

?

Ŷ

AH

Document details

< Back to results 1 of 1

< Back to results 1 of		Metrics ⑦ View all metrics >
CSV export ✓ 业 Dov View at Publisher	wnload 🛱 Print 🖾 E-mail 🗑 Save to PDF 🥁 Save to list More >	1 Citation in Scopus
		59th percentile
2nd International Confe 20 November 2018, Arti 2nd International Confe Malaysia; 12 August 201 Code 142892	rrence on Smart Grid and Smart Cities, ICSGSC 2018 cle number 8541305, Pages 95-99 rrence on Smart Grid and Smart Cities, ICSGSC 2018; Kuala Lumpur; 18 through 14 August 2018; Category numberCFP18URA-ART;	0.59 Field-Weighted Citation Impact (ා
Effect of Initia Permanent Ma Encoder (Confer	l Rotor Position on Rotor Flux Oriented Speed agnet Synchronous Motor Control using Incremental ^{rence Paper)}	*
Harini, B.W., Avianto,	N., Yusivar, F. 🖂	PlumX Metrics 🗸 🗸
Bave all to author list	Usage, Captures, Mentions, Social Media and Citations beyond Scopus.	
Electrical Engineering, U	Jniversitas Indonesia, Kampus UI Depok 16424, West Java, Indonesia	, ,
Abstract	 View references (8) 	
This paper analyzes the Motor Control (PMS control system that wi encoder as a sensor. T	effect of the load and initial position of the Permanent Magnet Synchronous 5M) control system when the PMSM is used as a vehicle on the flat road and uphill. The 11 be analyzed uses Proportional Integral (PI) as a current controller and incremental 14 he results prove that the initial rotor positions affect the motor current. © 2018 IEEE.	Cited by I document A synchronization loss detection method for PMSM speed sensorless control Harini, B.W. , Husnayain, F. ,
SciVal Topic Promin	Subiantoro, A. (2020) Jurnal Teknologi	
Topic: Sensorless Cont	rol Permanent Magnet Synchronous Motor Sliding Mode Observer	View details of this citation
Prominence percentile:	97.422 (j	Inform me when this document is cited in Scopus:
Author keywords		
(current) incremental	encoder initial position (PMSM) (synchronization) (vector control	Set citation alert >
Indexed keywords		Related documents
Engineering controlled terms:	Electric currents) Electric power transmission networks) Permanent magnets) Signal encoding) Smart city) Smart power grids) Synchronization) Synchronous motors) Two term control systems) Vector control (Electric machinery) Synchronization) Synchronous motors)	Find more related documents in Scopus based on: Authors > Keywords >
Engineering uncontrolled terms	Current controller Incremental encoder initial position Initial rotor position Motor currents Permanent Magnet Synchronous Motor PMSM Proportional integral Proportional integral	
Engineering main heading:	Electric machine control	

Funding sponsor	Funding number	Acronym		
Universitas Indonesia		UI		
Funding text ACKNOWLEDGMENT This research is funded Terindeks untuk Tugas Akhir Mahasiswa UI (P	d by Universitas Indonesia research gr ITTA) 2018.	ant of the Publikasi International		
ISBN: 978-153868102-2 Source Type: Conference Proceeding Original language: English	DOI: 10.1109/ICSGSC.2018.854 Document Type: Conference Pa Publisher: Institute of Electrical	1305 per and Electronics Engineers Inc.		
References (8)		View in search results format >		
□ All CSV export 🗸 🖨 Print	🖾 E-mail 🛛 😨 Save to PDF 🛛 Cre	eate bibliography		
 1 Edge, E. (2000) Synchronous Motor Starting I 	Review			
 2 Vas, P. (1998) Sensorless Vector and Direct Oxford University Press, USA 	<i>Torque Control.</i> Cited 2091 times.			
 3 Semiconductor, F. Sensorless PMSM vector control with (2008) Document Number 	h a sliding mode observer for compres	ssors using MC56F8013		
🗌 4 Harini, B.W., Subiantoro, A., Yusivar,	F.			
Study of speed sensorless permanent magnet synchronous motor (PMSM) co problem due to braking during steady state condition				
(2017) <i>QiR 2017 - 2017 15th Interna</i> on Electrical and Computer Enginee ISBN: 978-150906397-0 doi: 10.1109/QIR.2017.8168479	tional Conference on Quality in Resea ring, 2017-December, pp. 184-189. Ci	rch (QiR): International Symposium ited 4 times.		
View at Publisher				
 Jung, DH., Ha, IJ. An efficient method for ident encoder 	ifying the initial position of a F	PMSM with an incremental		
(1998) <i>IEEE Transactions on Industri</i> doi: 10.1109/41.704901	<i>al Electronics</i> , 45 (4), pp. 682-685. Cite	ed 24 times.		
View at Publisher				

