
Title : Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus 

Journal Name: Result in Chemistry 

 



 

 

 

Biflavonoid as Potential 3-Chymotrypsine-like Protease (3CLpro) Inhibitor of SARS-

Coronavirus 

 

Yustina Sri Hartini, Bakti Wahyu Saputra, Bryan Afela Wahono, Zerlinda Clara, Friska Dwi 

Indayani,  Lintang Adelya, Gabriel Aprilyan Sibata Namba and Maywan Hariono* 

Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, 

Sleman 55282, Yogyakarta, Indonesia 

 

Abstract 

3CL protease is one of the key proteins expressed by SARS-Coronavirus-2 cell, the potential to be 

targeted in the discovery of antivirus during this COVID-19 pandemic. This protein regulates the 

proteolysis of viral polypeptide essential in forming RNA virus. 3CL protease was commonly 

targeted in the previous SARS-Coronavirus including bat and MERS, hence, by blocking this 

protein activity, the coronavirus should be eradicated. This study aims to review the potency of 

biflavonoid as the SARS-Coronovirus-2 3CL protease (3CLpro) inhibitor. The review was 

initiated by describing the chemical structure of biflavonoid and followed by listing its natural 

source. Instead, the synthetic pathway of biflavonoid was also elaborated. The 3CLpro structure 

and its function was also illustrated follwed by the list of its 3D-crystal structure available in 

protein data bank. Lastly, the pharmacophores of biflavonoid have been identifiead as protease 

inhibitor was also discussed. This review hopefully will help researchers to obtain a packed 

information about biflavonoid which could lead to the study in designing and discovering a novel 

SARS-Coronavirus-2 drug by targetting 3CLpro enzyme. 

 

 

1. Introduction 

The pandemic Covid-19 has been extending for almost 10 months since it was outbreak in January 

2020 1. The statistic up to now (24 October 2020) is 43 M cases, 29 M recovered and 1.15 M 



death, across the world. United State of America is so far a country with the highest cases as 

reported approximately  8.5 M 2. Meanwhile, Indonesia is still having an increased cases that 

today, it has been approximately 393,000 cases with 318,000 recovered and 13,500 death 3. This 

situation has made very huge impacts in all aspects of live including economy, politics, social, 

culture, health and education. For example, United Nations Industrial Development Organization 

(UNIDO) reported that since April 2020, the high income countries (30 countries) have 18% 

average economic losses, whereas the upper middle-income countries (13 countries) suffer 24% 

average losses. The lower middle-income countries (6 countries) are hurted by 22% average loss, 

confirming the economic crisis unleashed by the pandemic, regardless of income level 4. The 

SARS-Coronavirus-2 viral vector is still debating, however, there is either bat or snake believed 

as the first virus transmiting species to human 5.  

As some other corona viruses, SARS-CoV-2 is also a family of coronaviridae, which genomicaly 

composed by the structural as well as non-structural proteins. This is RNA virus in which on one 

hand, the structural protein contains S protein (spike), M protein (membrane), E protein (envelope) 

and N protein (nucleocapside) 6. On the other hand, the non-structural protein (NSP) is an open 

reading frame consisting of NSP1-16  7. Upon entry into the host cell, the incoming viral genome 

is translated to produce two large precursor polyproteins 1a (pp1a) and 1ab (pp1ab) that are 

processed by open reading frame (ORF) 1a-encoded viral proteinases, papain-like proteinase 

(PLpro) and 3C-like proteinase (3CLpro), into 16 mature nonstructural proteins (NSP1–NSP16, 

numbered according to their order from the N-terminus to the C-terminus of the ORF 1 

polyproteins). Many of the NSPs perform essential functions in viral RNA replication and 

transcription 8. The virus life cycle is illustrated in Figure 1. 



 

Figure 1. The life cycle of coronaviruses is initiated by the binding of the viral cell through its 

protein spike (S) to the host cell’s receptor namely angiotensin converting enzyme 2 (ACE2). Upon 

membrane fusion (endocytosis), the virus is coated by endosome. The following endosomal break 

down releases RNA from the virus into the host cell. The incoming viral genome is translated to 

produce two large precursor polyproteins 1a (pp1a) and 1ab (pp1ab) which are cleaved by 

proteases into small products. A series of subgenomic mRNA are transcripted and finally 

translatted into viral proteins. The viral protein along with RNA are packed into virion in the ER 

and golgi and then transported via vesicles and released out of the cell 9. 

 

One of the common studied NSPs is NSP5 in which chymotrypsin like protease  (3CLpro) is one 

kind of this non-structural protein 10. 3CLpro cleaves the polyprotein into viral RNA which is 

then replicated and packed in the new mature virus. Therefore, by interfering this proteolytic step, 

the viral RNA replication will be interupted leading to the prevention of new viruses for further 

expansion. 3CLpro is one of interesting protein targets in combating coronavirus by competitive 

inhibition with the peptide substrate 11. 

Review on natural product compounds potential for SARS-Coronavirus have been published by 

targetting diverse proteins. These includes tanshinones, diarylheptanoids and  geranylated 

flavonoids targeting PLpro 12, quercetine (reverse transcriptase) 13, aloeemodin and hesperitin 

(3CLpro) 14, apigenin (viral internal ribosome entry) 15, isatisindigotica (protease) 16, 



amentoflavone (biflavonoid; protease) 17, kaempferol (3a ion channel) 18, glycyrrhizin 

(protease) 19, tetradrine (viral S and N) 20, silvestrol (cap-dependent viral mRNA translation) 

21,22, etc.  

Biflavonoid is currently attractive to be proposed as the serine protease inhibitor due to the 

suitability of its chemical structure with the active site of the protease 23. Serine proteases are 

characterised by a distinctive structure, consisting of two beta-barrel domains that converge at the 

catalytic active site. These enzymes can be further categorised based on their substrate specificity 

as either trypsin-like, chymotrypsin-like or elastase-like. Therefore, the dimer form of biflavonoid 

is such a good inhibitor model that would fully occupy the two beta-barrel domain (main site and 

prime site) 24. 

In this review, we will focus on the biflavonoid as the interesting compound, potential for 3CLpro 

inhibitor of SARS-Coronavirus-2. The review will be started by defining the chemical structure of 

biflavonid and its sources from both natural product as well as synthesis. The following section 

would be elaborating the 3CLpro structure and its function as the interesting protein target for 

biflavonoid. The review also summarized the available SARS-Coronavirus-2 3CLpro 3D crystal 

structure in protein data bank. Last but not least, the current study of the biflavonoid as a diverse 

protease inhibitor would be carried out to give the insight mechanism on how the biflavonoid can 

act as a potential SARS-CoV-2 antiviral agent.  

