devices [1].

E-commerce activities and online shopping are certainly interesting to observe. All online shopping activities are recorded in a system, whether carried out by online shop owners or using third party services such as marketplace sites. Activities in online shopping will certainly be interesting to note. Customer shopping behaviour, the order of the items purchased by the customer, what items contribute the greatest profit, all these will be a concern for online business owners to further develop their business.

Several methods have been developed to observe the shopping activities of customers on the online system. [2] provides the concept of sequential pattern mining for the market basket analysis by using the General Sequential Pattern (GSP). This research is used as a reference for the sequential pattern mining. The process begins by determining the minimum support value. The sequential pattern obtained is a pattern that has a support value higher than the specified minimum support value. This study has not considered the benefits obtained for each sequence found, only focusing on searching for frequent sequences.

Customer behaviour in the entire shopping process can be analysed using sequential mining and clustering. The method used to perform the analysis is to adopt maximal repeat patterns (MRPs) and lag sequential analysis (LSA) to analyse sequential searches and identify significant repeating patterns [3]. The results show that customers who have definite goals will use sequential search using a shorter path than customers who only do exploration. Customers who only do exploration have a more complicated sequential pattern. However, although sequential patterns have been obtained, it is not yet known how much profit can be obtained from each sequential pattern. Would a shorter sequential pattern get a bigger advantage?

[4] proposed a system that recommends items based on matching rules obtained from frequent sequential purchase patterns. The combination of semantic context and sequential historical purchase has given good results and can reflect user preferences through similar product recommendations and semantic sequences. However, the observed sequential purchases have not considered whether the sequential provides an advantage because it only follows the sequence. The recommendation pattern will be more meaningful if the observed sequence also considers the advantages of the sequence.

Comparison of the Generalized Sequential Pattern and FP-Growth sequential pattern algorithms from online retailers to get products recommendation to customer has been successfully carried out [5], but only limited to getting frequent sequential patterns The use of sequential patterns for various fields has been carried out, such as for online retail [6]–[8] and for the field of e-learning [9], [10]. The use of sequential patterns will have more quality when the pattern sought is not limited to frequent sequential patterns but adds utility value in the pattern search process.

To further improve the quality of the patterns obtained, one way to do this is to develop the search for frequent sequential patterns into high utility sequential patterns so that they have more impact and business value for decision makers, especially in the online retail sector. The purpose of this study is to obtain patterns that are more qualified and useful for decision makers using a high-utility sequential pattern approach. The analysis carried out is to compare the pattern results obtained using the frequent sequential pattern and high-utility sequential pattern. For frequent sequential pattern mining we use PrefixSpan (Prefix-projected Sequential pattern mining) and using USpan (Utility Sequential Pattern Mining) for high-utility sequential pattern mining.

The rest of this paper is organized as follows: Related work is briefly reviewed in Section II. Methodology is presented in Section III. Experimental design, result, and analysis are provided in Section IV. The paper is concluded in Section V and also for future works.

II. RELATED WORK

In this section, work related to methods for sequential pattern mining, high-utility itemsets mining and high-utility sequence itemsets mining will be briefly reviewed.

Sequential pattern mining is the process of searching for frequent sequences in a sequence databases. Sequential pattern mining has been developed for a wide variety of applications such as web click-stream analysis, medical data, biological data, e-learning and e-commerce. Initially, the algorithm for sequential pattern search used the Apriori approach, based on the Apriori property for frequent itemset search [11]. Another alternative, besides using Apriori based, is using the patterngrowth approach FP-growth algorithm to search for frequent itemset [12]. These two approaches are the basis for sequential pattern mining. For Apriori-based searches, sequential pattern mining generally uses the [13], [2], [14] algorithm. Based on the input format, the Apriori-based sequential pattern is divided into two categories, namely the Apriori-based with horizontal format as in the General Sequential Pattern (GSP) algorithm [2] and the Apriori-based with vertical format as in the SPADE (Sequential PAttern Discovery using Equivalence classes) [15] and SPAM (Sequential PAttern Mining) [16] algorithms. The first algorithm to use the pattern-growth concept for sequential pattern mining is the FreeSpan (Frequent Pattern-Projected Sequential Pattern Mining) algorithm [17]. [18] proposes PrefixSpan (Prefix-projected Sequential Pattern), which uses prefix-projection to mine a complete set of sequential patterns. In mining large databases, PrefixSpan outperforms both the GSP algorithm and FreeSpan.