6 Chen, X.E., Gu, S.M., Ye, S.W., Wang, L.

Study on initial rotor position identification of permanent magnet synchronous motor based on high frequency signal injection

(2010) *CAR 2010 - 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics*, 2, art. no. 5456579, pp. 397-401. Cited 6 times. ISBN: 978-142445193-7 doi: 10.1109/CAR.2010.5456579

View at Publisher

- 7 Mohamed, A.S., Zaky, M.S., El Din, A.Z., Yasin, H.A.
 Comparative study of sensorless control methods of PMSM drives (2011) *Innovative Systems Design and Engineering*, 2, pp. 44-67. Cited 17 times.
- 8 Mohamed, A.S., Zaky, M.S., El Din, A.Z., Yasin, H.A.
 Comparative study of sensorless control methods of PMSM drives (2011) *Innovative Systems Design and Engineering*, 2, pp. 1727-2222. Cited 17 times.

© Copyright 2019 Elsevier B.V., All rights reserved.

< Back to results | 1 of 1

∧ Top of page

About Scopus

What is Scopus Content coverage Scopus blog Scopus API Privacy matters

Language

日本語に切り替える 切換到简体中文 切換到繁體中文 Русский язык

Customer Service

Help Contact us

ELSEVIER

Terms and conditions *¬* Privacy policy *¬*

Copyright © Elsevier B.V *A*. All rights reserved. Scopus® is a registered trademark of Elsevier B.V. We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies.

RELX

IEEE Catalog Number: CFP18URA-USB ISBN: 978-1-5386-8101-5 2nd International Conference on Smart Grid and Smart Cities (ICSGSC 2018)

10%

IEEE Catalog Number: CFP18URA-USB ISBN: 978-1-5386-8101-5 493

NUMBER OF STREET

ICSGSC 2018

2nd International Conference on Smart Grid and Smart Cities

Kuala Lumpur, Malaysia August 12-14, 2018

2nd International Conference on Smart Grid and Smart Cities (ICSGSC 2018)

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2018 by IEEE.

Conference XPLORE COMPLIANT Version

IEEE Catalog Number:	CFP18URA-ART
ISBN:	978-1-5386-8102-2
Conference USB Version	
IEEE Catalog Number:	CFP18URA-USB
ISBN:	978-1-5386-8101-5

Publisher: Institute of Electrical and Electronics Engineering, Inc.

Printed in Kuala Lumpur, Malaysia

2nd International Conference on Smart Grid and Smart Cities

(ICSGSC 2018)

August 12-14, 2018 Kuala Lumpur, Malaysia

Conference Committees

International Advisory Committee

Om Malik, University of Calgary, Canada

Conference Committee Chairs

A. R. Al-Ali, American University of Sharjah, UAE **Ab Halim Bin Abu Bakar,** University of Malaya, Malaysia

Program Committee Chairs

Suhana Binti Mohd Said, University of Malaya, Malaysia Wu Jin, Beijing Jiaotong University, China Jasmine Zhou, Nanyang Technological University, Singapore

