Title : Antibacterial Effect of Red Betel (Piper crocatum Ruiz & Pav.) Extract in Combination with Vancomycin against Staphylococcus aureus

Journal name : Biodiversitas

1/17/23, 1:49 PM

Gmail - [biodiv] Submission Acknowledgement

Yustina Sri Hartini <yustinahartini11@gmail.com>

[biodiv] Submission Acknowledgement

Ahmad Dwi Setyawan <smujo.id@gmail.com> Reply-To: Ahmad Dwi Setyawan <editors@smujo.id> To: Yustina <yustinahartini11@gmail.com> 13 April 2020 at 16:05

Yustina:

Thank you for submitting the manuscript, "Antibacterial Effect of Red Betel (Piper crocatum Ruiz & Pav.) Extract in Combination with Vancomycin against Staphylococcus aureus" to Biodiversitas Journal of Biological Diversity. With the online journal management system that we are using, you will be able to track its progress through the editorial process by logging in to the journal web site:

Submission URL: https://smujo.id/biodiv/authorDashboard/submission/5818 Username: yustinasrihartini

If you have any questions, please contact me. Thank you for considering this journal as a venue for your work.

Ahmad Dwi Setyawan

Biodiversitas Journal of Biological Diversity

1/17/23, 1:47 PM

Gmail - [biodiv] Editor Decision

Yustina Sri Hartini <yustinahartini11@gmail.com>

[biodiv] Editor Decision

Smujo Editors <smujo.id@gmail.com> 24 June 2020 at 1 Reply-To: Smujo Editors <editors@smujo.id> To: Yustina Sri Hartini <yustinahartini11@gmail.com>, Laurentius Hartanto Nugroho <hartantonugroho2005@ugm.ac.id>

24 June 2020 at 10:48

Yustina Sri Hartini, Laurentius Hartanto Nugroho:

We have reached a decision regarding your submission to Biodiversitas Journal of Biological Diversity, "Antibacterial Effect of Red Betel (Piper crocatum Ruiz & Pav.) Extract in Combination with Vancomycin against Staphylococcus aureus".

Our decision is: Revisions Required

Smujo Editors editors@smujo.id

Reviewer C: Recommendation: See Comments

Reviewer U: Recommendation: See Comments

Biodiversitas Journal of Biological Diversity

2 attachments

C-Sri Darmanti REVIEW_U-Antibacterial Effect of Red Betel_(corrected).doc

U-Sumi Wijaya review_U_Antibacterial Effect of Red Betel_(corrected).doc 240K

Antibacterial Effect of Red Betel (*Piper crocatum* Ruiz & Pav.) Extract in Combination with Vancomycin against *Staphylococcus aureus*

Abstract. The current study was performed to show the antibacterial effect of red betel (*Piper crocatum* Ruiz & Pav.) in combination with vancomycin against *Staphylococcus aureus*. The combination of isolated antibacterial compounds from a plant with antibacterial drug was expected to increase antibacterial activity resulted in the reduction of resistance. The interaction effect of extract and antibiotic combination was performed using the microdilution checkerboard method. The combination of red betel extract with vancomycin showed significantly greater inhibition growth of *S. aureus* compared to red betel extract or vancomycin alone. The addition of red betel extract to vancomycin reduced Minimum Inhibitory Concentration (MIC) vancomycin to be a-4 fold reduction against *S. aureus*. There was a synergistic effect of the red betel extract in combination with vancomycin.

Key words: Piper crocatum, vancomycin, synergistic antibacterial, Staphylococcus aureus

Abbreviations : MIC: Minimum Inhibitory Concentration; FICI: Fractional Inhibitory Concentration Index; MRSA: Meticillin Resistant *Staphylococcus aureus*; VRSA: Vancomycin Resistant *Staphylococcus aureus*.

Running title: Antibacterial Effect of Red Betel

INTRODUCTION

The discovery of penicillin antibiotics from the fungus Penicillium notatum was no longer a finding that addresses the problem of infection, an increase in cases of S. aureus infections in hospitals in the mid-1940s proved the need for new drugs to treat S aureus. Furthermore, methicillin findings can eliminate most of the pandemic S. aureus infection. However, the following time, the strains of methicillin-resistant S. aureus (MRSA) were found (Chambers and DeLeo 2009). Vancomycin is an antibiotic that is then used to treat Meticillin Resistant S. aureus (MRSA). However, it was first reported in 1997 that S. aureus resistant to vancomycin (VRSA) (Leclerecq 2009). The disc diffusion method showed that 21 of 29 strains S. aureus were MRSA, of which 11 were VRSA (Hasan et al. 2016). The current problem of bacterial resistance to antibiotics suggests that a single compound has not been able to overcome bacterial infections of S. aureus, new antibacterial or combination of compounds that may resolve bacterial resistance. The combination of compounds can have synergistic, additive, or antagonistic effects. Stronger antibacterial effects can be achieved by combining drugs. The increased effects of antibacterial activity on several pathogens from the combined natural ingredients indicate a synergistic effect due to the combination of the ingredients (Cheesmas et al. 2017; Semeniuc et al. 2013) Treatment with a combination of drugs has been used as an approach to overcome bacterial resistance, for example in the treatment of malaria and tuberculosis (Nosten and White 2007; Ramon-Garcia et al. 2011). The analyses on the result of the drug combination effect do support and enhance the discovery of drugs that display better selectivity and the possibility of overcoming drug resistance (Bulusu et al. 20016). In developing resistance agents in the area of bacterial resistance, many researchers have been developing the natural extract as materials especially from plant extract which were combined with antibiotics Demetrio et al. 2015). Betel and red betel showed a variation in anatomical characteristics (Nugroho et al., 2019). Betel showed the greatest antibacterial activity among 12 medicinal plants tested against Gram-positive and Gram-negative bacteria resistant to various drugs (Aldulaimi 2017). There were variations in spectral pattern between red and green edible canna, the differences due to differences in chemical bonds of compounds contained

Commented [SW1]: Recommended not to use this word

Commented [SW2]: p-value? Commented [SW3R2]:

Commented [SW4]: S. aureus

Commented ICINEL 2014

Commented	SVVS]: 2010
Commented [SW6]: (Demetrio et al. 2015)

Commented [SW7]: does writing this sentence imply anything in particularly?