Research on frequent itemset mining and frequent sequential mining both assume that each item appears once in every transaction and has the same level of importance [19]. This limitation has given rise to research on high-utility itemset mining. Consideration of the usefulness of each item becomes the main consideration. Like sequential pattern mining, highutility itemset mining also uses an Apriori-based approach [20]-[22], pattern-growth [23], [24]. The search for highutility itemset has also been carried out using a tree approach [25]-[27], based on indexing [28], using computational intelligence based on genetic algorithms [29], particle swarm optimization [30]-[33], ant colony system [34], bee colony [35], and bio-inspired [36]. The merging of the concepts of sequential itemset and high-utility itemset led to research on high-utility sequential mining (HUSPM), which is to get frequent sequential patterns that have high-utility at the same time. [37] revealed the concept of high-utility sequential pattern mining (HUSPM), which is a search for sequential patterns that also has high utility. The input from HUSPM is the minimum utility limit and the sequence itemset that has a utility value for each item. The output of HUSPM is a set of high-utility sequences that have a utility value higher than the specified minimum utility. HUSPM was developed using the basic sequential pattern algorithm based on the general sequential pattern or using the pattern growth approach. [38] improved pattern search based on a vertical database format named USpan (Utility Sequential PAtterN). Generate itemset is composed of a lexicographic q-sequence tree, two concatenation mechanisms, and two pruning strategies. Meanwhile, the strategy to find high utility pattern is using depth-first search strategy. This approach is used in this study. There are several other algorithms to get high-utility sequential pattern including [39]-[41].

III. METHODOLOGY

Our proposed method consists of four processes, namely: pre-processing, sequential pattern using PrefixSpan algorithm, high-utility sequential pattern mining using USpan algorithm, and last process is evaluation pattern.

A. Pre-Processing

The pre-processing phase is carried out to prepare the collected data so that it is ready to be processed into the algorithm. Because there are two algorithms that will be applied, at this stage the data that has been collected will be replicated into two new datasets. The dataset for the frequent sequential

pattern is only the sequence database, while the dataset for obtaining the high-utility sequential itemset is a utility-based sequence dataset. Each item in the sequence in the database has utility information in the form of item[utility].

B. PrefixSpan (Prefix-projected Sequential pattern)

The sequential pattern mining algorithm used is the PrefixSpan algorithm because it has better results than GSP and FreeSpan [18]. The pseudo-code of PrefixSpan is shown in Algorithm 1.

Algorithm 1 PrefixSpan(S, minsup)

- 1: **Input** : A sequence databases *S*, minimum support threshold *minsup*
- 2: Output : The complete set of sequential patterns
- 3: Parameter: α : a sequential pattern; l : the length of α;
 S|α: the α − projected database, if α ≠<>; otherwise, the sequence database S
- 4: Method:
- 5: Scan $S|\alpha$ once, find the set of frequent items b such that
- 6: (a) b can be assembled to the last element of α from a sequential pattern; or
- 7: (b) $< b > {\rm can}$ be appended to α from a sequential pattern.
- 8: for each frequent item b do
- 9: append it to α to form a sequential pattern α' and ouptut α' ;
- 10: end for
- 11: for each α' do
- 12: construct $\alpha \prime$ projected databases $S|\alpha'$,
- 13: and call **PrefixSpan**($\alpha', l+1, S | \alpha'$.
- 14: end for

C. USpan (Utility Sequential PAtterN)

The pseudo-code of USpan is shown in Algorithm 2 [38].

D. Pattern Evaluation

Pattern evaluation is done by comparing the results of the itemset formed between those generated with PrefixSpan and USpan. The measurement for PrefixSpan is the support value limit, while for USpan it is the utility value limit. The assumption used is that the pattern obtained from PrefixSpan has the same utility value, namely one.

IV. EXPERIMENTS, RESULT AND ANALYSIS

A. Dataset

The dataset used is the BMS (Blue Martini Dataset). This dataset was used in KDD CUP 2000. It contains clickstream data from an e-commerce. Characteristics of the datasets used in the experiments as seen in Table I.

B. Experimental setup

All algorithms are implemented in Java, executed on a PC with AMD Ryzen 7 2700 Eight-Core Processor, 3200 MHz, 8 cores, 16 logical processors, and 16.0 GB of RAM. Implementation of the algorithms is based on SPMF, the open-source data mining library [42].