Technical Committee Chairs

Aryuanto Soetedjo, National Institute of Technology (ITN) Malang, Indonesia Bushra Khalid, International Islamic University, Pakistan Dalhar Susanto, University of Indonesia, Indonesia Daniel Bernardon, PPGEE Department UFSM Santa Maria-RS, Brasil Dharmender Singh Kushwaha, MNNIT Allahabad, India Hartmut Schmeck, Karlsruhe Institute of Technology, Germany Hui Li, Beijing Information Science & Technology University, China Jagdish Kumar, PEC University of Technology, India Jatmiko Wahyudi, BAPPEDA, Indonesia Joseph D. Stevens, Heriot Watt University, United Arab Emirates Kouzou Abdellah, Ziane Achour University of Djelfa, Algeria Mohamad Kamarol Bin Mohd Jamil, University of Science Malaysia, Malaysia Mohammad Lutfi b. Othman, Universiti Putra Malaysia (UPM), Malaysia Naran Pindoriya, Indian Institute of Technology Gandhinagar, India Nashiren Farzilah bt. Mailah. Universiti Putra Malavsia (UPM). Malavsia Nilofar Asim, Universiti Kebangsaan Malaysia, Malaysia Noraisyah Binti Mohamed Shah, University of Malaya, MALAYSIA Nurul Islam, British Columbia Institute of Technology (BCIT), Canada Rashid Hussain, Hamdard University Karachi, Pakistan Sun Olapiriyakul, Thammasat University, Thailand Talal Shaikh, Heriot Watt University, United Arab Emirates Tan Chia Kwang, University of Malaya, MALAYSIA Theresita Atienza, Polytechnic University of the Philippines, Philippines Tzu-Ping Lin, National Cheng Kung University, Taiwan

Smart Grid and Power System

Ampacity Analysis of Buried Cables Based on Electromagnetic-thermal Finite Element Method
An IoT-Based Smart Utility Meter
A Methodology to Implement and Investigate Performance of Sampled Values for Wide-Area Protection
Research of Voltage Stability in 10 kV Distribution Networks during Integrating the 2 MW Solar Power Plant
Effect of Initial Rotor Position on Rotor Flux Oriented Speed Permanent Magnet Synchronous Motor Control using Incremental Encoder
Modeling of Wind Turbine Generator with Boost Converter MPPT100 Lazarus Stefan, Feri Yusivar
An Improved Grid-connected Control Strategy of Double PWM Direct-drive Permanent-magnet Synchronous Wind Generators
Bangladesh's Energy Crisis: A Summary of Challenges and Smart Grid-Based Solutions
Maximum Power Point Tracking (MPPT) Algorithm Simulation Based on Fuzzy Logic Controller on Solar Cell with Boost Converter
Electrical Engineering and Energy
Simulation of Fuzzy Logic Based Energy Management for the Home with Grid Connected PV-Battery System 122 Aryuanto Soetedjo, Yusuf Ismail Nakhoda, Choirul Saleh
Effect of Electromagnetic Damping on the Optimum Load Resistance of an Electromagnetic Vibration Energy Harvester
Renewable Energy in French Guiana: Prospects towards a Sustainable Development Scenario
Numerical Investigation of Flow Channel Geometrical Configuration Design Effect on a Proton Exchange Membrane Fuel Cell Performance and Mass Transport Phenomenon
Author Index

Effect of Initial Rotor Position on Rotor Flux Oriented Speed Permanent Magnet Synchronous Motor Control using Incremental Encoder

Bernadeta Wuri Harini, Nanda Avianto, Feri Yusivar Electrical Engineering Universitas Indonesia Kampus UI Depok 16424, West Java, Indonesia e-mail: yusivar@yahoo.com

Abstract— This paper analyzes the effect of the load and initial position of the Permanent Magnet Synchronous Motor Control (PMSM) control system when the PMSM is used as a vehicle on the flat road and uphill. The control system that will be analyzed uses Proportional Integral (PI) as a current controller and incremental encoder as a sensor. The results prove that the initial rotor positions affect the motor current.

Keywords— PMSM; vector control; incremental encoder; initial position; current; synchronization

I. INTRODUCTION

Permanent Magnet Synchronous Motor (PMSM) is an AC motor that the rotor runs at the same speed as the rotation of the stator magnetic field. The rotor is locked to a rotating field. The rotor has to operate at synchronous speed for all load states. Increasing the load causes a loss of torque and the motor loses synchronization. The motor will stop if the rotor is pulled out of the synchronism when the mechanical load of the motor is increased [1].

