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1. INTRODUCTION
irdiovascular disease” refers 10 a collection of illnesses that include heart disease, brain
discases of other blood arteries. A kind of cardiovascular disease (CVD) is stroke [1].
Stroke ranks number 5 among all causes of death and the second-leading cause of death behind ischemic
heart disease [2]. Neurological injuries, such as strokes and spinal cord injuries. often cause physical ailments
that afect a person's ability to walk stroke is a significant disease in Asia. where more than 60% of the
world's population lives. Except for a few nations like Japan, stroke deaths arc higher in Asia than in Western
Europe, America, or Australia [3]. Loss of walking ability often leads to dependence on wheelchairs or other
h as orthoses. Restoring the ability to walk is one of the main goals of recovery for many
disorders. Various treatments have been used to re-leam motor skills and performance of
walking by using robotic devices [4]. [5]. There are walking trainers using robots available in the market, but
the price is still very high [6]. Frugal Innovation is described as the potential to “do more with less™that i, to
generate.considerably more market and social benefit while reducing the use of finite resources like
electicity, money, and time [7]. In resource-constrained settings, healthcare providers often devise novel
approa deliver sufficient treatment to patients. These low-cost yet practical, frugal inventions may
have flaws, but they have the potential to make wellness more accessible to everyone (8]
With its high reliability and ease of implementation, proportional integral and derivative (PID) is the
most often used controller because of its great dependability and simplicity of installation. However, a
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1. INTRODUCTION

The term "cardiovascular disease" refers to a collection of illnesses that include heart disease, brain
asculm disease, and diseases of other blood arteries. Ad of cardiovascular disease (CVD) is stroke [1].
Stroke ranks number 5 among all causes of death and the second-leading cause of death behind ischemic
heart disease [2]. Neurological injuries, such as strokes and spinal cord injuries, often a;e physical ailments
that affect a person's ability to walk stroke is a significant disease in Asia, where more than 60% of the
world's population lives. Except for a few nations like Japan, stroke deaths are higher in Asia than in Western
Europe, America, or Australia [3]. Loss of walking ability often leads to dependence on wheelchairs or other
mobility aids such as orthoses. Restoring the ability to walk is one of the main goals of recovery for many
with neurological disorders. Various treatments have been used to re-learn motor skills and performance of
walking by using robotic devices [4], [5]. There are walking trainers using robots available in the market, but
the price is still very high [6]. Frugal Innovation is described as the potential to “do more with less”-that is, to
generate considerably more market and social benefit while reducing the use of finite resources like
electricity, money, and time [7]. In resource-constrained settings, healthcare providers often devise novel
approaches to deliver sufficient treatment to patients. These low-cost yet practical, frugal inventions may
have flaws, but they have the potential to make wellness mc)rfmcssiblc to everyone [8].

With its high reliability and ease of implementation, proportional integral and derivative (PID) is the
most often used controller because of its great dependability and simplicity of installation. However, a
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PID-only controller is unsuitable folPkell exoskeleton robot due to variables such as variations in load, friction,
and external interference [9], [10]. On the other hand, there is an iterative learning control algorithm (ILC)
that, even though it is excellent at controlling repeated motions, has a significant tracking error and an
unclear initial value, making it difficult to use in practice [11], [12]. There are some ideas of using a hybrid
controller such as PID-ILC in improving the trajectory of a mechanism [13], but it was never implemented in
the lower limb exoskeleton. Majeed er al. [14] already used the other types of hybrid controller, proportional
derivative (PD) with particle swarm optimization (PSO), for the lower limb exoskeleton. It has better joint
tracking performance, but upon the presence of disturbance, its efficacy deteriorates. Meanwhile, Amiri er al.
[15] used PID with model reference adaptive control (MRAC). The speed and performance are better than
PID, but there is an overshoot and gradually returns to the desired position. The goal of this research is to
optimize the robot-assisted walking trainer's lower limb exoskeleton's control algorithm by utilizing hybrid
PID-ILC to track the reference trajectory even when the lower limb is under varied load (disturbance)
without going overshoot.