Algorithm 2 USpan(t, v(t))

- 1: Input : A sequence t, t's utility v(t), a utility-based sequence database S, the minimum utility threshold minutil
- 2: Output : All high-utility sequential pattern
- 3: **if** p is a leaf node **then return**
- 4: end if
- 5: scan the projected database S(v(t)) once to:
- 6: a).put I-Concatenation items into *ilist*,or
- 7: b).put S-Concatenation items into *slist*
- 8: remove unpromising items in *ilist* and *slist*
- 9: for each item *i* in *ilist* do
- 10: $(t', v(t')) \leftarrow I Concatenate(p, i)$
- 11: **if** $v_{max}(t') \ge minutil$ **then**
- 12: output t'
- 13: end if
- 14: USpan(t', v(t'))
- 15: **end for**
- 16: for each item i in slist do
- 17: $(t', v(t')) \leftarrow S Concatenate(p, i)$
- 18: **if** $v_max(t') \ge minutil$ **then**
- 19: output t'
- 20: end if
- 21: USpan(t', v(t'))
- 22: end for
- 23: return

 TABLE I

 CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENTS

Characteristics	Value
Number of sequence	59,601
Number of distinct item	497
Average number of itemsets per sequence	2.5
Average distinct item per sequence	2.5
Average number of items	1
Total utility	2,477,599
Average utility per sequence	41.57

To get a sequential pattern from PrefixSpan, experiments were carried out using various minimum support values, namely 0.6%, 0.7%, 0.8%, 0.9%, and 1.0%. The observed results are frequent sequence count, total time, and memory used.

The minimum utility values used to obtain high-utility sequential patterns from USpan are 3000, 4000, 5000, 6000, and 7000. The observed results are high-utility sequence count, total time, and memory used.

C. Result and analysis

The experimental results using the PrefixSpan algorithm as in Table II. The higher the minimum support value, the fewer the number of patterns formed. The obtained subsequences are not too long, because the average number of itemsets per sequence is only 2.5, resulting in a maximum of 3 items being obtained (see the initial data in Table I).

No	Minsup (%)	Minsup Absolute	Number of Patterns	Total Time (ms)	Memory (mb)
#1	0.6	358	162	1437	125
#2	0.7	418	133	1060	244
#3	0.8	477	105	906	131
#4	0.9	537	90	744	58

#5

1

597

909

134

TABLE II Experiment Result for PrefixSpan

The experimental results using the USpan algorithm as in Table III. The higher the minimum utility value, the fewer the number of patterns formed. When the minimum utility value is 3000, it means that the minimum profit obtained is 3000, the number of itemset obtained is very large and most of them are 1 item. Memory usage is quite stable, which is 538 megabytes, while the time required to obtain a pattern is proportional to the number of itemset obtained and inversely proportional to the specified minimum utility value.

TABLE III EXPERIMENT RESULT FOR USPAN

No	Minutil (%)	Minutil Absolute	Number of Patterns	Total Time (ms)	Memory (mb)
#1	0.12	3000	106127	385988	538
#2	0.16	4000	5175	319671	538
#3	0.20	5000	1151	288730	538
#4	0.24	6000	559	263402	538
#5	0.28	7000	342	252002	538

Comparison of patterns obtained from PrefixSpan and USpan as in Table IV. The patterns shown in Table IV are part of the patterns obtained with the minimum limit of the number of items in the pattern formed is 2 items and the minimum utility is 6000. The experimental results show that the pattern formed in PrefixSpan always exists in the pattern from the USpan algorithm, but not vice versa. This shows that although it is not frequent, the pattern has a high-utility value. In the USpan algorithm, the number of items in each sequence is more than in the PrefixSpan algorithm. For example, it can be seen in the pattern that begins with the item 10295. There are four patterns formed in PrefixSpan, each pattern consists of two items. Meanwhile, for USpan, six patterns can be formed, there are two patterns that have three items and four pattern that have tow items. There is an increase in the number of patterns obtained using USpan.

V. CONCLUSIONS AND FUTURE WORKS

Searching for sequence patterns by entering utility values can improve the quality of the obtained sequence patterns. Patterns that have high utility can be frequent sequences but not vice versa. The addition of utility values is needed to improve the quality of the pattern so that it can better assist decision makers.