As for DC machines, torque control in AC machines is achieved by controlling the motor currents. However, both the phase angle and the modulus of the current in an AC machine have to be controlled. It means that the current vector has to be controlled. This is the reason for the terminology of 'vector control'. With vector control, the torque and flux-producing current components are decoupled. One of the vector control types is rotor-fluxoriented control[2]. In decoupling process, the three-phase mathematical model of PMSM will be changed into the two-phase mathematical model using Clarke and Parke transformations[3]. The Clarke transformation converts the balanced three-phase quantities into two-phase stationary reference frame. The Park transformation converts from stationary reference frame into a rotating reference frame.

When PMSM is used as a driving force in an electric vehicle, this out of synchronization can cause problems. When the vehicle is moving on a flat road as shown in Fig. 1.(a), due to the effect of vehicle loads, there can be a magnetic slip, as shown in Fig. 1.(b). Although the direction of the flux is the same, with different speeds ($\omega_e \rangle \rangle \omega_m$), the motor will be asynchronous. Not only on flat roads, the asynchronous condition also occurs in vehicles that are moving on uphill roads, as shown in Fig.1.(c). Because of

the effects of gravity, where the vehicle gets as much force in the opposite direction, the vehicle can run backward. This condition is dangerous for the passenger of the vehicle. In Fig.1.(d), a magnetic slip condition is indicated when the vehicle is on an uphill road. Unlike when a vehicle moves on a flat road where the direction of the stator flux is equal to the rotor flux, the magnetic slip condition when the vehicle is running on an uphill has a stator flux direction that is not equal to the rotor flux.

If the initial position of the rotor (θ_r) differs from the controller's initial position, it can cause problems, especially if the PMSM is used as an electric vehicle, as illustrated in Fig. 1. This condition increases if the motor gets a large load. A large load on the motor can also cause problems. As explained by Harini, B.W. et al[4], the electric vehicle actually moves in the wrong direction when a large load that has reverse torque direction is given to the motor. Different from that paper where the system used a sensorless system, this paper will present the effect of initial position and load on PMSM if the system uses incremental encoder sensor.

The initial position of the rotor is very important in the control of PMSM. Jung, D.H. et al have described an efficient method for identifying the initial position of a permanent magnet synchronous motor (PMSM) with an incremental encoder, even when a brake and/or a constant load torque is being applied[5]. However, in this paper, there is no explanation of the effect of the initial position on the motor current. Lei, Wang et al have proposed a method to identify the rotor position polarity[6]. This paper didn't describe the effect of the initial position on the motor current. All papers didn't research the phenomena as illustrated in Fig.1.

The control system that will be analyzed uses Proportional Integral (PI) as a current controller and incremental encoder as a sensor. The effect of the load and initial position on PMSM control will be analyzed on both road condition, as illustrated in Fig.1.

II. PMSM MODEL

The Park transformation converts from stationary reference frame into a rotating reference (d, q, 0) frame using (1).

$$\begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix} = \begin{bmatrix} \cos \theta_r & \sin \theta_r \\ -\sin \theta_r & \cos \theta_r \end{bmatrix} \begin{bmatrix} i_{s\alpha} \\ i_{s\beta} \end{bmatrix}$$
(1)

The PMSM mathematical model in the *d-q* frame [2] is

$$\begin{bmatrix} v_{sd} \\ v_{sq} \end{bmatrix} = \begin{bmatrix} R_s + pL_s & -N\omega_r L_s \\ N\omega_r L_s & R_s + pL_s \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix} + \begin{bmatrix} 0 \\ N\omega_r \psi_F \end{bmatrix}$$
(2)

where v_{sd} is the stator voltage in *d*-axis, v_{sq} is the stator voltage in *q* axis, i_{sd} is the stator current in *d*-axis, i_{sq} is the stator current in *q*-axis. The equation (5) can be stated as

$$\frac{d}{dt}i_{sd} = \frac{V_{sd} - R_s i_{sd} + N\omega_r L_{sq} i_{sq}}{L_{sd}}$$
(3)

$$\frac{d}{dt}i_{sq} = \frac{V_{sq} - i_{sd}N\omega_r L_{sd} - R_s i_{sq} - N\omega_r \psi_F}{L_{sq}}$$
(4)