 

2. Chemical structure 

Biflavonoid is a natural product compound bearing a dimer of two sets of flavonoid, linked by 

either C-C or C-O bond 25,26. The flavonoid itself is chemically constructed by 15-C skeleton, 

which is divided into two aromatic rings (Ring A and Ring B) and connected by a heterocyclic 

ring having α, β- unsaturated carbonyl chain 27. Instead of flavonoid is the major form of such 

compound class, there are two kind analogs which enrich the flavonoid structural diversity. They 

are isoflavonoid (derived from 3-phenylchromen-4-one (3-phenyl-1,4-benzopyrone) and 

neoflavonoid (derived from 4-phenylcoumarine (4-phenyl-1,2-benzopyrone). Other subgroup of 

flavonoid including flavan, flavanone, flavanonol, anthocyanidin and anthoxantin are also widely 

distributed among natural resources 28. Figure 2 illustrates the structure of flavonoid and its 

analogs. 
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Figure 2. The structures of a) flavonoid, b) biflavonoid, c) isoflavonoid, d) neoflavonoid, e) 

flavanone, f) flavanonol, g) anthocyanidin and h) anthoxantin which are naturally occured in 

plants. 

 

The aromatic rings are often decorated by poly-hydroxy group, therefore this compound’s class 

are frequently called polyphenolic compounds. The presence of OH group also has a chance for 

the flavonoid to be biosyntheticaly formed in a glycoside. The sugar moiety in the glycosidic form 

makes the flavonoid more soluble in water than organic solvents, due to the polar character of the 

sugar 29,30.  

Spectroscopically, alike to polyphenolic flavonoid, the yellowish biflavonoid absorbs UV light at 

500-600 nm. The colorimetric reaction namely batochromic shift (red shift) occurs when it reacts 

with alkaline solution to prolong the maximum wavelength (650 nm). Vice versa, polyvalent ion 

such as Al3+ may shift the wavelength into hypsochromic shift (blue shift) with a lower wavelength 

(450 nm) 31. Using fourier transform infrared (FTIR) spectroscopy, the carbonyl of chromone 

group stretching vibration is transmitted at 1600 cm-1, meanwhile the vinyl aromatic group appears 

at 3600 cm-1 as a bending vibration 32. The proton of biflavonoid is indicated as multiplet signals 

around 6-8 ppm which often overlap in trans/ cis configuration protons of α, β- unsaturated 

carbonyl chain as confirmed by nuclear magnetic resonance (NMR) spectroscopy. In conjunction, 

the carbon signal of carbonyl chromone group is indicated in 160 ppm, whereas the vinylic 

aromatic carbon appears at 150 ppm. Using mass spectroscopy, the origin of flavonoid sceleton 



could be the most stable mass/ ion (base peak) during the fragmentation due to electron impact 

bombardment 33.  

 

3. Natural sources  

A naturally occuring biflavonoid is distributed in various plant species. The first isolated natural 

biflavonoid was from Ochna squarrosa Linn. (Ochnaceae) 34, and later was from Lonicera 

japonica (Caprifoliaceae) 35. Torreya nucifera was also identified as the natural source 

producing four biflavonoids 36. Amentoflavone is another kind of biflavonoid isolated from 

abroad family of plants such as  selaginellaceae, cupressaceae, euphorbiaceae, podocarpaceae, and 

calophyllaceae 37. It was reported for at least 127 biflavonoids distributed among plants, but the 

most occurences are Gingko biloba, Lobelia chinensis, Polygala sibirica, Ranunculus ternatus, 

Selaginella pulvinata, Selagenella tamariscina 37.  

More recent study had identified the biflavonoid I3′,II8-binaringenin in drupes of Schinus 

terebinthifolius, was indicated by UHPLC-MS 38. Five biflavonoids was lately found in 

Ceratodon purpureus presenting a diastereomerism in the second biflavonoid 39. In the same 

year, three biflavonoid type were also discovered in Selaginella doederleinii including 

amentoflavone type, robustaflavone type, and hinokiflavone type 40. From the family of 

zingiberaceae, new biflavonoids with flavanone-chalcone type existing in fingerroot 

(Boesenbergia rotunda) 41. The pure biflavonoid with aglycones morelloflavone (Mo) type, 

volkensiflavone (Vo) type , as well as the morelloflavone’s glycoside fukugiside (Fu) type were 

characterized in Garcinia madruno 42. The genus of garcinia again was shown its resource of 

biflavonoid by discovering seven compounds including volkensiflavone, fukugetin, fukugeside, 

GB 1a, GB 1a glucoside, GB 2a, and GB 2a glucoside from Garcinia xanthochymus fruits 43. 

Figure 3 illustrates the chemical structure of hinokiflavone, ochnaflavone, morelloflavone and  

volkensiflavone. For more data, Table 1 tabulates the various study reporting biflavonid found in 

natural source in the last three years. 
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Figure 3. The chemical structures of earlier biflavonoid found in plants: a) hinokiflavone, b) 

ochnaflavone, c) amentoflavone, d) morelloflavone, and e) volkensiflavone. 

 

Table 1. Biflavonoids from natural resources have been reported in the last three years. 