2. METHOD
2.1. System design

As shown in Figure 1, the fundamental control strategies of robot-assisted gait trainers were covered
within a three-level framework that corresponds to the structure and functionality of the human neurological
system. Being able to work together or separately, these levels are independent of each other [16]. This
research robot of a robot-assisted gait trainer deals with the low level of control.

THREE LEVEL CONTROL FRAMEWORK

Postural Control Strategy
(EEG, etc)

High Level
User’s Intention

User’s performance analysis to
determine state of Low-Level
Controller

Multi-joint Controller

| 11

Gait Motion Strategies

| Device Driver Closed Loop Control |

Figure 1. Hierarchical control framework of robot-assisted gait trainer

22. The kinematics for lower limb exoskeleton
The lower link exoskeleton is a two-link planar revolute-revolute arm. Figure 2 [lmh()ws such a
2 revolute (2R) planar manipulator with two revolute-revolute links. The inverse kinematics of a lower limb
exoskeleton is similar to that of a planar robot in that it is easier to discover analytically. The tip point's
global l()citi()n is shown in (1).
7

[X] _ ly sin 6, + L, sin(B; + 65) )
Y [y cos By + 15 cos(0, +0;)
Therefore:
X2+ Y2 =1+ 5+ 2L1,cos8, (2)
and:
cos B, = X—2+;:1_E_!§ (3)
0, = cos™! Xeviohoh )

2Ll
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Due to their inaccuracy, Arcsin and Arccos are typically avoided. As a result, we use the half-angle formula.

2 E _ 1-cosd

tan 2 1+cosf )
To find G using an arctan 2 function:
Iy +12)% - (X247
0, = +arctan] [LH2 ) (©)

(X24Y2)—(Iy+1)?

Square root generates two solutions. Thus, the sign + is needed. Based on geometry, the initial joint variable
configuration may be determined as (7):

Y 1, sin 6.
0, = arctan 2— + arctan 2———=— 7
1 X + 11 +1; cos f; ( )
The following alternate equation can also be used:
—Xlzsin@+¥Y(ly +la cos )
0, = arctan 2 —*2—*—21- 2 — ¢ 8)

¥l sin B2 +X (11 +12 cos )

when X has a positive or negative sign, the value of ¢ should be changed by adding or removing 7. In

addition, the equations can be concatenated as (9).

[X] _ [11 sinf, + I, sin(6; + 6) ©
Y I, cos 6, + 1, cos(B; +6,)
Therefore, to determine a trigonometric equation for ¢ :

2Xl,cos B, + 2Y1 sinf; =X2+ Y2+ 1} -3 (10)
Additionally, the (11) can be used:

Iy + 1y cos 0, = T8 (1)

21y

Figure 2. Lower limb exoskeleton kinematics

23. Mechanical design
There is a similarity between the human and the produced robotic joint for the knee as shown in
Figures 3(a) and 3(b). Flexion and extension and internal and external rotation of a knee are shown in

Control of robot-assisted gait trainer using hybrid proportional integral derivative ... (Elang Parikesit)
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Figure 3(a) [18]. While the knee part of the exoskeleton of the gait trainer is shown in Figure 3(b). The
exoskeleton being developed only uses the sagittal plane as the range of motion (flexion and extension).
To protect the user from injury, the range of joint angles is mechanically limited. Table 1 displays the values
of hip and knee kinematics [19].

EXTENSION

EXTERNAL ROTATION

FLEXION /
(

() (b)

INTERNAL ROTATION

Figure 3. Comparison of (a) the human knee joint compared with (b) the exoskeleton joint

Table 1. Kinematics of hip and knee
Mation Range of Motion (degree)  Average Torque (Nm)

Hip Flexir_m 100-140 140

Extension 15-30 120

Knee Flexit_m 120-140 140
Extension 0-10 15

The exoskeleton is made to be as light as possible. envisioned as a four-degrees of freedom
(DoF) bilateral wearable device with actuators at the joints of the hip and knee. The mechanical drawing of
the lower limb exoskeleton can be seen in Figure 4. Aluminum is used in the mechanical structure to
accommodate mechanical resistance and reduce weight [20].