The electric torque of PMSM is

$$T_e = \left\{ \psi_F i_{sq} + \left(L_{sd} - L_{sq} \right) i_{sd} i_{sq} \right\}$$
(5)

where L_{sd} is the stator inductance in *d*-axis and L_{sq} is the stator inductance in *q*-axis.

The mechanical model of PMSM [7] is

$$\frac{d\theta_r}{dt} = N\omega_r \tag{6}$$

where

$$\frac{d\omega_r}{dt} = \frac{T_e - T_L}{J} \tag{7}$$

where θ_r is the position of the rotor, ω_r is the speed, T_L is the load torque and J is the inertia of the motor.

III. PMSM SENSOR CONTROL

Block diagram of the PMSM sensor control system is shown in Fig. 2. Each part will be explained below.

Figure 2. Block diagram of the PMSM sensor control

A. Decoupling

Decoupling part is used to decouple cross-coupling between d and q-axis components (ω and i) which is not linear. This is necessary because the PI controller can only control the linear equations. The decoupling equations [8] are

$$V_{sd} = U_{sd} - N\hat{\omega}_r L_{sq} i_{sq1} \tag{8}$$

$$V_{sq} = U_{sq} + N\hat{\omega}_r L_{sd} i_{sd1} + N\hat{\omega}_r \psi_F \tag{9}$$

where

$$\frac{d}{dt}i_{sd1} = \frac{1}{T_d}i_{sd}^* - \frac{1}{T_d}i_{sd1}$$
(10)

$$\frac{d}{dt}i_{sq1} = \frac{1}{T_d}i_{sq}^* - \frac{1}{T_d}i_{sq1}$$
(11)

$$\frac{d}{dt}X_{sd} = i_{sd}^* - i_{sd} \tag{12}$$

$$\frac{d}{dt}X_{sq} = i_{sq}^* - i_{sq} \tag{13}$$

where i_{sd}^* is the set point of i_{sd} and i_{sq}^* is the set point of i_{sq} .

B. Current Controller

The phase angle and the modulus of the current in an A.C. machine have to be controlled. It means that the current vector has to be controlled [2], so the torque and flux producing current components are independently controlled. This is done by controlling the stator current in the d-q reference frame using Proportional Integrator (PI). The current controller equations [8] are

$$u_{sd} = K_{pd} (i_{sd}^* - i_{sd}) + K_{id} \int (i_{sd}^* - i_{sd}) dt \quad (14)$$

$$u_{sq} = K_{pq} (i_{sq}^* - i_{sq}) + K_{iq} \int (i_{sq}^* - i_{sq}) dt \quad (15)$$

where K_{pd} , K_{id} , K_{pq} , and K_{iq} are the current controller gain in the *d*-*q* frame. The values of each gain are

$$K_{pd} = \frac{L_{sd}}{T_d} \qquad K_{id} = \frac{R_s}{T_d} \qquad K_{pq} = \frac{L_{sq}}{T_d} \qquad K_{iq} = \frac{R_s}{T_d}$$
(16)

IV. METHODS

PMSM that we are used has parameters shown in Table I. The sensorless control system of PMSM is simulated using Matlab. The system is analyzed in two conditions. They are

- a. The vehicle runs on the flat road. The flat road is represented by a zero load. $(T_L = 0)$
- b. The vehicle runs on the uphill. The uphill path is represented with a non-zero (T_L) load, in which case the test is performed for $T_L = 0.16$ N.m.

The tests of both conditions were conducted at different starting positions ($\Delta\theta$), ie 0⁰, 45⁰, 90⁰, 135⁰, 180⁰, 225⁰, 270⁰, 315⁰, and 360⁰. $\Delta\theta$ is the difference between θ_r and θ_c . The variables tested are the i_d and i_q values when the initial rotor position is the same and different.