No Biflavonoid Plants References 

1 dihydrodaphnodorin B Fumana procumbens  44 

2 daphnodorin B Fumana procumbens  44 

3 volkesiflavone  Garcinia gardneriana 45 

4 morelloflavone Garcinia gardneriana, Garcinia 

madruno 
45 

5 7,7″-di-O-methylchamaejasmin Ormocarpum kirkii 46 

6 campylospermone A Ormocarpum kirkii 46 

7 a dimeric chromene [diphysin Ormocarpum kirkii 46 

8 amentoflavone 7′′-O-β-d-glucopyranoside Ginkgo Biloba 47 

9 bilobetin Ginkgo Biloba 47 

10 isoginkgetin Ginkgo Biloba 47 

11 sciadopitysin Ginkgo Biloba 48 

12 agathisflavone Schinus terebinthifolius; Anacardium 

occidentale 
49,50 

13 tetrahydroamentoflavone Schinus terebinthifolius 49 

14  Selaginella uncinata 50 

15 7, 4′, 7′″, 4′″-tetra-O-methyl amentoflavone Cephalotaxus harringtonia 51 

16 7, 4′, 7″-tri-O-methyl amentoflavone Cephalotaxus harringtonia 51 

17 sequoiaflavone Cephalotaxus harringtonia; Ouratea 

ferruginea 
51, 52 

18 amentoflavone monomethoxy derivatives  53 

19 dihydrochalcone flavanone Sophora flavescens 54 

20 2',3'- 

dihydroochnaflavone 

Ochna mauritiana 55 

21 dulcisbiflavonoid B Garcinia dulcis 56 



22 dulcisbiflavonoid C Garcinia dulcis 56 

23 umcephabiflovin A Cephalotaxus oliveri 57 

24 umcephabiflovin B Cephalotaxus oliveri 57 

25 S-taiwanhomoflavone-B Cephalotaxus oliveri 57 

26 5, 6, 6'-trihydroxy-[1,1'-biphenyl]-3,3'-

dicarboxylic acid 

M. ferrea 58 

27 fukugiside Garcinia madruno 59 

28 neochamaejasmin B Stellera chamaejasme 60 

29 oliveriflavone A, B, and C Cephalotaxus oliveri 61 

30 rhusflavanone  Mesua ferrea 62 

31 mesuaferrone B Mesua ferrea 62 

35 sinodiflavonoids A Sinopodophyllum emodi 63 

36 sinodiflavonoids B Sinopodophyllum emodi 63 

37 oxytrodiflavanone A Oxytropis chiliophylla 64 

38 oxytrochalcoflavanones A Oxytropis chiliophylla 64 

39 oxytrochalcoflavanones B Oxytropis chiliophylla 64 

40 hinokiflavone  Selaginella sinensis 65 

41 isocampylospermone A Ochna Serrulata 66 

42 campylospermone A Ochna Serrulata 66 

43 cupressuflavone Cupressus sempervirens 67 

44 (8-hydroxy-3'-β-D-galactosyl-isoflavone)-2'-8''-

(4'''-hydroxy-flavone)- 

biflavone 

Solanum nigrum 68 

45 2',3',5-trihydroxy-5''-methoxy-3''-O- α-glucosyl-

3-4'"-O-biflavone 

Solanum nigrum 68 

46 7′-O-methyl hinokiflavone Selaginella tamariscina 69 

47 (2R,3S)-volkensiflavone-7-O-β-

acetylglucopyranoside 

Allanblackia floribunda 70 

48 (2S,3S)-morelloflavone-7-O-β-

acetylglucopyranoside 

Allanblackia floribunda 70 

49 (S)-2″R,3″R- and (R)-2″S,3″S-dihydro-3″-

hydroxyamentoflavone-7- methyl ether 

Cardiocrinum giganteum 71 

50 (S)-2″R,3″R- and (R)-2″S,3″S-dihydro-3″-

hydroxyamentoflavone 

Cardiocrinum giganteum 71 

51 4,4′,7-tri-O-methylisocampylospermone A Ochna serrulata 72 

52 4‴-de-O-methylafzelone A Ochna serrulata 72 

53 serrulone A Ochna serrulata 72 

54 sumaflavone Juniperus phoenicea 73 

 

4. Synthetic sources 

Instead of natural sources, biflavonoid is also produced via synthetic pathway. This usually aims 

to derivatize the biflavonoid lead compound into a modified diverse functional group could be 

responsible for its biological activity. In addition, the synthetic pathway could be more 

reproducible than isolating the biflavonoid from its genuine natural sources. This will 

proportionally reduce the cost of production as well as increase the yields 74,75.  



Biflavonoid is synthetically formed by two units (monomer) of flavonoid underwent the Ullmann 

coupling reaction 76. This reaction forms diaryl ether link between two units of flavonoid, which 

is conditioned by mixing them with an alkaline carbonate solution, N, N-dimethylacetamide and 

dry toluene solvent under nitrogen exposure, followed by heating the mixture above 1000C for 

several hours 77. The total synthesis of biflavonid is initiated by reacting ortho-hydroxy 

acetophenone with benzaldehyde under Claissen Smith condensation to form chalcone as the 

intermediate compound 78. The next step is the synthesis of flavone (monomer) by iodinating 

the chalcone using DMSO as the solvent 79. The detail total synthesis of biflavonoid is schemed 

out in Scheme 1. 
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Scheme 1. Total synthesis of biflavonoid. Reagents and conditions: a) benzaldehyde, KOH, 

MeOH, rt, overnight, 70-87%; b) I2, DMSO, 100 oC, overnight, 75-86%; and c) Ullmann modified 

coupling reaction, 8-58% 80. 

 

An interesting biflavonoid was constructed according to naringenin monomer by reacting the 

available phloroglucinol and 4-hydroxy- or 4-methoxybenzaldehyde. Naringenin is the flavanone-

skeleton structure attached by three hydroxy groups at the 4', 5, and 7 carbons. The product was 

confirmed as 3′,3′′′-binaringenin and four related biflavonoids with a considerably good yield (15-

35%) 81.  

Biflavonoid was also prepared electrochemically by reacting flavonol isorhamnetin, LiClO4 and 

amine in acetonitrile solvent. The mixture was electrolyzed in a diaphragm cell at anodic current 

density 5 mA/cm2 for 3.5 h.  A platinum plate with working surface 2 cm2 was used as the anode. 

Once the electrolysis completted, about 90% of the acetonitrile was distilled from the anode 

compartment. Further purification using chromatography column was applied and followed by 

recrystallization to obtain the biflavonoid product with a good yield (60-70%) 82. 



A step-economical preparation of a very rare biflavonoid has been performed by combining the 

methylated biaurone underwent a modular and divergent synthesis strategy. The divergent 

synthesis was carried out by using bialdehyde as the building block such as isophthalaldehyde, 

terephthalaldehyde, and benzene-1,3,5-tricarbaldehyde to produce the chalcone intermediate 

under Claissen Smith condensation. The following reaction was oxidative cyclization to obtain the 

biflavonoid as the targetted compound. Interestingly, instead of biflavonoid, the divergent method 

ia also applied in the production triflavonoid 83.  

The synthesis of biflavonoid was further explored by applying Suzuki-Miyaura cross-coupling 

reaction followed by alcohol methylation for the synthesis of rare ‘hybrid’ derivatives. These 

derivatives belong to different subclasses of monomers. The second biflavonoid was constructed 

as homodimeric compounds in which a methylenedioxy group acts as the linker between the two 

flavonoid monomers. This reaction facilitates the probing of uncharted regions of biologically 

interesting chemical space 84. 

The first stereodivergent synthesis of biflavanone was conducted by exclusively controlling the 

temperature to produce a stereoselective product. The scaffold of 2,2’-biflavanones attached by 

diverse substitution at the phenyl ring and conditioned by SmI2/ Methanol/ THF, confirmed  a 

good yield with a high selective for both stereoisomers of the expected compounds. On one hand, 

the (R*,R*)-stereoisomer only formed when the temperature was controlled at -40 ºC, on the other 

hand, the reaction generated the (R*,S*)-isomer when the mixture was refluxed 85. The control 

of regioselective reaction was performed using aromatic prenyltransferase from Aspergillus 

terreus (AtaPT). Prenylation was applied to produce biflavonoids 1–3 dimerized connected by a 

diphenyl linkage at the hydrogen bond involving C5’’–OH group. This OH is chemically less 

accesible than other OH groups in the ring. The AtaPT was used as the substrate that succesfully 

yielded the different regio and chemoselective products. This study would be recommended for 

developing green synthetic reactions for such prenylated biflavonoids 86. 