Figure 4. Mechanical drawing of lower limb exoskeleton

The movement equipment was selected according to each joint's tension and force values when
walking at a typical speed. Direct current (DC) motors meet the performance criteria for a portable device's
small solution. Because exoskeleton joints demand higher torque and lower speeds, DC motors can be
connected directly to the gearbox to boost torque and reduce speed [21]. As shown in Figure 5(a) PG56
encoder brushed DC motor is used as the actuator, while Figure 5(b) shows the gearbox that is connected to
IntJ Elec & Comp Eng, Vol. 12, No. 6, December 2022: 5967-5978
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DC motor to increase the torque by 50 times. As shown in Figure 6, there are four DC motors to drive four
joints in this lower limb exoskeleton), two motors for the left side, and two motors for the right side. The DC
servo motors control the joint motors (PG56) using pulse width modulation (PWM) outputs from the
microcontroller.

(a)

Figure 5. The actuator consists of (a) a PG56 encoder brushed DC motor that is connected to
(b) a gearbox with shaft ratio 1:50

Figure 6. Lower limb exoskeleton with hip and knee joints

24. PID control

The first PID controller was ship autopilot owned by Elmer Sperry in 1910. Since Ziegler and
Nichols [22] developed the methods of PID tuning in 1942, the popularity (c controller has risen even
more [23]. Changes are required for three parameters in PID control [24]: the proportional, integral, and
derivative. However, the PID control parameter adjustment affects system performance, such as stability and
robustness [25]. Classical control theory provides a strong set of study tools to analyze closed-loop systems
build feedback controllers. The reference variable is sometimes referred to as the set point. The PID gain
is the sum of the P-term, the I-term, and the D-term. A control action also can be viewed as a combination of
integral, proportional, and derivative parts of a mathematical expression. The PID algorithm may be
summarized as (12):

u(t) = K (e(®) + 1 f; e(dr + 7, 52) (12)

whe is measured process variable, r is reference variable, u is control signal, e is control error {e=y,,-v),
K is proportional gain, T; is integral time, and T} is derivation time

Control of robot-assisted gait trainer using hybrid proportional integral derivative ... (Elang Parikesit)
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Several research of PID, hybrid controller [26], and hybrid PID controllers [27]-[30] have been
conducted until now that indicated better performance than other types of controllers such as fuzzy
controllers [31]. Meanwhile, a hybrid controller such as fuzzy-PID has the benefit of having better system
response [32], compared to the traditional PID, provides a lower initial control signal [33], and performs
better than other controllers in terms of system robustness as well as parameter variation [34]. In situations
when a traditional PID structure with constant coefficients may not perform, another type of PID, sigmoid
PID delivers a faster controller response with less overshoot [35].

2.5. Hybrid PID and ILC

The PID feedback controls are ineffective for systems that have both continuous and discrete
dynamics. We can use hybrid control for that situation [36]. For instance, we can use PID control combined
with ILC. More than a decade of study has gone into ILC, and the work by Arimoto et al. [37] is widely cited
as the primary source of motivation for research in this field [37]. As the name suggests, ILC is a recurrent
process control technique. It is essential for applications exploring trajectory tracking control over a limited
interval [0, T]. It concentrates on issues where interaction between passes is typically zero but where
E:titi(m of a single task allows for performance improvement from task to task ]. Even in situations
where repetitive tasks are done over fixed periods, ILC is an efficient method for improving transient
response and tracking performance in the presence of parametric uncertainties and unmodeled dynamics [39],
[40]. For a system that executes the same trajectory repeatedly, ILC is a relatively novel control method.
Using this technique, we can enhance both transient responsiveness and tracking performance [41]. A modest
PID gain should be used in most situations. Especially if the intrinsic frequency of the system is not properly
evaluated, high PID gains might cause system vibrations. When the adjusted control signal reaches the
intended trajectory, the ILC 1s §gilized to fine-tune it.