For future work, high-utility sequential pattern mining can be applied to various cases such as in e-learning. Not just

TABLE IV Comparison of patterns

PrefixSp	an	Uspan		
Pattern	Support	Pattern	Utility	
10295, 10307	916	10295, 10307	35418	
10295, 10311	738	10295, 10311	24203	
10295, 10315	722	10295, 10315	23962	
10307, 10311	621	10295, 10307, 10311	18322	
10307, 10315	496	10295, 12895	15736	
10311, 10315	771	10295, 10299, 10307	14739	
10311 , 12487	615	10311, 32213	18214	
10311 , 12703	576	12487, 32213	22826	
12483 , 12487	877	12487, 12703, 32213	16166	
12487, 12703	631	12679, 12683	15342	
12487, 32213	506	12679, 12895	15909	
12695, 12703	615	12703 , 32213	22258	
12703 , 32213	571	12815, 12895	18088	
12815, 12895	552	12827, 12895	23029	
12827, 12895	590	33433, 33469	27398	
33433, 33469	509	33433, 33449	22780	
33449, 33469	1204	32205, 32213	20848	
		33433, 33449, 33469	19934	
		33433, 33453	16360	
		33449, 33469	39699	

looking for material but can find out the search for material that can be used to get good learning values (utility).

Sequential pattern mining does not only start from the process after the consumer has made the purchase process, but can also start from "digital journey" (what is interesting thing for the customer) until finally making the purchase process .Combining digital journey and high-utility sequential pattern mining is a research that will try to be developed.

REFERENCES

- D. Coppola, "E-commerce worldwide statistics & facts," 2021. [Online]. Available: https://www.statista.com/topics/871/onlineshopping/#dossier-chapter1
- [2] R. Srikant and R. Agrawal, "Mining sequential patterns: Generalizations and performance improvements," in Apers P., Bouzeghoub M., Gardarin G. (eds) Advances in Database Technology – EDBT '96. Springer, Berlin, Heidelberg, 1996, pp. 1–17. [Online]. Available: http://link.springer.com/10.1007/BFb0014140
- [3] I.-C. Wu and H.-K. Yu, "Sequential analysis and clustering to investigate users online shopping behaviors based on need-states," Information Processing & Management, 102323, 2020. [Online]. vol. 57, no. 6, p. Available: https://www.sciencedirect.com/science/article/pii/S0306457320308189
- [4] M. Nasir, C. I. Ezeife, and A. Gidado, "Improving e-commerce product recommendation using semantic context and sequential historical purchases," *Social Network Analysis and Mining*, vol. 11, no. 1, p. 82, 2021. [Online]. Available: https://doi.org/10.1007/s13278-021-00784-6
- [5] Destrilia, R. Primartha, Sukemi, and A. Wijaya, "Online Retail Marketing Recommendation System Based on Generalized Sequential Pattern Algorithm and FP-Growth Algorithm," in *Proceedings of the Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019)*, vol. 172, no. Siconian 2019, 2020, pp. 353– 357.
- [6] V. Kakollu, M. Srivenkatesh, K. N. Soujanya, and B. Sridevi, "Sequential Pattern Mining With Variables Used Log, Retail and Medical Analysis," vol. 27, no. 6, pp. 481–486, 2021.
- [7] G. Aloysius and D. Binu, "An approach to products placement in supermarkets using PrefixSpan algorithm," *Journal* of King Saud University - Computer and Information Sciences, vol. 25, no. 1, pp. 77–87, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.jksuci.2012.07.001