 

5. 3-Chymotrypsine-like Protease 

The extensive process of proteolysis releases the functional polypeptides which is mainly achieved 

by main proteinase and frequently also named 3C-like proteinase (3CLpro). This indicates the 

similar cleavage site with the early picornavirus 3C proteinases (3Cpro), although further study 

showed that similarity is limited by two family of the protease. 3CLpro cleaves at least 11 



conserved amino acid residues includes GLN---(SER, ALA, GLY) sequences (the cleavagesite is 

indicated by ---) 87. This process is initiated by the autocleavage of its own enzyme from two 

polypeptides (polypeptide A and polypeptide B). There are three non-canonical 3CLpro cleavage 

sites at the P2 position employing PHE, MET or VAL residues in SARS-Coronavirus polyproteins. 

The cleavage site of 3CLpro SARS-Coronavirus is illustrated in Figure 4 88,89. 

 

 

 

Figure 4. The 3CLpro cleavage sites of SARS CoV which recognize 11 sequences of peptide 

substrate with their respective Kcal/Km. This Kcal/Km values reflect the canonical recognition 

which is supported by the recognition sites of a series of other coronavirus 3C proteases 90,91. 

 

The availability of experimentally determined three dimensional (3D) structures of the SARS-

Coronavirus-2 3CLpro has greatly aided in the design of anti-SARS-Coronavirus-2 drug 92. 



Recently, the sudden increase in the number of crystal structures of 3CLpro are deposited in the 

protein data bank (PDB) 93.  Most of the earlier crystal structures are devoid of inhibitor. Thus, 

it could not explain properly the particular binding site of 3CLpro 94. Therefore, many earlier 

efforts to understand the structure and function of NS3pro relied mainly on the models developed 

based on the crystal structures of other betacoronavirus such as SARS-Coronavirus, MERS, Bat 

Corona, etc 95.  

To date, there are more than 100 3D structures of SARS-Coronavirus-2 3CLpro deposited in the 

protein data bank (PDB) (www.rcsb.org).  In general, the crystal structures 3CLpro reveal the 

presence of three structural domains in each monomer wherein domains I (position 8-101), II 

(position 102-184) and III (position 201-303) has a characteristic chymotrypsin-like fold with a 

catalytic cysteine (CYS145) and histidine (HIS41). This is linked to a third C-terminal domain by 

a long loop (position 185-200) by orienting the N-terminal residues that are essential for the 

dimerization 96-99. Domain I and domain II are decorated in an antiparallel β-barrel structure, 

whereas the domain III is composed by five α-helices arranged in a globular cluster. The helical 

domains of the two monomers form a dimer through H-bond interactions from end to end of  the 

N-terminal residues and the key residues from the individual monomers. The catalytic activity is 

suggested to be contributed by the salt bridge between the N-terminal SER1 of one monomer and 

GLU166 of the other monomer 98,100. Table 2 presenting for 115 3D-structures of 3CLpro 

available in protein data bank. 

SARS-Coronavirus-2 3CL pro in complex with a novel inhibitor 5,6,7-trihydroxy-2-phenyl-4H-

chromen-4-one was solved its 3D-crystal strucure in 2.20 Å of resolution. This flavonoid inhibitor 

binds to the active site of the protease through the hydrogen bond interaction between ortho-

hydroxyphenyl (ring A) of the ligand with GLY143, and the carbonyl group of ring C with 

GLU166. The non-bonding interaction was also observed between the phenyl of ring B with HIS41 

and CYS44. This complex is one of the proofs that flavonoid is such an important feature for 

3CLpro pharmacophore, therefore so do the biflavonoid which could cover more space to interact 

with the 3CLpro. Figure 5 illustrates the interaction between 5,6,7-trihydroxy-2-phenyl-4H-

chromen-4-one and the active site of SARS-Coronavirus-2 3CLpro (PDB ID 6M2N) 101. 



 

Figure 5. The interaction between 5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one and the active 

site of SARS-Coronavirus-2 (PDB ID 6M2N). The 3CLpro is presented in a blue ribbon model, 

whereas the inhibitor is in a stick model (yellow = C, white = H, and red = O). The H-bond and 

hydrophobic interactions are presented in black and yellow dot lines, respectively. 

 

Two peptidomimetic-based inhibitors are complexed with SARS-Coronavirus-2 in different 

monomer of trimer with 2.15Å of the crystal resolution (PDB 6WTT) 102. (1S,2S)-2-({N-

[(benzyloxy)carbonyl]-L-leucyl}amino)-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl]propane-1-

sulfonic acid binds to the active site in the monomer A, by interacting with CYS145, GLU166, 

GLN189, HIS164, and PHE140 at the respective atoms of O (OH), O (C=O), H (NH-amide), H 

(NH-amide), and H (NH-pyrolidinone) (Figure 6). Monomer B demonstrates the same binding 

mode with the monomer A, whereas the monomer C is bound by N~2~-[(benzyloxy)carbonyl]-N-

[(1R,2S)-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl]-1-(trimethyl-lambda~4~-sulfanyl)propan-2-

yl]-L-leucinamide. In the monomer C, the ligand interacts with GLU166, HIS164, HIS41, and 

GLN189 at the respective atoms of  O (C=O), N (NH-amide) and N- (NH-pyrilidinone), O (OH), 

and N (NH-amide).  



 

Figure 6. The trimer structure of 3CLpro as indicated by blue (monomer A), red (monomer B) and 

green (monomer C) surface model. Inset is the ligand complex to active site of the enzyme 

(presented by blue stick and green stick, for monomer A and monomer C, respectively). presented 

in a stick model (orange = C, white = H, blue = N and red = O). The H-bond is presented in black 

dot lines, respectively.  

 

A class of imidazole-4-carboxamide compound was also complexed to SARS-Coronavirus-2 

3CLpro and the 3D crystal structure was resolved at 1.46Å (PDB ID 6W79; Figure 7a) 103. This 

inhibitor binds to the active site of the protease by interacting with the residues GLY143 and 

GLU166 at atom O (C=O-amide) and also the next O (C=O-amide), respectively. The hydrophobic 

interaction was also performed via the interaction between ASN142- O (C=O-amide), THR26-H-

CH-imidazole), CYS145-imidazole ring, LEU141-ASN142-pyridine.  

An inhibitor which was a repurposed drug from antineoplastic, complexed with SARS-

Coronavirus-2 3CLpro in 1.60Å of 3D-crystal resolution (PDB ID 7BUY; Figure 7b) 104. 

Interestingly, this inhibitor binds covalently (distance 1.8Å) at its O (C=O) to CYS145 which is 

one of the catalytic situ residues. This inhibitor’s name is carmofur bearing hexylcarbamide acid 

structure, in which the fatty acid tail occupies the hydrophobic S2 subsite. A study reported that 

carmofur inhibits viral replication in cells (EC50 = 24.30 μM) and is a promising lead compound to 

develop new antiviral treatment for SARS-Coronavirus-2. 