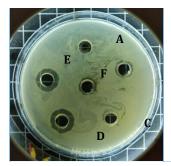
therein. Red canna extract is the most toxic of all the extract tested (Ifandari et al. 2020). Antibacterial activity of red betel (*Piper crocatum* Ruiz & Pav.) has been reported Kusuma et al. 2016). There have been no previous studies on the antibacterial effect of the combination of red betel extract with vancomycin. In this study, we aimed to determine the antibacterial effect of red betel extract and vancomycin combination against *S. aureus*.

MATERIALS AND METHODS

The research material was red betel leaf taken from Sleman Yogyakarta Indonesia, vancomycin (Vancep®), and *Staphylococcus aureus* ATCC 25923 (bacteria concentration was equal to Mac Farland II standard), Mueller Hinton. Determination of red betel plant was done in the Faculty of Biology Universitas Gadjah Mada, Yogyakarta, Indonesia. Herbarium of *Piper crocatum* Ruiz & Pav. is deposited at the Pharmacy Laboratory of the Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia.

Extraction with maceration followed by two times remaseration using methanol solvent. Evaporation was done with a rotary evaporator to obtain a thick red betel extract. Testing of antibacterial activity was performed by agar diffusion method, with test material in the form of solvent (A), vancomycin (B), red betel extract 150 mg/ml (C), the combination of vancomycin: extract (D, E, F). Determination on the antibacterial effect type of the test material combination was performed by microdilution checkerboard method to establish a single vancomycin MIC (MIC_A), MIC of a single red betel extract (MIC_B), MIC vancomycin in combination (MIC_{AB}), MIC extract of red betel in combination (MIC_{BA}). Fractional Inhibitory Concentration Index (FICI) values were obtained by the formula: (MIC_A/MIC_{AB}) + (MIC_B/MIC_{BA}). A combination of vancomycin and extract is called synergy effect if the value of FICI \leq 0.5; whereas the term of indifference and antagonism are indicated if FICI> 0.5, and FICI> 4 respectively (Jain et al. 2011; Kosropanah et al. 2012).

RESULTS AND DISCUSSION


The results of the antibacterial activity test of red betel extract, vancomycin, and extract combination with vancomycin are shown in Figure 1. and Table 1.

Result-1

Commented [SW8]: (2016)

Commented [SW9]: does writing this sentence imply anything in particularly?

Commented [SW10]: remaceration

Figure 1. Inhibition zones of extract, antibiotic, and combination of extract and antibiotic against *S. aureus* (A. Solvent, B. Vancomycin (16 µg/ml), C. Red betel extract (150 mg/ml), D. Combination Extract and Vancomycin (150 mg/ml : 16 µg/ml), E. Combination Extract and Vancomycin (300 mg/ml : 16 µg/ml), F. Combination Extract and Vancomycin (600 mg/ml : 16 µg/ml)

Commented [SW11]: Suggestion: research results can be read clearly if the DIZ value can be displayed

Commented [SW12]: The letter B in the picture is missing

Result-2

Table 1. The absorbance (\overline{x} ±SD) of the test material after overnight incubation

		Red betel extract (mg/ml)				
	Concentration	0	12.5	50	200	
(Im/gµ)	0	0.698 ± 0.003	0.704 ± 0.010	0.699 ± 0.008	0.560 ± 0.018	
gц) п	4	0.695 ± 0.003	0.432 ± 0.014	0.385 ± 0.007	0.059 ± 0.004	
myci	16	0.642 ± 0.016	0.302 ± 0.013	0.123 ± 0.003	0.048 ± 0.004	
Vancomycin	32	0.112 ± 0.012	0.095 ± 0.004	0.092 ± 0.003	0.092 ± 0.007	

Commented [SW13]: Suggestion:better shown as FICI value, if possible and significantly value can be shown in the table

Discussion

The results of the antibacterial activity test of red betel extract, vancomycin, and extract combination with vancomycin are shown in Figure 1. There is no visible growth inhibition zone of *S. aureus* in the solvent area (A), but the inhibition zone could be seen in the area of vancomycin (B), red betel extract (C) and combination of extract and vancomycin (D, E, F). The statistic test shows that there is a significant difference between inhibitory zone diameter of A and B, D, E, or F. It means that the test material of B, D, E, and F showed antibacterial activity against *S. aureus*. Although the growth inhibition zone appears in C, it is not significantly different to A. The inhibitory zone diameter D, E, or F is significantly different to B and C. It could be suggested that the combination of ret betel extract and vancomycin showed greater antibacterial activity than single extracts or single vancomycin. The inhibitory zone diameter D and E were significantly different to F. The combination of red betel extract and vancomycin with 150 mg/ml:16 µg/ml and 300 mg/ml:16 µg/ml ratio was significantly different to the combination of red betel extract and vancomycin with 600 mg/ml:16 µg/ml ratio.