There is considerable nonlinearity, strong coupling, and time-varying dynamic characteristics in the
lower limb exoskeleton. The mathematical model employed to construct it is ambiguous and may cause
system instability. For the most part, iterative learning control does not require any specific models. It is ideal
for controlling objects which move in a finite period. The tracking error is modified according to the lcama;
signal to enhance a particular control goal and track the intended trajectory [42], [43]. In brief, because the
PID has strong robustness and the ILC has good performance, it is assumed that their combination will have
both [44]. Figure 7 depicts a diagram block of hybrid PID-ILC applied to the exoskeleton, where u; is ILC
control signal, k, is proportional value, kq is derivative value, ki is integral value, ej is error between desired
and actual outputs (yg to yj), and j is number of iterations

€ L]

6l ® QI
£ JOINT MOTOR
PID

Figure 7. Block diagram of Hybrid PID-ILC applied to an exoskeleton

2.6. Microcontroller and motor driving system

The wiring diagram of the microcontroller and motor driving system is shown in Figure 8. A 24 V
lithium-ion battery is used to power the DC motor and electronic circuits of the exoskeleton. Then the
switched regulators convert 24 volts DC from the battery to 5 volts to supply the electronic circuits. The gait
lreljearies are stored in the microcontroller's memory, an Atmel ATmega 328 on the Arduino platform. Each
time the microcontroller will send the position data to motor drivers. The BTS7960 High current motor driver
h-bridge module will amplify the currents so there will be enough current to drive the DC motors
(PG56 DC motors). Each motor can drive a single joint. The encoder will send back the actual position of the
joints as the inputs of the microcontroller. Then the microcontroller will compute the voltage value to be sent
to driver circuits.

IntJ Elec & Comp Eng, Vol. 12, No. 6, December 2022: 5967-5978
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Motor A
Hip joint

BTS 7960
Motor driver

PG 56 dc motor
with encoder

24 volt DC Power Supply

Motor B
Knee joint

PG 56 dc motor
BTS 7960 with encoder
vic ﬁ':u LN RIN Iv:.':.' Iﬂ‘m
| | |
—1 T T
5V GND SV v " n
ARDUINO
5V
vcc Encoder of Encoder of
Motor A Moter B

Figure 8. Wiring diagram of microcontroller and motor driving system

3. RESULTS AND DISCUSSION

In this work, a normal gait pattern used as the reference trajectory was pr()vide@y previous
experiments dataset from healthy subjects [45]. Figures 9 and 10 respectively show the graphs of the flexion
and extension movements of hip and knee joints based on that data. Figure 9 shows that the range of hip
flexion/extension is from -18 to 25 degrees. While in Figure 10, the range of the knee flexion/extension is
from 0 to 60 degrees.

The microcontroller executed data and transferred it to a driver to move the DC motor based on
stored trajectory data by utilizing a control algorithm. There are two steps in applying the hybrid PID-ILC
algorithm. Firstly, just use the PID control without ILC and make it stable by tuning the PID parameters, Kp,
Ki, and Kd. Table 2 [46] can be used for reference for the PID tuning. After the PID response is stable, the
ILC learning algorithm can be activated.

Hip Flexion/Entension

30,00
25.00
2000
15.00
1000
5.00
000
-5.00
1000
-15.00
2000
-25.00

angle (degree)

time (ms)

Figure 9. Flexion and extension movements of hip based on the dataset
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Knee Flexion/Extension

70
60
2 50
on
(7]
2 4
@
2 a0
m
20
10
0
-~ Mmoo - m o=~ m L B = T T e e T e e L )
FHENRAAIRARECNRE AN EERS ARG 8

time {ms)

Figure 10. Flexion and extension movements of the knee based on the dataset

Bilb le 2. PID controller tuning parameters

Response Rise time Owvershoot Settling time S-8 error
Kp Decrease Increase Small Change Decrease
Ki Decrease Increase Increase Decrease
Kd Small Change Decrease Decrease No Change

21

In Figures 11 to 14, Ecan observe the location of the hip and knee joints of the exoskeleton. As
illustrated in Figures 11 and 13, PID only results in a significant steady-state error, yet the system remains
stable. As shown in Figure 11, the PID-only controller is being used to control hip movement. The
exoskeleton moved along with the load from the lower limb. The range of hip flexion/extension is -15 until
20 degrees. The system is stable, but there are steady-state errors between 0 to 10 degrees.