A more diverse inhibitor’s structure was observed from the 3D-crystal structure with PDB ID 

5RGG which was resolved at 2.26Å of resolution 105; Figure 7c). The inhibitor is a carboxamide 

derivative namely 4-methyl-N-phenylpiperazine-1-carboxamide, binds at HIS80 via H-bond 

interaction. Instead of H-bond, HIS80 was also interact with the inhibitor via hydrophobic 

interaction which was co-bound with LYS90. This experiment could give an insight understanding 



that even small molecule is able to bind to the protease, however, the potency of such inhibitor 

could be low due to the larger cavities whic need an extending occupation. 

 

Figure 7. The presentation of a) imidazole-4-carboxamide, b) carmofur, and c) 4-methyl-N-

phenylpiperazine-1-carboxamide bound into the active site of SARS-Coronavirus-2 3CLpro. The 

protein is visualized in surface model with the green area = hydrogen bond acceptor residues, white 

area = neutral residues, and magenta area = hydrogen bond donor residues. The ligands are 

presented in a stick form with yellow = C, white = H, blue = N, and red = O. 

 

 

 

Table 2. The list of 3CLpro 3D-crystal structure available in protein data bank. 

PDB 

ID 

Co-crystallized Ligand Resolution (Å) Reference 

6M2N 5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one 2.20 101 

6M2Q - 1.70 101 

6WQF - 2.30 106 

6XB1 1-ethyl-pyrrolidine-2,5-dione 1.80 107 

6XB0 dimethyl sulfoxide 1.80 107 

6XB2 1-ethyl-pyrrolidine-2,5-dione, dimethyl sulfoxide 2.10 107 

6L00 

and 

6LNY 

(2~{S})-4-methyl-~{N}-[(2~{S})-1-oxidanylidene-3-[(3~{S})-2-

oxidanylidenepyrrolidin-3-yl]propan-2-yl]-2-[[(~{E})-3-phenylprop-

2-enoyl]amino]pentanamide 

1.94 and 2.25 108 

7JFQ 1,2-ethanediol, formic acid 1.55 109 

6XKF 1,2-ethanediol, chloride ion 1.80 110 

6XKH 1,2-ethanediol, acetate ion, formic acid 1.28 111 

6XOA 1,2-ethanediol 2.10 112 

6LNQ N-[(2S)-3-methyl-1-[[(2S)-4-methyl-1-oxidanylidene-1-[[(2S)-1-

oxidanylidene-3-[(3S)-2-oxidanylidenepyrrolidin-3-yl]propan-2-

yl]amino]pentan-2-yl]amino]-1-oxidanylidene-butan-2-yl]-1H-

indole-2-carboxamide 

2.24 108 



7JUN - 2.30 113 

7JR3 - 1.55 114 

7JR4 - 1.55 115 

6XHU - 1.80 116 

6XQT (1R,2S,5S)-3-[N-({1-[(tert-

butylsulfonyl)methyl]cyclohexyl}carbamoyl)-3-methyl-L-valyl]-N-

{(1S)-1-[(1R)-2-(cyclopropyla mino)-1-hydroxy-2-oxoethyl]pentyl}-

6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide 

2.30 117 

6XQS (1S,3aR,6aS)-2-[(2S)-2-({(2S)-2-cyclohexyl-2-[(pyrazin-2-

ylcarbonyl)amino]acetyl}amino)-3,3-dimethylbutanoyl]-N-[(2R,3S)-

1-(cyclopropylamino)-2-hydroxy-1-oxohexan-3-

yl]octahydrocyclopenta[c]pyrrole-1-carboxamide 

1.90 117 

6XQU boceprevir (bound form) 2.20 117 

6W2A [4,4-bis(fluoranyl)cyclohexyl]methyl ~{N}-[(2~{S})-1-

[[(1~{R},2~{S})-1-[bis(oxidanyl)-oxidanylidene-$l^{5}-sulfanyl]-1-

oxidanyl-3-[(3~{S})-2-oxidanylidenepyrrolidin-3-yl]propan-2-

yl]amino]-4-methyl-1-oxidanylidene-pentan-2-yl]carbamate, (1S,2S)-

2-[(N-{[(4,4-difluorocyclohexyl)methoxy]carbonyl}-L-

leucyl)amino]-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl]propane-1-

sulfonic acid 

1.65 118 

6WTK N~2~-[(benzyloxy)carbonyl]-N-{(2S)-1-hydroxy-3-[(3S)-2-

oxopyrrolidin-3-yl]propan-2-yl}-L-leucinamide 

2.00 119 

6WTM - 1.85 119 

6WTJ (1S,2S)-2-({N-[(benzyloxy)carbonyl]-L-leucyl}amino)-1-hydroxy-3-

[(3S)-2-oxopyrrolidin-3-yl]propane-1-sulfonic acid 

1.90 119 

6W63 

and 

6W79 

N-(4-tert-butylphenyl)-N-[(1R)-2-(cyclohexylamino)-2-oxo-1-

(pyridin-3-yl)ethyl]-1H-imidazole-4-carboxamide 

2.10 103 

6WCO N-(4-tert-butylphenyl)-N-[(1R)-2-(cyclopentylamino)-2-oxo-1-

(pyridin-3-yl)ethyl]-1H-imidazole-4-carboxamide 

1.48 103 

6XBH - 1.60 120 

6XBG - 1.45 121 

6XFN - 1.70 122 

7JU7 Masitinib 1.60 123 

3SZN ethyl (4R)-4-({N-[(benzyloxy)carbonyl]-l-phenylalanyl}amino)-5-

[(3S)-2-oxopyrrolidin-3-yl]pentanoate 

1.69 124 

3SNE 2-(N-morpholino)-ethanesulfonic acid 2.60 125 

3SNA, 

3SNB, 

and 

3SNC 

- 3.05, 2.40 and 

2.58 
125 