- [8] M. Kanaan, H. Kheddouci, M. Patterns, W. Durations, and E.-c. Dataset, "Mining Patterns With Durations from E-commerce Dataset," *Complex Network*, vol. Dec, no. hal-01960321, 2018.
- [9] E. Doko, L. A. Bexheti, M. Hamiti, and B. P. Etemi, "Sequential pattern mining model to identify the most important or difficult learning topics via mobile technologies," *International Journal of Interactive Mobile Technologies*, vol. 12, no. 4, pp. 109–122, 2018.
- [10] Q. Li, R. Baker, and M. Warschauer, "Using clickstream data to measure, understand, and support self-regulated learning in online courses," *Internet and Higher Education*, vol. 45, no. July 2019, p. 100727, 2020. [Online]. Available: https://doi.org/10.1016/j.iheduc.2020.100727
- [11] R. Agrawal and R. Srikant, "Fast algorithms for mining association rules," in *Proceedings of the 20th International Conference on Very Large Data Bases*, vol. 1215, 1994, pp. 487–499.
- [12] J. Han, P. Jian, and Y. Yin, "Mining frequent patterns without candidate generation," in SIGMOD '00 Proceedings of the 2000 ACM SIGMOD International Conference on Management of data, vol. 1. Dallas, Texas, USA: ACM Press, New York, NY, USA, 2000, pp. 1–12.
- [13] R. Agrawal and R. Srikant, "Mining sequential patterns," in *Proceedings* of the Eleventh International Conference on Data Engineering. Taipei, Taiwan, Taiwan: IEEE Comput. Soc. Press, 1995, pp. 3–14. [Online]. Available: http://ieeexplore.ieee.org/document/380415/
- [14] P. Fournier-Viger, J. C. W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas, "A Survey of Mining sequential patterns," *Data Science and Pattern Recognition Ubiquitous Internationa*, vol. 1, no. Februari, 2017.
- [15] M. J. Zaki, "SPADE: An efficient algorithm for mining frequent sequences," *Machine Learning*, vol. 42, no. 1-2, pp. 31–60, 2001.
- [16] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, "Sequential PAttern mining using a bitmap representation," in *Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '02.* New York, New York, USA: ACM Press, 2002, p. 429. [Online]. Available: http://portal.acm.org/citation.cfm?doid=775047.775109
- [17] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu, "Freespan: Frequent pattern-projected sequential pattern mining," in *Proceeding of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, ser. Proceeding of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, R. Ramakrishnan, S. Stolfo, R. Bayardo, I. Parsa, R. Ramakrishnan, S. Stolfo, R. Bayardo, and I. Parsa, Eds., Dec. 2000, pp. 355–359, proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2001); Conference date: 20-08-2000 Through 23-08-2000.
- [18] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu, "Mining sequential patterns by pattern-growth: The prefixspan approach," *IEEE Transactions on Knowledge and Data Engineering*, vol. 16, no. 11, pp. 1424–1440, 2004.
- [19] H. Yao, H. Hamilton, and C. Butz, "A Foundational Approach to Mining Itemset Utilities from Databases." in *Proceedings of the 2004 Society for Industrial and Applied Mathematics (SIAM) International Conference on Data Mining*. Lake Buana Vista: SIAM, 2004, pp. 482–486.
- [20] Y. Liu, W.-k. Liao, and A. Choudhary, "A two-phase algorithm for fast discovery of high utility itemsets," in *Proceeding PAKDD'05 Proceedings of the 9th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining*. Springer-Verlag Berlin, Heidelberg, 2005, pp. 689–695.
- [21] —, "A fast high utility itemsets mining algorithm," in *Proceedings of the 1st International Workshop on Utility-Based Data Mining UBDM '05.* Chicago, Illinois, USA: ACM, 2005, pp. 90–99.
- [22] Y. Liu, W.-k. Liao, A. Choudhary, H. Yao, and H. J. Hamilton, "Mining itemset utilities from transaction databases," in *Data and Knowledge Engineering*, vol. 59. Chicago, Illinois, USA: ACM, 2005, pp. 603– 626.
- [23] V. Tseng, C. Wu, B. Shie, and P. Yu, "UP-Growth: an efficient algorithm for high utility itemset mining," *Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 253–262, 2010.
- [24] A. Erwin, R. P. Gopalan, and N. Achuthan, "CTU-Mine: An Efficient High Utility Itemset Mining Algorithm Using the Pattern Growth Approach," *7th IEEE International Conference on Computer and Information Technology (CIT 2007)*, pp. 71–76, 2007.
- [25] C.-W. Lin, T.-P. Hong, and W.-H. Lu, "An effective tree structure for

mining high utility itemsets," *Expert Systems with Applications*, vol. 38, no. 6, pp. 7419–7424, 2011.
[26] M. Liu and J. Qu, "Mining High Utility Itemsets without Candidate