Figure 12 shows the hybrid PID-ILC controller being used to control the hip movement. Still, with
the same controller gain and load, there are significant improvements in the performance in the initial move
from 0 to 5 degrees. But after more than ten iterations, the steady-state errors can be minimized under
1 degree the range of hip just as the same with the set point.

In Figure 13, the PID-only controller is being used to control knee movement. The exoskeleton
moved along with the same load from the lower limb and with the same controller gain. The range of knee
flexion/extension is eight until 55 degrees. The system is also stable, but there are steady-state errors between
0to 10 degrees.

In Figure 14, the hybrid PID-ILC controller is being used to control knee movement. Still, with the
same controller gain and load, there are significant improvements in the performance in the initial move from
0 to 10 degrees. But after more than ten iterations, the steady-state errors can be minimized under 1 degree-
the range of hip just as the same with the set point. Figures 12 and 14 show that it takes more than ten
iterations to achieve the trajectory set point after using hybrid PID-ILC, as illustrated in Figures 12 and 14.
The output filtering causes the phase difference. The output is sound, with a low steady-state error rate,
according to the results.

Hip joint control using PID
+o oo Set Point  —— Output

angle (degree)
8L o8y

%’ Y% Yt R A R R T Bt i G R R R B e R e

> g g dp P e gy

s ey %
time(s)

Figure 11. Flexion and extension movements of exoskeleton hip using PID only
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Hip joint control using PID ILC

<+SetPoint ——Output

-30
ad'f‘.a,.g %J}{p)"\@@awi)ef(?e?@f,ff‘-f)f_‘ff\??a?’,? < J;\’ u% 0:;031:;
o o e o e e, e e 4 e

time (s)

Figure 12. Flexion and extension movements of exoskeleton hip using PID-ILC

Knee joint control using PID

«---SetPoint —— Output

- e

a_‘f‘}(fe-\'\'fﬂ.J%%%)%ﬂﬁ’(}’]{(’J}f]Jd‘} o 7 Q,éﬂa? 6
R R A I R R N v, %0 8 % 9, Yo, Y, Y, %, %, 13, Yo, Y, Y, 7 ENICION e Yy 2,
% % Yy % A A AR AR Y, %, -!,‘-fa‘%“ LN ‘% i‘ 90,7, Y, -"9%‘

Lo A

4 ) 4 ' K
time (5)

Figure 13. Flexion and extension movements of exoskeleton knee using PID only

Knee joint control using PID ILC

--SetPoint —— Output

angle (degres)
u
)

b B By Ty Ay G G A B &, dp s ta % Ap ¥ 4 %0 %, B By Ty 4 A
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time [s)

)
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Figure 14. Flexion and extension movements of exoskeleton knee using PID-ILC

35
Assessment of system pﬁrmemce can be done by measuring or calculating g system's
performance index. In this case, the mean square error (MSE) and the root mean square error (RMSE) can be
used. The square RMSE is called MSE. The RMSE is a metric that compares the predicted values of a
hypothetical model to the actual values [47]. Telbl@;hows the numerical analysis comparison of PID and
PID-ILC responses, based on the RMSE and MSE. It can be seen that steady-state errors are greatly reduced
to 50%. Mean square error can be expressed as:

msg = Z=f
v

where V is number of data. Root mean square error can be expressed as:

RMSE = ‘E—Ll &
v
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Table 3. Numerical analysis comparison of PID and PID-ILC responses

Joints Control type RMSE MSE

Hip PID 0.141532 0020031
PID-ILC 0.080999698 0.01

Knee PID 0.162832 0026514
PID-ILC 009 0.01

4. CONCLUSION

A gait trainer with a lower limb exoskeleton has been created. As a result of the suggested hybrid
PID-ILC controller, a robot-assisted gait trainer with unmodeled dynamics, uncertainty, and disturbance can
track the gait trajectory. The actual experiment using load and particular controller gain showed that the
system controlled using PID only has stability but with steady-state errors up to 10 degrees. The proposed
using hyb[m’ID-ILC controller showed stability with its initial steady-state error. But after more than ten
iterations, the steady-state error can be reduced to less than 1 degree. The steady-state errors are greatly
reduced to 50%.
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