6XBI - 1.70 126 

6XHO ethyl (2E,4S)-4-{[N-(4-methoxy-1H-indole-2-carbonyl)-L-

leucyl]amino}-5-[(3S)-2-oxopyrrolidin-3-yl]pent-2-enoate 

1.45 127 

6XHN (3S)-3-{[N-(4-methoxy-1H-indole-2-carbonyl)-L-leucyl]amino}-2-

oxo-4-[(3S)-2-oxopyrrolidin-3-yl]butyl 2-cyanobenzoate 

1.38 127 

6XHL 

and 

6XHM 

N-[(2S)-1-({(2S)-4-hydroxy-3-oxo-1-[(3S)-2-oxopyrrolidin-3-

yl]butan-2-yl}amino)-4-methyl-1-oxopentan-2-yl]-4-methoxy-1H-

indole-2-carboxamide 

1.47 and 1.41 127 

6XA4 - 1.65 128 

6Y2E - 1.75 129 

6Y2G, 

6Y2F 

~{tert}-butyl~{N}-[1-[(2~{S})-3-cyclopropyl-1-

oxidanylidene-1-[[(2~{S},3~{R})-3-oxidanyl-4-oxidanylidene-1-

[(3~{S})-2-oxidanylidenepyrrolidin-3-yl]-4-

2.20, and 1.95 129 



[(phenylmethyl)amino]butan-2-yl]amino]propan-2-yl]-2-

oxidanylidene-pyridin-3-yl]carbamate 

7JKV N-[(2S)-1-({(1S,2S)-1-(1,3-benzothiazol-2-yl)-1-hydroxy-3-[(3S)-2-

oxopyrrolidin-3-yl]propan-2-yl}amino)-4-methyl-1-oxopentan-2-yl]-

4-methoxy-1H-indole-2-carboxamide 

1.25 130 

5RHF 1-acetyl-N-methyl-N-phenylpiperidine-4-carboxamide 1.76 105 

5RHE 1-acetyl-N-(6-methoxypyridin-3-yl)piperidine-4-carboxamide 1.56 105 

5RGG 4-methyl-N-phenylpiperazine-1-carboxamide 2.26 105 

5RG1 N-alpha-acetyl-N-(3-bromoprop-2-yn-1-yl)-L-tyrosinamide 1.57 105 

5RGH 5-fluoro-1-[(5-methyl-1,3,4-thiadiazol-2-yl)methyl]-1,2,3,6-

tetrahydropyridine 

1.70 105 

5RGR N,1-dimethyl-N-(propan-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine 1.41 105 

5RG3 N~2~-acetyl-N~1~-prop-2-en-1-yl-L-aspartamide 1.58 105 

5RG2 N~2~-acetyl-N-prop-2-en-1-yl-D-allothreoninamide 1.63 105 

5RGS [(2~{R})-4-(phenylmethyl)morpholin-2-yl]methanol 1.72 105 

5RGK 2-fluoro-N-[2-(pyridin-4-yl)ethyl]benzamide 1.43 105 

5RGJ (5S)-7-(pyrazin-2-yl)-2-oxa-7-azaspiro[4.4]nonane 1.34 105 

5RGM N'-acetyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carbohydrazide 2.04 105 

5RGM N'-acetyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carbohydrazide 2.04 105 

5RG0 1,1'-(piperazine-1,4-diyl)di(ethan-1-one) 1.72 105 

5RGN 1-{4-[(4-methylphenyl)sulfonyl]piperazin-1-yl}ethan-1-one 1.86 105 

5RGQ 1-(4-fluoro-2-methylphenyl)methanesulfonamide 2.15 105 

5RGP 1-{4-[(2,4-dimethylphenyl)sulfonyl]piperazin-1-yl}ethan-1-one 2.07 105 

5R8T - 1.27 105 

5RGZ 2-(3-cyanophenyl)-N-(pyridin-3-yl)acetamide 

 

1.52 105 

5RHA 1-{4-[(thiophen-2-yl)methyl]piperazin-1-yl}ethan-1-one 1.51 105 

5RH3 (2R)-2-(3-chlorophenyl)-N-(4-methylpyridin-3-yl)propanamide 1.69 105 

5RH4 (2R)-2-(6-chloro-9H-carbazol-2-yl)propanoic acid 1.34 105 

5RGU N-(3-{[(2R)-4-oxoazetidin-2-yl]oxy}phenyl)-2-(pyrimidin-5-

yl)acetamide 

2.11 105 

5RH6 N-[(1R)-2-[(2-ethyl-6-methylphenyl)amino]-2-oxo-1-(pyridin-3-

yl)ethyl]-N-[6-(propan-2-yl)pyridin-3-yl]propanamide 

1.60 105 

5RGT N-[(1R)-2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl]-N-(5-tert-

butyl-1,2-oxazol-3-yl)propanamide 

2.22 105 

5RH5 N-(5-tert-butyl-1,2-oxazol-3-yl)-N-[(1R)-2-[(4-methoxy-2-

methylphenyl)amino]-2-oxo-1-(pyridin-3-yl)ethyl]propanamide 

1.72 105 

5RGW 2-(5-cyanopyridin-3-yl)-N-(pyridin-3-yl)acetamide 1.43 105 

5RH8 2-(cyanomethoxy)-N-[(1,2-thiazol-4-yl)methyl]benzamide 1.81 105 

5RGV 2-(isoquinolin-4-yl)-N-phenylacetamide 1.82 105 

5RH7 N-(5-tert-butyl-1H-pyrazol-3-yl)-N-[(1R)-2-[(2-ethyl-6-

methylphenyl)amino]-2-oxo-1-(pyridin-3-yl)ethyl]propanamide 

1.71 105 

5RGY N-(4-methoxypyridin-2-yl)-2-(naphthalen-2-yl)acetamide 1.976 105 

5RGX 2-(3-cyanophenyl)-N-(4-methylpyridin-3-yl)acetamide 1.69 105 

5RH9 N-{4-[(1S)-1-methoxyethyl]phenyl}-N-[(1R)-2-[(4-methoxy-2-

methylphenyl)amino]-2-oxo-1-(pyridin-3-yl)ethyl]propanamide 

1.91 105 

5RH0 N-(5-methylthiophen-2-yl)-N'-pyridin-3-ylurea 1.92 105 

5RH2 2-(3-chlorophenyl)-N-(4-methylpyridin-3-yl)acetamide 1.83 105 

5RH1 2-(5-chlorothiophen-2-yl)-N-(pyridin-3-yl)acetamide 1.96 105 

5REA (azepan-1-yl)(2H-1,3-benzodioxol-5-yl)methanone 1.63 105 

5REB 1-[(thiophen-3-yl)methyl]piperidin-4-ol 1.68 105 

5REC 2-{[(1H-benzimidazol-2-yl)amino]methyl}phenol 1.73 105 



 