Commented [SW14]: red

Table 1 shows the results of the antibacterial effect of red betel extract and vancomycin combination with the microdilution checkerboard method. Treatment with single vancomycin (4 μ g/ml), and a single red betel extract (12.5 mg/ml and 50 mg/ml) were not significantly different from the solvent. Consecutive addition of 12.5 mg/ml, 50 mg/ml, and 200 mg/ml red betel extract on vancomycin (4 μ g/ml) resulted in significantly different antibacterial effects, as well as when the ret betel extract were added to vancomycin 16 μ g/ml. The addition of these three levels of red betel extract did not result in a significantly different antibacterial effect when the extracts added to vancomycin levels of 32 μ g/ml. The MIC value of red betel extract was at the concentration of 200 mg/ml, MIC of vancomycin was at the concentration of 16 μ g/ml, whereas MIC of extract and antibiotic combination occurred in red betel extract and vancomycin at the ratio of 4 μ g/ml:12.5 mg/ml.

S. aureus bacteria were well-grown on test media without visible contamination of other microorganisms. Vancomycin activity against *S. aureus* could be demonstrated using the test method used. The results of the diffusion test showed that red betel extract could inhibit the growth of *S. aureus* starting at 150 mg/ml. The combination of red betel extract and vancomycin (150 mg/ml:16 µg/ml) showed an increase in *S. aureus* growth inhibition compared to the single vancomycin or extract. The increase in antibacterial effects suggests that a combination of red betel extract with vancomycin produces a synergistic effect. The synergy effect occurs when an effect seen by a combination of substances is greater than those of individual contributions (Williamson 2001). Several studies reported the synergistic effect of antibiotics when the antibiotics were combined with natural ingredients. The synergistic effect occurred on chloramphenicol activity combined with *Piper betel*, L towards the *S. aureus* (Taukoorah et al. 2016). The addition of pineapple extract to vancomycin increased the antibiotic (Kosropanah et al. 2012).

The addition of 150, 300, or 600 mg/ml red betel extract to vancomycin 16 μ g/ml showed a synergistic effect. The addition of various concentrations of extracts to vancomycin did not always result in an increase of synergistic effects. In comparison with the 150 mg/ml extract, the addition of 300 mg/ml extract to vancomycin 16 μ g/ml did not bring any significant difference in the activity. While the addition of 600 mg/ml extract to vancomycin showed a significant decrease in the activity. This result suggested that the addition of red betel 150 mg/ml extract to 16 μ g/ml vancomycin produced an optimal antibacterial effect.

The result of antibacterial activity using the microdilution checkerboard method confirmed the type of synergistic effect from the red betel extract in combination with vancomycin, with FICI value of 0.325 (Table 1). The value of MIC vancomycin in combination with red betel extract decreased 4-fold. This reduction is greater than the combination of vancomycin with the *Carum copticum*. Vancomycin in combination with *C. copticum* essential oils reduced MIC from 0.5 to 0.12 µg/m (Talei et al. 2017). The microdilution checkerboard method test results also confirmed that the increase of extract concentration in the combination of extract and vancomycin did not always result in an increase of synergy effects. The addition of red betel extract 12.5, 50, or 200 mg/ml to 4 µg/ml or 16 µg/ml vancomycin showed an increase in synergistic effect characterized by a decrease in absorbance of the test material. However, the addition ret betel extracts did not result in an increase in the synergistic effect of 32 µg/ml vancomycin, the consistent absorbance value of test material indicated the constant inhibition of *S. aureus* growth.

Commented [SW15]: betle

Commented [SW16]: should clearly state what kind of activity being decreased?

Commented [SW17]: Not sure, it is the suitable word being used to describe pharmacodynamics interaction. The FICI value clearly state if <0.5 is synergy, but I'm not sure if the value decreasing can be said as an increase of synergy effects

Commented [SW18]: red

The antibacterial activity of 200 mg/ml red betel extract and 4 μ g/ml or 16 μ g/ml vancomycin combination did not have any significant difference, however, both combinations showed the highest inhibitory activity of *S. aureus* growth. Since the results of the diffusion test showed that the antibacterial activity of the combination of red betel extract 300 mg/ml did not differ significantly with the 150 mg/ml, therefore the recommended concentration of red betel extract is 200 mg/ml. Since the addition of 12.5, 50, or 200 mg/ml red betel extract on vancomycin 32 μ g/ml did not significantly different, therefore the best-recommended combination for obtaining the highest antibacterial activity against *S. aureus* was 200 mg/ml red betel extract with 4 μ g/ml vancomycin.

Vancomycin is one of the glycopeptide class antibiotics. Glycopeptide class antibiotics involved in cellwall biosynthesis which binds the substrate of transpeptidase enzyme. Therefore, the enzymes are potential targets for combating the resistance (Healy et al. 2000). Combinations of compounds have been used in various treatments such as hypertension therapy, atherosclerosis, type-2 diabetes mellitus, cancer, and tuberculosis (Williamson 20010). The combined effect of the compound can be utilized to produce intended harmful effects to anti fungi, or unintended harmful effects, such as for synergistic toxicity (Bulusu et al. 2016). The compounds combination may lead to new ways to treat *S. aureus* (Moussaoui and Alaoui 2015). There has been a report on the additive effect in the combination of *Quercus infectoria* galls and vancomycin. A possible mechanism of antimicrobial action triggered by the combination treatments was postulated to be associated with the same target sites of the bacterial cell wall (Basri and Khairon 2012).