Parameters	Quantities	Unit	Description
Td	0.01	second	Time constant of current controller
dt	0.0001	second	Sampling time of controller
N	4		Number of pole pairs
R_s	0.14710296	Ω	Stator resistance
L_{sd}	0.29420592	mH	Stator inductance in <i>d</i> -axis
L_{sq}	0.382467696	mH	Stator inductance in q-axis
Ке	0.055977	Vpeak/rad/s	Electrical constant
psi (Ψ_F)	0.0133994	Ke/N	Magnet flux linkage
J	0.01	kgm ²	Motor inertia

PMSM PARAMETERS

The control system uses

TABLE I.

- a. An incremental encoder as the speed sensor.
- b. The Proportional Integral (PI) controller is used for the current control
- c. The constants of the current controller are obtained from the formula in equation 16.
- d. The set point of i_{sd}^* is 0A.
- e. The set point of i_{sq}^* is 1.86A.

V. RESULTS AND DISCUSSION

The system is tested on two conditions, i.e. the system is tested on the flat and uphill road. In this test, the initial position of PMSM is set at a certain angle. Speed (ω_r) is measured using an incremental encoder. The controller output position (θ_c) is reset so that the control position is equal to the rotor position (θ_r) .

A. Testing on a Flat Road

When the vehicle runs on a flat road, the motor is applied a zero load ($T_L = 0$). Fig. 3.a shows the reset process with an initial position of 0^0 . It appears that the position of the rotor and the output position of the controller from the start are the same. Fig. 3.b shows the reset process with an initial position of 90^0 . It appears that the start is at the rotor position of 90^0 or 1.57 radians while the controller output position (θ_c) is at position 360^0 (6.28 radians). When at position 0^0 , it is reset so that it is at position 0^0 . After reset, both positions are the same.

This condition also affects the i_d and i_q values. Fig. 4.a shows the i_d values when the starting position is the same. Fig. 4.b shows the i_d values when the starting position is different. The problem occurs when the initial position of the rotor differs from the controller's output position. It appears that the i_d current overshoots to 3 A for 43 seconds. At the 43rd seconds where the controller output position has been reset, the i_d value returns to set point (0 A).

This condition also occurs at the i_q value, as shown in Fig. 5. When the initial position of the rotor differs from the controller's output position, the i_q current drops to 0 A for 43 seconds. At the 43rd seconds where the controller output position has been reset, the i_q value returns to set point (3 A).

Figure 5. The response of i_q when the vehicle runs on a flat road

Fig. 6.a shows the overshoot changes in i_d values to different starting positions. Fig. 6.b shows the changes in the i_d value multiplied by the time. Fig. 7.a shows the overshoot changes in the i_q value to different starting positions, whereas Fig. 7.b shows the change in the i_q value multiplied by the time.

Figure 6. The condition of i_d versus initial position on a flat road

Figure 7. The condition of i_a versus initial position on a flat road conditions.

Fig. 6 and 7 show that both the current i_d and i_q at different starting positions have different values. From Fig.6.b and 7.b, it appears that the worst response occurs when the rotor's initial position is 90⁰ and 270⁰. This shows that initial position synchronization on PMSM is very important.

B. Testing on an Uphill Road

Testing on an uphill road is done with is applied a load $T_L = 0.16$ N.m. Fig. 8.a shows the reset process with an initial position of 0⁰. It appears that the position of the rotor and the output position of the controller from the start are the same. Fig. 8.b shows the reset process with an initial position of 90⁰. It appears that the start is at the rotor position of 90⁰ or 1.57 radians while the controller output position (θ_c) is at position 360⁰ (6.28 radians). When at position 0⁰, it is reset so that it is at position 0⁰. After reset, both positions are the same.