5REE (2R,3R)-1-benzyl-2-methylpiperidin-3-ol 1.77 105 

7JVZ - 2.50 131 

6W9Q - 2.05 132 

7BRR (1S,2S)-2-({N-[(benzyloxy)carbonyl]-L-leucyl}amino)-1-hydroxy-3-

[(3S)-2-oxopyrrolidin-3-yl]propane-1-sulfonic acid 

1.40 133 

7BRO - 2.00 134 

7BRP (1R,2S,5S)-n-[(1S)-3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-

3-[(2S)-2-{[(tert-butylamino)carbonyl]amino}-3,3-dimet 

hylbutanoyl]-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide 

1.80 135 

7C2Q - 1.93 136 

7C8T N-[(benzyloxy)carbonyl]-O-(tert-butyl)-l-threonyl-3-cyclohexyl-N-

[(1S)-2-hydroxy-1-{[(3S)-2-oxopyrrolidin-3-yl]methyl}ethyl]-l-

alaninamide 

2.05 137 

7C8R Ethyl (4R)-4-[[(2S)-4-methyl-2-[[(2S,3R)-3-[(2-methylpropan-2-

yl)oxy]-2-

(phenylmethoxycarbonylamino)butanoyl]amino]pentanoyl]amino]-5-

[(3S)-2-oxidanylidenepyrrolidin-3-yl]pentanoate 

2.30 137 

6XCH - 2.20 138 

6L70 (1S,2S)-2-({N-[(benzyloxy)carbonyl]-L-leucyl}amino)-1-hydroxy-3-

[(3S)-2-oxopyrrolidin-3-yl]propane-1-sulfonic acid 

1.56 139 

6FV1 (2~{S})-4-methyl-~{N}-[(2~{S},3~{R})-3-oxidanyl-4-

oxidanylidene-1-[(3~{S})-2-oxidanylidenepyrrolidin-3-yl]-4-

[(phenylmethyl)amino]butan-2-yl]-2-[[(~{E})-3-phenylprop-2-

enoyl]amino]pentanamide 

2.30 140 

6FV2 (S)-N-benzyl-3-((S)-2-cinnamamido-3-phenylpropanamido)-2-oxo-4-

((S)-2-oxopyrrolidin-3-yl)butanamide 

2.95 140 

7D31 (3~{S},3~{a}~{S},6~{a}~{R})-2-[3-[3,5-

bis(fluoranyl)phenyl]propanoyl]-~{N}-[(2~{S})-1-oxidanylidene-3-

[(3~{S})-2-oxidanylidenepyrrolidin-3-yl]propan-2-yl]-

3,3~{a},4,5,6,6~{a}-hexahydro-1~{H}-cyclopenta[c]pyrrole-3-

carboxamide 

2 

2.00 141 

7D1O (1R,2S,5S)-3-[N-({1-[(tert-

butylsulfonyl)methyl]cyclohexyl}carbamoyl)-3-methyl-L-valyl]-N-

{(1S)-1-[(1R)-2-(cyclopropyla mino)-1-hydroxy-2-oxoethyl]pentyl}-

6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide 

1.78 142 

7C7P (1S,3aR,6aS)-2-[(2S)-2-({(2S)-2-cyclohexyl-2-[(pyrazin-2-

ylcarbonyl)amino]acetyl}amino)-3,3-dimethylbutanoyl]-N-[(2R,3S)-

1-(cyclopropylamino)-2-hydroxy-1-oxohexan-3-

yl]octahydrocyclopenta[c]pyrrole-1-carboxamide 

(3~{S},3~{a}~{S},6~{a}~{R})-~{N}-[(2~{R},3~{S})-1-

(cyclopropylamino)-2-oxidanyl-1-oxidanylidene-hexan-3-yl]-2-

methanoyl-3,3~{a},4,5,6,6~{a}-hexahydro-1~{H}-

cyclopenta[c]pyrrole-3-carboxamide 

1.74 143 

7COM boceprevir (bound form) 2.25 144 

6ZRU boceprevir (bound form) 2.10 145 

6ZRT (1S,3aR,6aS)-2-[(2S)-2-({(2S)-2-cyclohexyl-2-[(pyrazin-2-

ylcarbonyl)amino]acetyl}amino)-3,3-dimethylbutanoyl]-N-[(2R,3S)-

1-(cyclopropylamino)-2-hydroxy-1-oxohexan-3-

yl]octahydrocyclopenta[c]pyrrole-1-carboxamide 

2.10 146 

6MOK - 5.10 147 



6LZE ~{N}-[(2~{S})-3-cyclohexyl-1-oxidanylidene-1-[[(2~{S})-1-

oxidanylidene-3-[(3~{S})-2-oxidanylidenepyrrolidin-3-yl]propan-2-

yl]amino]propan-2-yl]-1~{H}-indole-2-carboxamide 

1.50 148 

7C6S boceprevir (bound form) 1.60 149 

7CX9 3-iodanyl-1~{H}-indazole-7-carbaldehyde 1.73 150 

 

5. Biflavonoid as The Protease –Inhibitor 

Although it is not so many, there is a few study of biflavonoid-class compounds reporting their 

activities as protease inhibitors. Amentoflavone from Torreya nucifera was the early biflavonoid 

studied its inhibitory activity against SARS-CoV 3CLpro by showing IC50 8.3 µM. The results 

were compared to three types of flavonoid (apigenin, luteolin and quercetin) which showed less 

inhibition and therefore, the structure-activity relationships were generated to confirm that the 

more potent activity of biflavonoid appeared to be associated with the presence of benzene ring 

moiety at position C-3’ of flavones, as biflavone had an effect on 3CLpro inhibitory activity 36. 

Based on the Ryu et al. finding, a QSAR study of biflavonoid and its analogs were carried out to 

generate a QSAR model defining that increasing value of the dipole moment along X-axis may be 

conducive to the activity. Therefore, the steric character of this part may be favorable for its 

activity. Compounds having higher dipole moment due to the much bulky aryl groups, therefore, 

have a higher activity than the compound having less bulky aryl group 23. 

The antiproteolytic activity of biflavonoid was early determined on morelloflavone-4’’’-O-β-D-

glycosyl, (±)-fukugiside, and morelloflavone. These biflavonoids were isolated from the fruit 

epocarp of Garcinia brasiliensis which further semisynthesized into three moreflavone derivatives 

i.e. morelloflavone-7,4’,7’’,3’’’,4’’’’- penta-O-acetyl, morelloflavone-7,4’,7’’,3’’’,4’’’-penta-O-

methyl and morelloflavone-7,4’,7’’,3’’’,4’’’-penta--butanoyl. A high inhibitory activity was 

demonstrated by these biflavonioid against r-CPB2.8 and r-CPB3 isoforms which are papain-like 

protease of Leismania mexicana with IC50 0.42-1.01 µM for four the most active compounds. 

Interestingly, there was no cytotoxic activity towards normal cell lines as observed from the in 

vitro study 151.  

Further study was pursued by the same research group in evaluating those biflavonoid activities 

against the cysteine protease (papain and cruzain) and serine protease of Trypanozoma cruzii. All 

biflavonoid compounds demonstrated excellent inhibitions toward all protease enzymes (IC50 

0.02-106 µM), however, morelloflavone-7,4’,7’’,3’’’,4’’’’- penta-O-acetyl showed the best 

activity which might be due to the carbonyl group in the structure. This functional group could 



favor a higher nucleophilic attack by serine and cysteine proteases. This agreed with  

morelloflavone-7,4’,7’’,3’’’,4’’’-penta-O-methyl (IC50 = 15.4 ± 0.7 µM for papain), in which the 

compound having no carbonyl group in structure, was less active in the inhibition process. This 

was confirmed by the structure–activity relationships (SARs) study had been performed using 

flexible docking simulations 152. 