Evaluation of vancomycin combination with antibiotics both in vitro and in animal models of infection often yields inconsistent results, however, there are no data available from randomized clinical trials to support their use, while some regimens are known to have potential toxicities (Deresinski 2009, The multi-component nature of medicinal herbs makes them particularly suitable for treating complex diseases and offers great potential for exhibiting synergistic actions. Different agents may regulate either the same or different target in various pathways, and therefore cooperate in an agonistic or synergistic way (Yang et al. 2014). Therefore, the results of this research have the potential to be further developed to discover a combination of compounds that can overcome the problem of *S. aureus* resistance to vancomycin.

The addition of red betel extract to vancomycin produces a synergistic effect, which decreases the MIC value to 1/4 of single MIC vancomycin against *S. aureus*. Moreover, the FICI value of red betel extract and vancomycin combination was 0.3125. The best-recommended combination for obtaining the highest antibacterial activity against *S. aureus* is the combination of 200 mg/ml red betel extract and 4 μ g/ml vancomycin.

ACKNOWLEDGEMENTS

The authors are grateful to Sanata Dharma University for the financial support.

Commented [SW19]: 2010

Commented [SW20]: This journal also reported the possible active compound. Suggestion: can discuss the possible active compound in red betel

Commented [SW21]: (Deresinski 2009)

REFERENCES

Journal:

Aldulaimi OA 2017. General overview of phenolic from plant to laboratory, good antibacterial or not. Phcog Rev.11(22):123-127.

Basri DF and Khairon R 2012. Pharmacodynamic Interaction of *Quercus infectoria* Galls Extract in Combination with Vancomycin against MRSA Using Microdilution Checkerboard and Time –Kill Assay. Evid Based Complementary and Alternat Med. 493156:1-6.
Bulusu KC, Guha R, Mason DJ, Lewis RPI, Muratov E, Motamedi YK, Cokol M and Bender A 2016. Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives. Drug Discov Today 2: 225-238.

Chambers HF and DeLeo FR 2009. Waves of Resistance: Staphylococcus aureus in the Antibiotic Era. Nat Rev Microbiol 7(9): 629-641.

- Cheesmas MJ, Ilanko A, Blonk B and Cock IE 2017. Developing new antimicrobial therapies: Are synergistic combination of plant extracts/compounds with conventional antibiotics the solution?. Phcog Rev 11:57-72.
- Demetrio L, Valle Jr, Andrade JI, Puzon JM, Cabrera EC and Rivera WL 2015. Antibacterial activities of ethanol extracts of Philippines medicinal plants against multidrugs-resistant bacteria. Asian Pac J Trop Biomed 7:532-540.
- Deresinski S 2009. Vancomycin in combination with other antibiotics for the treatment of serious methicillin-resistant Staphylococcus aureus infection. Clin Infec Dis 49(7):1072-1079.
- Hasan R, Acharjee M and Noor R 2016. Prevalence of vancomycin resistant *Staphylococcus aureus* (VRSA) in methicillin resistant *S. aureus* (MRSA) strains isolated from burn wound infections. Ci Ji Yi Xue Za Zhi 28:49-53.
- Healy VL, Lessard IAD, Roper DI, Knox JR and Walsh CT 2000. Vancomycin resistance in enterococci: reprogramming of the D-Ala-D-Ala ligases in bacterial peptidoglycan biosynthesis. Chemistry & Biology 7(5):109-119.
- Ifandari, Widyarini S, Nugroho LH, Pratiwi R 2020. Phytochemical Analysis and cytotoxic activities of two distinct culltivars of Ganyong rhizomes (Canna indica) against the WiDr colon cancer cell line. Biodiversitas 21 (4):1660-1669.
- Jain SN, Vishwanatha T, Reena V, Divyashree BC, Aishwarya S, Siddhalingeswara KG, Venugopal N and Ramesh I 2011. Antibiotic Synergy Test: Checkerboard Method on Multidrug Resistant *Pseudomonas aeruginosa*. Int Res J Pharm 2(12): 196-198.
- Kosropanah H, Bazargani A, Ebrahimi H, Eftekhar K, Emami Z and Esmailzadeh S 2012. Assessing the Effect of Pineapple Extract Alone and in Combination with Vancomycin on Streptococcus sanguis. Jundishapur J Nat Pharm Prod. 7(4):140-143.
- Kusuma ASF, Zuhrotun A and Meidina FB 2016. Antibacterial Spectrum of Ethanol Extract of Indonesian Red Piper Betel Leaf (*Piper crocatum* Ruiz & Pav) Against Staphylococcus species. Int J Pharma Sci and Res 7(11):448-452.
- Leclerecq R 2009. Epidemiological and resistance issues in multidrug-resistant staphylococci and enterococci, Clin Microbiol Infect 15:224-231. Moussaoui F and Alaoui T 2015. Evaluation of antibacterial act ivity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pac J Trop Biomed 6(1):32-37.

Nosten F and White NJ 2007. Artemisinin-Based Combination Treatment of Falciparum Malaria, Am J Trop Med Hyg. 77(Suppl 6):181-192.

- Nugroho LH, Sutikno, Susandarini R, Yuliati IR, Priyono Y, Munawaroh E, and Astuti IP. 2019. Comparative leaf and stem anatomy of ten Piper species form Indonesia. Asian J Agric & Biol 7(3): 434-441.
- Ramon-Garcia S, Carol Ng, Anderson H, Chao JD, Zheng X, Gay Y, Roberge M and Thompsom 2011. Synergistic Drug Combinations for tuberculosis therapy identified by a novel high-throughput screen. Antimicrob Agents and Chemother Agustus: 3861-3869.
- Semeniuc CA, Pop CR and Rotar AM 2013. Antibacterial activity and interactions of plant essential oils combinations against Gram-positive and Gram-negative bacteria. J Food and Drug Anal. 25: 403-408.
- Talei GR, Mohammadi M, Bahmani M and Kopaei MR 2017. Synergistic effect of *Carum copticum* and *Mentha piperita* essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria. Int J Pharma Investig 7:82-7.
- Taukoorah U, Lall N and Mahomoodally F 2016. Piper betle L. (betel quid) shows bacteriostatic, additive, and synergistic antimicrobial action when combined with conventional antibiotics, S African J Bot 105:133-140.