As happens when the motor is moving on a flat road, this condition also affects the i_d and i_q values. Fig. 9.a shows the i_d values when the starting position is the same. Fig. 9.b shows the i_d values when the starting position is different. The problem also occurs when the initial position of the rotor differs from the controller's output position. It appears that the i_d current overshoots to 3 A. After a reset, the i_d value returns to set point (0 A). Fig.10 shows the i_q value when the motor runs on an uphill road. When the initial position of the rotor differs from the controller's output position, the i_q current drops to 0 A. After a reset, the i_q value returns to set point (3 A). Fig. 9 and 10 show that initial position synchronization on PMSM is very important.

Fig. 11.a shows the overshoot changes in i_d values to different starting positions. Fig. 11.b shows the changes in the i_d value multiplied by the time. Fig. 12.a shows the overshoot changes in the i_q value to different starting positions, whereas Fig. 12.b shows the change in the i_q value multiplied by the time. It appears that both the current i_d and i_q at different starting positions have different values. Fig.11.b and 12.b show that the worst response occurs when the rotor's initial position is 90° and 270°. This shows that initial position synchronization on PMSM is very important.

Figure 9. The response of i_d when the vehicle runs on an uphill road

Figure 10. The response of i_q when the vehicle runs on an uphill road

Figure 11. The condition of i_d versus initial position on an uphill road conditions.

b. i_q x time range Figure 12. The condition of i_d versus initial position on an uphill road

[deg

VI. CONCLUSION

From the above analysis, it appears that PMSM motors used as vehicles still have problems, both when runs on a flat road and an uphill road. This issue is very important to be solved. In addition to detecting the initial position of the rotor, so that the current i_d and i_q correspond to the set point value, the rotor is rotated first to get the zero crossing. At zero crossing, the controller output position is reset to equal the rotor position. At this point, the i_d and i_q value return to the set point value.

ACKNOWLEDGMENT

This research is funded by Universitas Indonesia research grant of the *Publikasi International Terindeks untuk Tugas Akhir Mahasiswa* UI (PITTA) 2018.

REFERENCES

- [1] E. Edge. (2000). Synchronous Motor Starting Review.
- [2] P. Vas, Sensorless vector and direct torque control: Oxford University Press, USA, 1998.
- F. Semiconductor, "Sensorless PMSM vector control with a sliding mode observer for compressors using MC56F8013," *Document Number*, 2008.
- [4] B. W. Harini, A. Subiantoro, and F. Yusivar, "Study of speed sensorless permanent magnet synchronous motor (PMSM) control problem due to braking during steady state condition," in *Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, 2017 15th International Conference on*, 2017, pp. 184-189.
- [5] D.-H. Jung and I.-J. Ha, "An efficient method for identifying the initial position of a PMSM with an incremental encoder," *IEEE Transactions on Industrial electronics*, vol. 45, pp. 682-685, 1998.
- [6] W. Lei, "Study on initial rotor position identification of permanent magnet synchronous motor based on high frequency signal injection," in *Informatics in Control, Automation and Robotics* (CAR), 2010 2nd International Asia Conference on, 2010, pp. 397-401.
- [7] A. S. Mohamed, M. S. Zaky, A. Z. El Din, and H. A. Yasin, "Comparative study of sensorless control methods of PMSM drives," *Innovative Systems Design and Engineering*, vol. 2, pp. 44-67, 2011.
- [8] A. S. Mohamed, M. S. Zaky, A. Z. El Din, and H. A. Yasin, "Comparative study of sensorless control methods of PMSM drives," *Innovative Systems Design and Engineering*, vol. 2, pp. 2222-1727, 2011.

CERTIFICATE OF PRESENTATION

63(63)63(63)63(63)63(63)63(63)63(63)63(63)63(63)63(63)63)63

Bernadeta Wuri Harini

Universitas Indonesia

Paper Title: Effect of Initial Rotor Position on Rotor Flux Oriented Speed Permanent Magnet Synchronous Motor Control using Incremental Encoder

For your excellent oral presentation at the conference and your significant contribution to the success of 2nd International Conference on Green Energy (ICOGE 2018), Kuala Lumpur, Malaysia, August 12-14, 2018.

Paper ID: OGE18-107

Session Chair

Certificate Number: 18A01744

Conference Committee

ICOGE 2018