A study by Assis et al. reported fukugetin, a biflavone originated from Garcinia brasiliensis, 

demonstrated partital competitive and hyperbolic-mix type inhibitions against the major cystein 

protease of Trypanosoma cruzii (cruzain and papain), respectively.  The potency of such biflavone 

was expressed in a slow reversible type inhibition with Ki 1.1 and 13.4 µM for cruzain and papain, 

respectively, describing that the biflavone has 12 time faster inhibition toward cruzain than papain 

in inhibiting the enzymes. The molecular docking study predicted that this activity is due to the 

chemical interaction between biflavone at ring C with S3 pocket, whereas the ring C’  binds at S2 

pocket through hydrogen bond as well as hydrophobic interactions 153. 

A virtual screening was performed to identify the hits of tryptase inhibitor followed by in vitro 

experiments to identify the lead compounds. Tryptase is a class of serine protease enzyme released 

as the allergic response such as skin inflammation and asthma, from the mast cells. Off to 98,000 

compounds screened, 2.28% of the library (2503 compouns) were selected as the hits. 

Interestingly, biflavonoids were one of the most frequently represented in the 200 compounds with 

the strongest tryptase binding energy. Using FRET-based assay, these 200 compounds were further 

in vitro sreened to afford the lead compound, and then biflavonoid podocorpus flavone A blocks 

tryptase activity by 61.6.%. The docking study suggested that the biflavonoid is favorably binding 

at the S4 of tryptase 154. 

Biflavonoid was also reported to down regulate the expression of matrix metalloproteinase-1 

(MMP-1) from human skin fibroblast. MMP is a zymogen (zinc-dependent peptidase) which 

degrades the extracellular matrix to perform angiogenesis, inflammation, cell migration and tissue 

remodelling. The high expression of this enzyme is often associated with cancer and wound 

diabetic foot ulcer. 2’,8’’-biapigenin, sumaflavone,  taiwaniaflavone, amentoflavone, and 

robustaflavone were isolated from Selaginella tamariscina showed significant MMP-1 inhibitory 

activity in primary human dermal fibroblasts after UV irradiation. The IC50 values of sumaflavone, 

amentoflavone and retinoic acid (used as the positive control) were 0.78, 1.8, and 10 µM, 

respectively 155. 



 

6. Perspectives 

Two main protein targets in coronaviral genome are classified into structural and non-structural 

protein. Structural protein which is composed by membrane, envelope, and nucleocapsid are 

formed in the inner viral cell, whereas the spike protein is located in the outer cell 156, 157. It 

might be difficult to control the activity of such structural protein because they roles the virus’ life 

during the viral cell assembly which could be too fast too control. Most likely, the host will be 

suddenly infected by the virus while there is no time to block the activity of S protein during viral-

host attachment as well as its endocytosis. Therefore, designing the protein inhibitor for 

coronavirus, the non-structural protein could be more favorable than the structural protein due to 

its role in controlling the polypeptide proteolytic, reverse transcription, RNA replication as well 

as the protein translation, which might take more time than the viral assembly.  

Among the 16 nonstructural proteins, NSP5 are the most attractive targets while others are still 

elusive 158. The NSP5 main protease (3CLpro) is the most common targeted protein in 

coronavirus because they are formed in the host and acting during cleavage and post-translational 

polyprotein synthesis, thus it is relatively easier to control their activities. Two classes of 

compound are reported having these protein activities, including peptide and nonpeptide 

compound. Naturally, the protease has peptide substrate due to its function to hydrolyse the peptide 

bond upon proteolysis. Therefore, for competitive inhibitor, compound having peptide-like 

structure should be suitable to block the enzyme-substrate binding. There are notable peptide (like) 

compounds demonstrating low micromolar activity towards the protease such as lopinavir and 

ritonavir 159. Although peptide is the suitable structure designed for the protease inhibitor, 

however, the physic-chemical properties of this class of compound often make it fails under 

clinical trials. Peptide has a number of flexible bond which makes it energetically unstable either 

during preparation or its pharmacokinetic stage. The structure is mimicking protein, therefore it is 

sensitive towards denaturation and hydrolysis during preparation. At the pharmacokinetic stage 

especially during absorption, peptide is less absorbed due to its isoelectric character which makes 

it very polar  in aqueous bilological fluids thus is hard to penetrate the intestinal membrane lipid 

bilayer 160. This causes the peptide becomes unsuitable for oral preparation which needs 

absorption process. Other alternative is formulated in parentral preparation, however, this is costly 

and not applicable administered by patient themselves. Therefore, peptide is practically used as 



the model only and then should be further modified to more rigid character to improve the stability. 

One effort has been conducted to formulate the drug delivery system to improve the bioavailability 

such as using liposome technology, however, the use of organic solvents in the liposome dosage 

form could make it toxic 161, 162. 

Non-peptide or often called as small molecule inhibitors, currently takes more attention used as 

the molecule target for protease inhibitors. The presence of aromatic rings could make the 

compound is energetically more stable than the peptide due to its rigid character 163. The rigid 

character makes the entropy of the compound to be less thus stabilizing the compound-enzyme 

affinity upon binding. The non-peptide inhibitor is still can be divided into natural and synthetic 

compound. Natural compound is unique structure due to the presence of chiral carbon which could 

make the ligand-protein binding become more specific. A class of biflavonoid showed in vitro 

competitive inhibition in low micromolar activities towards the protease which agreed with the 

docking explanation. Amentoflavone is the early biflavonoid found active against 3CLpro of 

SARS-Coronavirus underlining the potency of such compound to be this protease inhibitor. It was 

postulated that the presence of benzene ring moiety at position C-3’ of flavones, as biflavone had 

an effect on 3CLpro inhibitory activity. The synthetic (semi synthetic) biflavonoids are the further 

strategy to get the product being more feasible to be developed as protease inhibitor. Compounds 

bearing more carbonyl groups seems like promising as this protease inhibitor as it is designed to 

favor a higher nucleophilic attack by serine and cysteine proteases, using molecular docking.  

3CLpro is still the most recommended protein target in the discovery of anti-SARS  coronaviral 

agent. The availability of crystal structure sand its high conserve binding site, makes the structure 

based drug design becomes applicable 164, 165. The structure-based drug design is also able to 

combine with ligand-based drug design since the structure information of the compounds either in 

peptide or non-peptide, have been reported as the protease inhibitors. The non-peptide compound 

such as biflavonoid provide more promising candidate to enter either pre- or clinical stage due to 

its more stable physic-chemical properties during preparation as well as pharmacokinetics.  

 

7. Conclusion 

In conclusion, our review strongly recommend that biflavonoid, either from natural product or its 

synthetic is very potential to be used as of SARS-Coronavirus-2 3CLpro inhibitor. Its dimer and 

big structure are more suitable for 3CLpro binding site composing two beta barrels than the 



corresponding flavones. To the best of our knowledge, this is the first review to describe the 

potential inhibitory effects of biflavonoid against 3CLpro. Thus, we believe that this compound 

may be a good candidate for development as a natural therapeutic drug against SARS-Coronavirus-

2 infection. 
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