Williamson EM 2001. Synergy and other interaction in phytomedicines. Phytomedicine 8:401-409.

Yang Y, Zhang Z, Li S, Ye X, Li X, and He K 2014. Synergy effects of herbs extracts: Pharmacokinetics and pharmacodynamics basis. Fitoterapia 92(January):133-147.

Antibacterial Effect of Red Betel (*Piper crocatum* Ruiz & Pav.) Extract in Combination with Vancomycin against *Staphylococcus aureus*

Abstract. The current study was performed to show the antibacterial effect of red betel (*Piper crocatum* Ruiz & Pav.) in combination with vancomycin against *Staphylococcus aureus*. The combination of isolated antibacterial compounds from plant with antibacterial drug were expected to increase antibacterial activity resulted in the reduction of resistance. The interaction effect of extract and antibiotic combination was performed using microdilution checkerboard method. The combination of red betel extract with vancomycin showed significantly greater inhibition growth of *S. aureus* compared to red betel or vancomycin alone. The addition of red betel extract to vancomycin reduced Minimum Inhibitory Concentration (MIC) vancomycin to be a-4 fold reduction against *S. aureus*. It is the potential result for the future research on the infectious treatment of *S. aureus* resistant to vancomycin.

Key words: Piper crocatum, vancomycin, synergistic antibacterial, Staphylococcus aureus

Abbreviations : MIC: Minimum Inhibitory Concentration; FICI: Fractional Inhibitory Concentration Index; MRSA: Meticilin Resistant *Staphylococcus aureus*; VRSA: Vancomycin Resistant *Staphylococcus aureus*.

Running title: Antibacterial Effect of Red Betel

INTRODUCTION

The discovery of penicillin antibiotics from the fungus Penicilium notatum was no longer a finding that addresses the problem of infection, an increase in cases of S. aureus infections in hospitals in the mid 1940s proved the need for new drugs to treat S aureus. Furthermore, methicillin findings can eliminate most of the pandemic S. aureus infection. However, the following time, the strains of methicillin resistant S. aureus (MRSA) were found (Chambers and DeLeo 2009). Vancomycin is an antibiotic that is then used to treat Meticilin Resistant S. aureus (MRSA). However, it was first reported in 1997 that S. aureus resistant to vancomycin (VRSA) (Leclerecq 2009). The disc diffusion method showed that 21 of 29 strains S. aureus were MRSA, of which 11 were VRSA (Hasan et al. 2016). The current problem of bacterial resistance to antibiotics suggests that a single compound has not been able to overcome bacterial infections of S. aureus, new antibacterial or combination of compounds that may resolve bacterial resistance. The combination of compounds can have synergistic, additive, or antagonistic effects. Stronger antibacterial effects can be achieved by combining the drugs. The increased effects of antibacterial activity on several pathogens from the combined natural ingredients indicate a synergistic effect due to the combination of the ingredients (Cheesmas et al. 2017; Semeniuc et al. 2013). Treatment with a combination of drugs has been used as an approach to overcome bacterial resistance, for example in the treatment of malaria and tuberculosis (Nosten and White 2007; Ramon-Garcia et al. 2011). The analyses on the result of drug combination effect do support and enhance the discovery of drugs that display better selectivity and possibility of overcoming drug resistance (Bulusu et al. 20016). In developing resistance agent in the area of bacterial resistant, many researchers have been developing the natural extract as materials especially from plant extract which were combined with antibiotics Demetrio et al. 2015). Betel and red betel showed a variation in anatomical characteristic (Nugroho et al., 2019). Betel showed the greatest antibacterial activity among 12 medicinal plants tested against Gram positive and Gram negative bacteria resistant to various drugs (Aldulaimi 2017). There were variations in spectral pattern between red and green edible canna, the differences due to differences in chemical bonds of compounds contained therein. Red canna extract is the most toxic of all the extract tested (Ifandari et al. 2020). Antibacterial activity of red betel (Piper crocatum Ruiz & Pav.) has been reported Kusuma et al. (2016). There have been no previous studies on antibacterial

Commented [SD22]: Give a little research background at the beginning of the abstract

Commented [SD23]: Avoid word in the title for keyword

effect of the combination of red betel extract with vancomycin. In this study, we aimed to determine the antibacterial effect of red betel extract and vancomycin combination against *S. aureus*.

MATERIALS AND METHODS

The research material was red betel leaf taken from Sleman Yogyakarta Indonesia, vancomycin (Vancep®), and *Staphylococus aureus* ATCC 25923 (bacteria concentration was equal to Mac Farland II standard), Mueller Hinton. Determination of red betel plant was done in Faculty of Biology Universitas Gadjah Mada, Yogyakarta, Indonesia. Herbarium of *Piper crocatum* Ruiz & Pav. is deposited at Pharmacy Laboratory, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia.