- [26] M. Liu and J. Qu, "Mining High Utility Itemsets without Candidate Generation," in *Proceedings of the 21st ACM International Conference* on Information and Knowledge Management (CIKM), 2012, pp. 55–64.
- [27] P. Fournier-Viger, C. W. Wu, S. Zida, and V. S. Tseng, "FHM: Faster high-utility itemset mining using estimated utility co-occurrence pruning," in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, vol. 8502 LNAI, no. June. Springer International Publishing, 2014, pp. 83– 92.
- [28] G.-C. Lan, T.-P. Hong, and V. S. Tseng, "An efficient projection-based indexing approach for mining high utility itemsets," *Knowledge and Information Systems*, vol. 38, no. 1, pp. 85–107, 2014.
- [29] S. Kannimuthu and K. Premalatha, "Discovery of high utility itemsets using genetic algorithm," *International Journal of Engineering and Technology*, vol. 5, no. 6, pp. 4866–4880, 2013.
- [30] J. C.-W. Lin, L. Yang, P. Fournier-Viger, J. M. T. Wu, T. P. Hong, L. S. L. Wang, and J. Zhan, "Mining high-utility itemsets based on particle swarm optimization," *Engineering Applications of Artificial Intelligence*, vol. 55, pp. 320–330, 2016.
- [31] J. C.-W. Lin, L. Yang, P. Fournier-Viger, J. Frnda, L. Sevcik, and M. Voznak, "An Evolutionary Algorithm to Mine High-Utility Itemsets," *Advances in Electrical and Electronic Engineering*, vol. 13, no. 4, pp. 392–398, 2015.
- [32] J. C. W. Lin, L. Yang, P. Fournier-Viger, T. P. Hong, and M. Voznak, "A binary PSO approach to mine high-utility itemsets," *Soft Computing*, vol. 21, no. 17, pp. 5103–5121, 2017.
- [33] R. Gunawan, E. Winarko, and R. Pulungan, "A BPSO-based method for high-utility itemset mining without minimum utility threshold," *Knowledge-Based Systems*, vol. 190, 2020. [Online]. Available: https://doi.org/10.1016/j.knosys.2019.105164
- [34] J. M. T. Wu, J. Zhan, and J. C. W. Lin, "An ACObased approach to mine high-utility itemsets," *Knowledge-Based Systems*, vol. 116, pp. 102–113, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.knosys.2016.10.027
- [35] W. Song and C. Huang, "Discovering High Utility Itemsets Based on the Artificial Bee Colony Algorithm," in Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science,, D. Phung, V. Tseng, G. Webb, H. B, G. M., and L. Rashidi, Eds., vol. 10939, no. June. Cham: Springer, Cham, 2018. [Online]. Available: http://link.springer.com/10.1007/b97861
- [36] —, "Mining High Utility Itemsets Using Bio-Inspired Algorithms: A Diverse Optimal Value Framework," *IEEE Access*, vol. 6, no. April, pp. 19568–19582, 2018.
- [37] B. Zhang, J. C. W. Lin, P. Fournier-Viger, and T. Li, "Mining of high utility-probability sequential patterns from uncertain databases," *PLoS ONE*, vol. 12, no. 7, pp. 1–21, 2017.
- [38] J. Yin, Z. Zheng, and L. Cao, "USpan: An efficient algorithm for mining high utility sequential patterns," in *Proceedings of* the 18th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '12. New York, New York, USA: ACM Press, 2012, p. 660. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2339530.2339636
- [39] J.-Z. Wang, J.-L. Huang, and Y.-C. Chen, "On efficiently mining high utility sequential patterns," *Knowledge and Information Systems*, vol. 49, no. 2, pp. 597–627, nov 2016. [Online]. Available: http://link.springer.com/10.1007/s10115-015-0914-8
- [40] O. K. Alkan and P. Karagoz, "CRoM and HuspExt: Improving Efficiency of High Utility Sequential Pattern Extraction," *IEEE Transactions on Knowledge and Data Engineering*, vol. 27, no. 10, pp. 2645–2657, oct 2015. [Online]. Available: http://ieeexplore.ieee.org/document/7080884/
- [41] J. C. W. Lin, Y. Li, P. Fournier-Viger, Y. Djenouri, and J. Zhang, "Efficient Chain Structure for High-Utility Sequential Pattern Mining," *IEEE Access*, vol. 8, pp. 40714–40722, 2020.
- [42] P. Fournier-Viger, C. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng, and H. T. Lam, "The SPMF Open-Source Data Mining Library Version 2." in Proc. 19th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2016) Part III. Springer LNCS 9853, 2016, pp. 36–44. [Online]. Available: http://www.philippe-fournier-viger.com/spmf/index.php