Extraction with maceration followed by two times remaseration using methanol solvent. Evaporation was done with a rotary evaporator to obtain a thick red betel extract. Testing of antibacterial activity was performed by agar diffusion method, with test material in the form of solvent (A), vancomycin (B), red betel extract 150 mg/ml (C), combination of vancomycin: extract (D, E, F). Determination on the antibacterial effect type of the test material combination was performed by microdilution checkerboard method to establish a single vancomycin MIC (MIC_A), MIC of a single red betel extract (MIC_B), MIC vancomycin in combination (MIC_{AB}), MIC extract of red betel in combination (MIC_{BA}). Fractional Inhibitory Concentration Index (FICI) values were obtained by the formula: (MIC_A/MIC_{AB}) + (MIC_B/MIC_{BA}). Combination of vancomycin and extract is called synergy effect if the value of FICI \leq 0.5; whereas the term of indifference and antagonism are indicated if FICI> 0.5, and FICI> 4 respectively (Jain et al. 2011; Kosropanah et al. 2012).

RESULTS AND DISCUSSION

The result of antibacterial activity test of red betel extract, vancomycin, and extract combination with vancomycin are shown in Figure 1. and Table 1.

Result-1

Figure 1. Inhibition zones of extract, antibiotic, and combination of extract and antibiotic against *S. aureus* (A. Solvent, B. Vancomycin (16 µg/ml), C. Red betel extract (150 mg/ml), D. Combination Extract and Vancomycin (150 mg/ml : 16

Commented [SD24]: age of leaf development / leaf number from the tip

Commented [SD25]: No mark on the picture

μg/ml), E. Combination Extract and Vancomycin (300 mg/ml : 16 μg/ml), F. Combination Extract and Vancomycin (600 mg/ml : 16 μg/ml)

Result-2

Table 1. The absorbance (x±SD) of the test material after overnight incubation

		Red betel extract (mg/ml)			
	Concentration	0	12.5	50	200
n (µg/ml)	0	0.698 ± 0.003	0.704 ± 0.010	0.699 ± 0.008	0.560 ± 0.018
	4	0.695 ± 0.003	0.432 ± 0.014	0.385 ± 0.007	0.059 ± 0.004
nyci	16	0.642 ± 0.016	0.302 ± 0.013	0.123 ± 0.003	0.048 ± 0.004
Vancomycin	32	0.112 ± 0.012	0.095 ± 0.004	0.092 ± 0.003	0.092 ± 0.007

Discussion

The result of antibacterial activity test of red betel extract, vancomycin, and extract combination with vancomycin are shown in Figure 1. There is no visible growth inhibition zone of *S. aureus* in the solvent area (A), but the inhibition zone could be seen in the area of vancomycin (B), red betel extract (C) and combination of extract and vancomycin (D, E, F). The statistic test shows that there is a significant difference between inhibitory zone diameter of A and B, D, E, or F. It means that the test material of B, D, E, and F showed antibacterial activity against *S. aureus*. Although the growth inhibition zone appears in C, but it is not significantly different to A. The inhibitory zone diameter D, E, or F is significantly different to B and C. It could be suggested that the combination of ret betel extract and vancomycin showed greater antibacterial activity than single extracts or single vancomycin. The inhibitory zone diameter D and E were significantly different to F. The combination of red betel extract and vancomycin with 150 mg/ml:16 µg/ml and 300 mg/ml:16 µg/ml ratio was significantly different to the combination of red betel extract and vancomycin with 600 mg/ml:16 µg/ml ratio.

Table 1 shows the results of antibacterial effect of red betel extract and vancomycin combination with microdilution checkerboard method. Treatment with single vancomycin (4 μ g/ml), and a single red betel extract (12.5 mg/ml and 50 mg/ml) were not significantly different from solvent. Consecutive addition of 12.5 mg/ml, 50 mg/ml, and 200 mg/ml red betel extract on vancomycin (4 μ g/ml) resulted in a significantly different antibacterial effects, as well as when the ret betel extract were added to vancomycin 16 μ g/ml. The addition of these three levels of red betel extract did not result in a significantly different antibacterial effect when the extracts added to vancomycin levels of 32 μ g/ml. The MIC value of red betel extract was at the concentration of 200 mg/ml, MIC of vancomycin was at the concentration of 16 μ g/ml, whereas MIC of extract and antibiotic combination occurred in red betel extract and vancomycin at the ratio of 4 μ g/ml.25 mg/ml.

S. aureus bacteria were well-grown on test media without visible contamination of other microorganisms. Vancomycin activity against *S. aureus* could be demonstrated using the test method used. The results of the diffusion test showed that red betel extract could inhibit the growth of *S. aureus* starting at 150 mg/ml. The combination of red betel extract and vancomycin (150 mg/ml:16 µg/ml)

showed an increase in *S. aureus* growth inhibition compared to the single vancomycin or extract. The increase in antibacterial effects suggests that a combination of red betel extract with vancomycin produces a synergistic effect. Synergy effect occurs when an effect seen by a combination of substances is greater than those of individual contributions (Williamson 2001). Several studies reported the synergistic effect of antibiotics when the antibiotics were combined with natural ingredients. Synergistic effect occurred on chloramphenicol activity combined with *Piper betel*, L towards the *S. aureus* (Taukoorah et al. 2016). The addition of pineapple extract to vancomycin increased the antibacterial effects of the antibiotic (Kosropanah et al. 2012).

The addition of 150, 300, or 600 mg/ml red betel extract to vancomycin 16 μ g/ml showed a synergistic effect. The addition of various concentration of extracts to vancomycin did not always resulted in the increase of synergistic effects. In the comparison with the 150 mg/ml extract, the addition of 300 mg/ml extract to vancomycin 16 μ g/ml did not bring any significant difference in the activity. While the addition of 600 mg/ml extract to vancomycin actually showed a significant decrease in the activity. This result suggested that the addition of red betel 150 mg/ml extract to 16 μ g/ml vancomycin produced an optimal antibacterial effect.

The result of antibacterial activity using microdilution checkerboard method confirmed the type of synergistic effect from the red betel extract in combination with vancomycin, with FICI value of 0.325 (Table 1). The value of MIC vancomycin in combination with red betel extract decreased 4-fold. This reduction is greater than the combination of vancomycin with *Carum copticum*. Vancomycin in combination with *C. copticum* essential oils reduce MIC from 0.5 to 0.12 μ g/m (Talei et al. 2017). The microdilution checkerboard method test results also confirmed that the increase of extract concentration in the combination of extract and vancomycin did not always resulted in the increase of synergy effects. The addition of red betel extract 12.5, 50, or 200 mg/ml to 4 μ g/ml or 16 μ g/ml vancomycin showed an increase in synergistic effect characterized by a decrease in absorbance of the test material. However, the addition ret betel extracts did not resulted in an increase in the synergistic effect of 32 μ g/ml vancomycin, the consistent absorbance value of test material indicated the constant inhibition of *S. aureus* growth.

The antibacterial activity of 200 mg/ml red betel extract and 4 μ g/ml or 16 μ g/ml vancomycin combination did not have any significant difference, however both combinations showed the highest inhibitory activity of *S. aureus* growth. Since the results of the diffusion test showed that the antibacterial activity of the combination of red betel extract 300 mg/ml did not differ significantly with the 150 mg/ml, therefore the recommended concentration of red betel extract is 200 mg/ml. Since the addition of 12.5, 50, or 200 mg/ml red betel extract on vancomycin 32 μ g/ml did not significantly different, therefore the best recommended combination for obtaining the highest antibacterial activity against *S. aureus* was 200 mg/ml red betel extract with 4 μ g/ml vancomycin.

Vancomycin is one of the glycopeptide class antibiotics. Glycopeptide class antibiotics involved in cellwall biosynthesis which binds the substrate of transpeptidase enzyme. Therefore, the enzymes are potential targets for combating the resistance (Healy et al. 2000). Combinations of compounds have been used in various treatments such as hypertension therapy, atherosclerosis, type-2 diabetes mellitus, cancer, and tuberculosis (Williamson 20010). The combination effect of the compound can be utilized to produce intended harmful effect to anti fungi, or unintended harmful effect, such as for synergistic toxicity (Bulusu et al. 2016). The compounds combination may lead to new ways to treat *S. aureus*

Commented [SD26]: need to be added antimicrobial active compounds in the red betel and its inhibitory mechanism

(Moussaoui and Alaoui 2015). There has been report on the additive effect in the combination of *Quercus infectoria* galls and vancomycin. Possible mechanism of antimicrobial action triggered by the combination treatments was postulated to be associated with the same target sites of the bacterial cell wall (Basri and Khairon 2012).

Evaluation of vancomycin combination with antibiotics both in vitro and in animal models of infection often yield inconsistent results, however there are no data available from randomized clinical trials to support their use, while some regimens are known to have potential toxicities (Deresinski 2009. The multi-component nature of medicinal herbs makes them particularly suitable for treating complex diseases and offers great potential for exhibiting synergistic actions. Different agents may regulate either the same or different target in various pathways, and therefore cooperate in an agonistic or synergistic way (Yang et al. 2014). Therefore, the results of this research have the potential to be further developed to discover a combination of compounds that can overcome the problem of *S. aureus* resistance to vancomycin.

The addition of red betel extract to vancomycin produces a synergistic effect, which decreases the MIC value to 1/4 of a single MIC vancomycin against *S. aureus*. Moreover, the FICI value of red betel extract and vancomycin combination was 0.3125. The best recommended combination for obtaining the highest antibacterial activity against *S. aureus* is the combination of 200 mg/ml red betel extract and 4 μ g/ml vancomycin.

ACKNOWLEDGEMENTS

The authors are grateful to Sanata Dharma University for the financial support.

REFERENCES

Journai:	
Aldulaimi OA 2017. General overview of phenolic from plant to laboratory, good antibacterial or not. Phcog Rev 11(22):123-127.	Commented [SD27]: Journal name : italic format
Basri DF and Khairon R 2012. Pharmacodynamic Interaction of <i>Quercus infectoria</i> Galls Extract in Combination with Vancomycin against MRSA Using Microdilution Checkerboard and Time –Kill Assay. <i>Evid Based Complementary and Alternat Med.</i> 493156:1-6.	
Bulusu KC, Guha R, Mason DJ, Lewis RPI, Muratov E, Motamedi YK, Cokol M and Bender A 2016. Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives. Drug Discov Today 2: 225-238.	
Chambers HF and DeLeo FR 2009. Waves of Resistance: Staphylococcus aureus in the Antibiotic Era. Nat Rev Microbiol 7(9): 629-641.	
Cheesmas MJ, Ilanko A, Blonk B and Cock IE 2017. Developing new antimicrobial therapies: Are synergistic combination of plant extracts/compounds with conventional antibiotics the solution?. <i>Phcog Rev</i> 11:57-72.	
Demetrio L, Valle Jr, Andrade JI, Puzon JM, Cabrera EC and Rivera WL 2015. Antibacterial activities of ethanol extracts of Philippines medicinal plants against multidrugs-resistant bacteria. Asian Pac J Trop Biomed 7:532-540.	
Deresinski S 2009. Vancomycin in combination with other antibiotics for the treatment of serious methicillin-resistant Staphylococcus aureus infection. Clin Infec Dis 49(7):1072-1079.	
Hasan R, Acharjee M and Noor R 2016. Prevalence of vancomycin resistant <i>Staphylococcus aureus</i> (VRSA) in methicillin resistant <i>S. aureus</i> (MRSA) strains isolated from burn wound infections. Ci Ji Yi Xue Za Zhi 28:49-53.	

Healy VL, Lessard IAD, Roper DI, Knox JR and Walsh CT 2000. Vancomycin resistance in enterococci: reprogramming of the D-Ala-D-Ala ligases in bacterial peptidoglycan biosynthesis. Chemistry & Biology 7(5):109-119.

- Ifandari, Widyarini S, Nugroho LH, Pratiwi R 2020. Phytochemical Analysis and cytotoxic activities of two distinct culltivars of Ganyong rhizomes (Canna indica) against the WiDr colon cancer cell line. Biodiversitas 21 (4):1660-1669.
- Jain SN, Vishwanatha T, Reena V, Divyashree BC, Aishwarya S, Siddhalingeswara KG, Venugopal N and Ramesh I 2011. Antibiotic Synergy Test: Checkerboard Method on Multidrug Resistant *Pseudomonas aeruginosa*. Int Res J Pharm 2(12): 196-198.
- Kosropanah H, Bazargani A, Ebrahimi H, Eftekhar K, Emami Z and Esmailzadeh S 2012. Assessing the Effect of Pineapple Extract Alone and in Combination with Vancomycin on Streptococcus sanguis. Jundishapur J Nat Pharm Prod. 7(4):140-143.
- Kusuma ASF, Zuhrotun A and Meidina FB 2016. Antibacterial Spectrum of Ethanol Extract of Indonesian Red Piper Betel Leaf (*Piper crocatum* Ruiz & Pav) Against Staphylococcus species. Int J Pharma Sci and Res 7(11):448-452.
- Leclerecq R 2009. Epidemiological and resistance issues in multidrug-resistant staphylococci and enterococci, Clin Microbiol Infect 15:224-231. Moussaoui F and Alaoui T 2015. Evaluation of antibacterial act ivity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pac J Trop Biomed 6(1):32-37.
- Nosten F and White NJ 2007. Artemisinin-Based Combination Treatment of Falciparum Malaria, Am J Trop Med Hyg. 77(Suppl 6):181-192.
- Nugroho LH, Sutikno, Susandarini R, Yuliati IR, Priyono Y, Munawaroh E, and Astuti IP. 2019. Comparative leaf and stem anatomy of ten Piper species form Indonesia. Asian J Agric & Biol 7(3): 434-441.
- Ramon-Garcia S, Carol Ng, Anderson H, Chao JD, Zheng X, Gay Y, Roberge M and Thompsom 2011. Synergistic Drug Combinations for tuberculosis therapy identified by a novel high-throughput screen. Antimicrob Agents and Chemother Agustus: 3861-3869.
- Semeniuc CA, Pop CR and Rotar AM 2013. Antibacterial activity and interactions of plant essential oils combinations against Gram-positive and Gram-negative bacteria. J Food and Drug Anal. 25: 403-408.
- Talei GR, Mohammadi M, Bahmani M and Kopaei MR 2017. Synergistic effect of *Carum copticum* and *Mentha piperita* essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria. Int J Pharma Investig 7:82-7.
- Taukoorah U, Lall N and Mahomoodally F 2016. Piper betle L. (betel quid) shows bacteriostatic, additive, and synergistic antimicrobial action when combined with conventional antibiotics, S African J Bot 105:133-140.

Williamson EM 2001. Synergy and other interaction in phytomedicines. Phytomedicine 8:401-409.

Yang Y, Zhang Z, Li S, Ye X, Li X, and He K 2014. Synergy effects of herbs extracts: Pharmacokinetics and pharmacodynamics basis. Fitoterapia 92(January):133-147.

1/17/23, 1:43 PM

Gmail - [biodiv] Editor Decision

Yustina Sri Hartini <yustinahartini11@gmail.com>

[biodiv] Editor Decision

 Smujo Editors <smujo.id@gmail.com>
 26 June 2020 at 09:02

 Reply-To: Smujo Editors <editors@smujo.id>
 27 June 2020 at 09:02

 To: YUSTINA SRI HARTINI <yustinahartini11@gmail.com>, LAURENTIUS HARTANTO NUGROHO
 4 hartantonugroho2005@ugm.ac.id>

YUSTINA SRI HARTINI, LAURENTIUS HARTANTO NUGROHO:

We have reached a decision regarding your submission to Biodiversitas Journal of Biological Diversity, "Short Communication: Antibacterial effect of red betel (Piper crocatum) extract in combination with vancomycin against Staphylococcus aureus".

Our decision is to: Accept Submission

Smujo Editors editors@smujo.id

Biodiversitas Journal of Biological Diversity

1/17/23, 1:44 PM

Gmail - [biodiv] Editor Decision

Yustina Sri Hartini <yustinahartini11@gmail.com>

[biodiv] Editor Decision

Smujo Editors <smujo.id@gmail.com> 26 June 2020 at 09:03 Reply-To: Smujo Editors <editors@emujo.id> To: YUSTINA SRI HARTINI <yustinahartini11@gmail.com>, LAURENTIUS HARTANTO NUGROHO <hartantonugroho2005@ugm.ac.id>

YUSTINA SRI HARTINI, LAURENTIUS HARTANTO NUGROHO:

The editing of your submission, "Short Communication: Antibacterial effect of red betel (Piper crocatum) extract in combination with vancomycin against Staphylococcus aureus," is complete. We are now sending it to production.

Submission URL: https://smujo.id/biodiv/authorDashboard/submission/5818

Smujo Editors editors@smujo.id

[Quoted text hidden]